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MEAN CENTRAL DISTANCE––CENTRAL DISTANCE INEQUALITIES

JIA JIN WEN, SHAN HE WU, JUN YUAN AND TIAN YONG HAN

(Communicated by L. Yang)

Abstract. By means of the analysis, convex geometry, computer and majorization theories, in
the centered 2-surround system S(2) {P,Γ, l} , we establish the following mean central distance–
central distance inequalities:

exp
(

1
|Γ|

∮
Γ log rP

)
exp

(
1
|Γ|

∮
Γ log rP

) � 1
2

[
sec

lπ
|Γ| + cot

lπ
|Γ| log

(
tan

lπ
|Γ| + sec

lπ
|Γ|

)]

and (
1
|Γ|

∮
Γ r2

P

)1/2

1
|Γ|

∮
Γ rP

� 1
2

[
sec

lπ
|Γ| + cot

lπ
|Γ| log

(
tan

lπ
|Γ| + sec

lπ
|Γ|

)]
when 0 < ∠APA+ � τ ,

where τ = 2.49342812654089 . . . , and τ/2 is the unique real root of the following equation:
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(
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)
.

We also demonstrate the applications of our results, and obtain the N –mean central distance –
central distance inequality and the mean central distance–central distance–limit inequality.

1. Introduction

We begin by recalling some of the basic concepts as follows [1, 2, 3, 4].
Let γ : I → R2 be a continuous function, where I ⊂ R is an interval, and let the

image
Γ � γ(I) =

{
γ(t) ∈ R2|γ(t) = x(t)i+ y(t)j, t ∈ I

}
of γ be a smooth curve, that is, the derivatives x′(t) and y′(t) are continuous, and the
derivative of the vector γ(t) satisfies the condition

γ ′(t) � x′(t)i+ y′(t)j �= 0 ⇔ ‖γ ′(t)‖ �
√

[x′(t)]2 +[y′(t)]2 > 0, ∀t ∈ I,

here
0 � (0,0), i � (1,0), j � (0,1), R � (−∞,∞), R2 � R×R.
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Then the length |Γ| of the curve Γ exists and

0 < |Γ| �
∫

I
‖γ ′(t)‖dt =

∫
I

√
[x′(t)]2 +[y′(t)]2dt � ∞,

and 0 < |Γ| < ∞ if 0 < |I| < ∞, where |I| is the measure of the interval I .
In this paper, we assume that Γ is a smooth and convex Jordan closed curve in R2

[1, 2, 3, 4]. Then

Γ � γ(R) =
{

γ(t) ∈ R2|γ(t) = x(t)i+ y(t)j, t ∈ R
}

and γ(t) ≡ γ(t + |Γ|), ∀t ∈ R,

that is, γ(t) is a periodic function with the period |Γ| , where the parameter t is the
natural parameter, that is,

0 < l � |Γ| ⇒ |γ([t,t + l])| �
∫ t+l

t

√
[x′(t)]2 +[y′(t)]2dt = l, ∀t ∈ R.

We denote by D(Γ) the convex region enclosed by the Jordan closed curve Γ and, we
also define

A− � γ (tA − l) , A � γ (tA) and A+ � γ (tA + l) , tA ∈ R. (1)

If l is a fixed real number and 0 < l < |Γ|/2, then we say that the plane point set

D(Γ, l) �
⋂
A∈Γ

Â−AA+ ⊂ D(Γ) ⊂ R2

is an l -central region of the curve Γ , where the angular region

Â−AA+ � {(1−λ )γ(tA)+ λ γ(t)|0 < λ < ∞, tA + l < t < tA − l + |Γ|} .

Let the l -central region D(Γ, l) be non-empty and the fixed point P∈D(Γ, l) . We
say that the set

S(2){P,Γ, l} � {P,Γ, l}
is a centered 2 -surround system or centered 2 -satellite system, P is a center and
A,A+ ∈ Γ are two satellites of the system.

For the centered 2-surround system S(2){P,Γ, l} , we may think of the point P as
the center of the earth, Γ as the orbit of two satellites A,A+ . In order to avoid hitting,
the satellites A,A+ must move by same curve velocity, that is,

l � |γ ([tA,tA + l])| ∈
(

0,
|Γ|
2

)

is invariable. This is the significance of the centered 2-surround system S(2){P,Γ, l} in
the theory of satellite.

For centered 2-surround system S(2){P,Γ, l} , we let P′ denote the projection of
the point P in the line AA+ , and we say that the distance

rP � Distance(P,AA+) = ‖P′ −P‖
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from the point P to line AA+ is a central distance of the system, and the positive real
number

rP � 1
‖A+−A‖

∫
M∈[AA+]

‖M−P‖

is a mean central distance of the system, which is the mean of the distance between the
point P and the point M in the straight line segment [AA+] , see Figure 1.

Figure 1: The graph of the centered 2 -surround system S(2){P,Γ, l}.

Let f : Γ → (0,∞) be a continuous function [5, 6] defined on the smooth Jordan
closed curve Γ . Then the functional

M[p]
Γ ( f ) �

⎧⎪⎪⎨
⎪⎪⎩

(
1
|Γ|

∮
Γ

f p
)1/p

, p ∈ R, p �= 0

exp

(
1
|Γ|

∮
Γ
log f

)
, p = 0

is called the p-mean (or p-power mean) of the function f [7, 8, 9, 10, 11, 12], where∮
Γ is the curve integral and,

MΓ( f ) � M[1]
Γ ( f ) =

1
|Γ|

∮
Γ

f and GΓ( f ) � M[0]
Γ ( f ) = exp

(
1
|Γ|

∮
Γ
log f

)

are the mean and the geometric mean of the function f , respectively.
The theory of satellite is important in space science. In [1, 2, 3, 4, 13], the authors

systematically studied the theory of satellite and obtained some useful results.
In the convex geometry, a well-known isoperimetric inequality can be expressed

as: If Γ is a smooth Jordan closed curve, then we have

AreaD(Γ) � |Γ|2
4π

, (2)

where AreaD(Γ) denote the area of the region D(Γ). Equality in (2) holds if and only
if Γ is a circle.

In the convex geometry, a large number of isoperimetric inequalities similar to (2)
had been obtained [1, 2, 3, 4, 14, 15, 16].
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In this paper, by means of the theory of majorization [17], we will study the sharp

lower bounds of GΓ(rP)/GΓ(rP) and M[2]
Γ (rP)/MΓ(rP), and establish two new isoperi-

metric inequalities in the centered surround system S(2){P,Γ, l} .
Our main results are as follows.

THEOREM 1.1. (Mean central distance–central distance inequality)
Let S(2){P,Γ, l} be a centered 2 -surround system. Then we have the following isoperi-
metric inequality:

GΓ(rP)
GΓ(rP)

� 1
2

[
sec

lπ
|Γ| + cot

lπ
|Γ| log

(
tan

lπ
|Γ| + sec

lπ
|Γ|

)]
. (3)

Equality in (3) holds if and only if Γ is a circle and P is the center of the circle.

THEOREM 1.2. (Mean central distance–central distance inequality)
Let S(2){P,Γ, l} be a centered 2 -surround system. If

A ∈ Γ ⇒ 0 < ∠APA+ � τ = 2.49342812654089 . . .,

where τ/2 is the unique real root of the equation:

d2[secθ + cotθ log(tanθ + secθ )]
dθ 2 = 0, θ ∈

(
0,

π
2

)
, (4)

then we have the following isoperimetric inequality:

M[2]
Γ (rP)

MΓ(rP)
� 1

2

[
sec

lπ
|Γ| + cot

lπ
|Γ| log

(
tan

lπ
|Γ| + sec

lπ
|Γ|

)]
. (5)

Equality in (5) holds if and only if Γ is a circle and P is the center of the circle.

In Section 5, we will demonstrate the applications of Theorems 1.1 and 1.2.
We remark here that, the relevant calculations in this paper are dependent on the

Mathematica software since these calculations are very complex.

2. Preliminaries

In order to prove Theorems 1.1 and 1.2, we need to establish several identities and
inequalities involving the centered 2-surround system as follows.

LEMMA 2.1. (See Lemma 4 in [4]) Let S(2){P,Γ, l} be a centered 2 -surround
system. Then we have the following identity:

∮
Γ
∠A−PA+ = 2lπ . (6)
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LEMMA 2.2. (Hadmard inequality [18]) Let the function ϕ : [a,b] → R be a
continuous convex function. Then we have

ϕ(a)+ ϕ(b)
2

� 1
b−a

∫ b

a
ϕ(x)dx � ϕ

(
a+b

2

)
. (7)

LEMMA 2.3. Let α,β ∈ (− π
2 , π

2

)
and α + β ∈ (0,π). Then we have

∫ tanβ
− tanα

√
x2 +1dx

tanα + tanβ
� tan

α + β
2

∫ 1

0

√
x2 + cot2

α + β
2

dx. (8)

Equality in (8) holds if and only if α = β .

Proof. This proof is based on the theory of majorization [17, 19, 20]. Let

F(α,β ) �
∫ tanβ
− tanα

√
x2 +1dx

tanα + tanβ
and E � {(α,β ) |α,β ∈

(
−π

2
,

π
2

)
, α + β ∈ (0,π)}.

Then
F(α,β ) = F(β ,α), ∀ (α,β ) ∈ E. (9)

Let x = −t. Then we have

F(α,β ) =
∫ tanβ
− tanα

√
x2 +1dx

tanα + tanβ
=

∫ − tanβ
tanα

√
(−t)2 +1d(−t)

tanα + tanβ

= −
∫− tanβ
tanα

√
t2 +1dt

tanα + tanβ
=

∫ tanα
− tanβ

√
t2 +1dt

tanα + tanβ

=

∫ tanα
− tanβ

√
x2 +1dx

tanβ + tanα
= F(β ,α).

That is, (9) holds.
Now we prove that the symmetric function F(α,β ) is a Schur-convex function

[17, 19] on the symmetric convex set E. By the theory of majorization, we just need to
prove that

(α −β )
(

∂F
∂α

− ∂F
∂β

)
� 0, ∀(α,β ) ∈ E. (10)

Indeed, since
d tanα

dα
= sec2 α,

dtanβ
dβ

= sec2 β ,

and

(α,β ) ∈ E ⇒
√

tan2 α +1 = secα with
√

tan2 β +1 = secβ ,

we have

∂
∂α

∫ tanβ

− tanα

√
x2 +1dx = sec3 α and

∂
∂β

∫ tanβ

− tanα

√
x2 +1dx = sec3 β .



1136 J. J. WEN, S. H. WU, J. YUAN AND T. Y. HAN

Hence

∂F
∂α

=
∂

∂α

∫ tanβ
− tanα

√
x2 +1dx

tanα + tanβ

=
(tanα + tanβ ) ∂

∂α
∫ tanβ
− tanα

√
x2 +1dx− ∂

∂α (tanα + tanβ )
∫ tanβ
− tanα

√
x2 +1dx

(tanα + tanβ )2

=
(tanα + tanβ )sec3 α − sec2 α

∫ tanβ
− tanα

√
x2 +1dx

(tanα + tanβ )2 ,

that is,
∂F
∂α

=
(tanα + tanβ ) sec3 α − sec2 α

∫ tanβ
− tanα

√
x2 +1dx

(tanα + tanβ )2 . (11)

Similarly, from (9), we have

∂F
∂β

=
(tanα + tanβ )sec3 β − sec2 β

∫ tanβ
− tanα

√
x2 +1dx

(tanα + tanβ )2 . (12)

Set tanα = u, tanβ = v. Then, by (11), (12) and

sec2 α = tan2 α +1 = u2 +1, sec2 β = tan2 β +1 = v2 +1, u+ v > 0,

we get

∂F
∂α

− ∂F
∂β

=

(
sec3 α − sec3 β

)
(tanα + tanβ )− (

sec2 α − sec2 β
)∫ tanβ

− tanα
√

x2 +1dx

(tanα + tanβ )2

=
(
sec2 α − sec2 β

) sec3 α−sec3 β
sec2 α−sec2 β (tanα + tanβ )− ∫ tanβ

− tanα
√

x2 +1dx

(tanα + tanβ )2

=
tan2 α − tan2 β
(tanα + tanβ )2

[
sec2 α + sec2 β + secα secβ

secα + secβ
(tanα + tanβ )−

∫ tanβ

− tanα

√
x2 +1dx

]

=
tanα − tanβ
tanα + tanβ

[
sec2 α + sec2 β + secα secβ

secα + secβ
(tanα + tanβ )−

∫ tanβ

− tanα

√
x2 +1dx

]

=
u− v
u+ v

[
u2 + v2 +2+

√
(u2 +1)(v2 +1)√

u2 +1+
√

v2 +1
(u+ v)−

∫ v

−u

√
x2 +1dx

]

= (u− v)

[
u2 + v2 +2+

√
(u2 +1)(v2 +1)√

u2 +1+
√

v2 +1
−

∫ v
−u

√
x2 +1dx

u+ v

]
,

that is,

(α −β )
(

∂F
∂α

− ∂F
∂β

)
= (α −β )(u− v)G(u,v), (13)
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where

G(u,v) � u2 + v2 +2+
√

(u2 +1)(v2 +1)√
u2 +1+

√
v2 +1

−
∫ v
−u

√
x2 +1dx

u+ v
.

Since

(α −β )(u− v) =
(α −β )sin(α −β )

cosα cosβ
� 0, ∀(α,β ) ∈ E,

inequality (13) is equivalent to the inequality

G(u,v) � 0, ∀u,v ∈ R, u+ v > 0. (14)

Let
ϕ : R → R, ϕ(x) �

√
x2 +1. (15)

Then
dϕ
dx

=
x√

x2 +1
and

d2ϕ
dx2 =

1

(x2 +1)3/2
> 0.

Hence the function ϕ is a continuous convex function on R. By Lemma 2.2, we have

∫ v
−u

√
x2 +1dx

u+ v
� ϕ(−u)+ ϕ(v)

2
=

1
2

(√
u2 +1+

√
v2 +1

)
. (16)

By (16), we get

G(u,v) =
u2 + v2 +2+

√
(u2 +1)(v2 +1)√

u2 +1+
√

v2 +1
−

∫ v
−u

√
x2 +1dx

u+ v

� u2 + v2 +2+
√

(u2 +1)(v2 +1)√
u2 +1+

√
v2 +1

− 1
2

(√
u2 +1+

√
v2 +1

)

=
u2 + v2 +2

2(
√

u2 +1+
√

v2 +1)
> 0.

Hence (13) and (14) are proved.
Since the symmetric function F(α,β ) is a Schur-convex function on the symmet-

ric convex set E , and

(α,β ) 
(

α + β
2

,
α + β

2

)
,

by the definition of the Schur-convex function [17, 19], we have

F(u,v) � F

(
α + β

2
,

α + β
2

)
=

1

2tan α+β
2

∫ tan α+β
2

− tan α+β
2

√
x2 +1dx

=
1

tan α+β
2

∫ tan α+β
2

0

√
x2 +1dx
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= tan
α + β

2

∫ tan α+β
2

0

√(
xcot

α + β
2

)2

+ cot2
α + β

2
d

(
xcot

α + β
2

)

= tan
α + β

2

∫ 1

0

√
t2 + cot2

α + β
2

dt.

That is, inequality (8) is proved. This ends the proof of Lemma 2.3. �
We remark here that, in [19], the authors extended the theory of majorization and

established the theory of weak monotonic function, and they show that a Schur-convex
function is a weak increasing function under the proper hypotheses, that is, they ob-
tained the following result: Let Ω ⊂ Rn

++ be a symmetrical and convex domain, and
let f : Ω → R be a homogeneous with degree γ � 0, symmetrical and differentiable
function. If f : Ω → R is a Schur-convex function and f (e) � 0, then f : Ω → R is a
weak increasing function.

LEMMA 2.4. Let S(2){P,Γ, l} be centered 2 -surround system. Then

rP � rP tan
∠APA+

2

∫ 1

0

√
t2 + cot2

∠APA+

2
dt. (17)

Equality in (17) holds if and only if P′ is the midpoint of line segment [AA+] .

Proof. Let

A � xAi, A+ � xA+ i, M � xi, xA � x � xA+ , P � rPj, P′ � 0i+0j,

and let
α � ∠APP′ = −arctan

xA

rP
, β � ∠A+PP′ = arctan

xA+

rP
.

Then
∠APA+ = α + β , xA = −rP tanα, xA+ = rP tanβ , (18)

α,β ∈
(
−π

2
,

π
2

)
, α + β ∈ (0,π) , (19)

and

‖M−P‖ =
√

x2 + r2
P, ‖A+−A‖ = xA+ − xA, rP =

‖A+−A‖
tanα + tanβ

. (20)

See Figure 1.
Notice that

rP =
1

‖A+−A‖
∫

[AA+]
‖P−M‖ =

1
xA+ − xA

∫ xA+

xA

√
x2 + r2

Pdx

=
1

xA+ − xA

∫ rP tanβ

−rP tanα

√
x2 + r2

Pdx =
1

rP(tanα + tanβ )

∫ rP tanβ

−rP tanα

√
x2 + r2

Pdx

=
rP

tanα + tanβ

∫ rP tanβ

−rP tanα

√(
x
rP

)2

+1d

(
x
rP

)
=

rP

tanα + tanβ

∫ tanβ

− tanα

√
x2 +1dx,
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that is,

rP = rP

∫ tanβ
− tanα

√
x2 +1dx

tanα + tanβ
. (21)

By (21) and Lemma 2.3, we get

rP = rP

∫ tanβ
− tanα

√
x2 +1dx

tanα + tanβ
� rP tan

α + β
2

∫ 1

0

√
x2 + cot2

α + β
2

dx

= rP tan
∠APA+

2

∫ 1

0

√
t2 + cot2

∠APA+

2
dt.

That is, inequality (17) is proved.
Based on the above proof, we know that equality in (17) holds if and only if P′ is

the midpoint of line segment [AA+] . The proof of Lemma 2.4 is completed. �

LEMMA 2.5. (Jensen’s inequality, see [21, 22]) Let E ⊂ Rm be a bounded and
closed region (or curve), and let the functions f : E →R and φ : f (E)→R be Riemann
integrable, where f (E) is an interval. If φ : f (E) → R is a convex function, then we
have the following Jensen’ inequality:∫

E φ( f )∫
E

� φ
(∫

E f∫
E

)
. (22)

A well-known Jensen’s inequality [21, 22, 23, 24, 20] can be stated as:

f (A(x)) � f

(
1
n

n

∑
j=1

x j

)
� 1

n

n

∑
j=1

f (x j) � A( f (x)), (23)

where f : I → R is a convex function, and x j ∈ I, j = 1,2, . . . ,n. Inequality (23) is
reversed if f : I → R is a concave function.

We remark here that, in [22], the authors generalized the inequalities (22) and (23)
by means of the theory of majorization, and obtained the following result: Let two
functions f : [a,b] → (0,∞) and g : [a,b] → (0,∞) satisfy the condition

sup
t∈[a,b]

{∣∣∣ g′′(t)
f ′′(t)

∣∣∣} < inf
t∈[a,b]

{ g(t)
f (t)

}
.

If f ′′(t) > 0, ∀t ∈ [a,b], then for any x ∈ [a,b]n, we have the following J-P-S-F type
inequalities:

f (A(x))
g(A(x))

� · · · � fi+1,n(x)
gi+1,n(x)

� fi,n(x)
gi,n(x)

� · · · � A( f (x))
A(g(x))

, (24)

where

fk,n(x) � 1
(n
k)

∑
1�i1<···<ik�n

f

(
xi1 + · · ·+ xik

k

)
, 1 � k � n, n � 2.
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This inequalities are reversed if f ′′(t)< 0, ∀t ∈ [a,b] . Further, let E ⊂Rm be a bounded
closed domain, where the measure |E| = 1, and let φ : E → [a,b] be a Riemann in-
tegrable function. If f ′′(t) > 0, ∀t ∈ [a,b] , then we have the following Jensen-type
inequality:

f (
∫
E φ)

g(
∫
E φ)

�
∫
E f (φ)∫
E g(φ)

, (25)

which is also an extension of inequality (22). Inequality (25) is reversed if f ′′(t) <
0, ∀t ∈ [a,b] .

Figure 2: The graph of the function ω(θ ) where θ ∈ (
0, π

2

)
.

Figure 3: The graph of the function d2ω
dθ 2 where θ ∈ (

0, π
4

]
.



MEAN CENTRAL DISTANCE–CENTRAL DISTANCE INEQUALITIES 1141

Figure 4: The graph of the function d2ω
dθ 2 where θ ∈ [ π

4 , π
2

)
.

Figure 5: The graph of the function χ(θ ) where θ ∈ (
0, π

2

)
.

3. Proof of Theorem 1.1

Proof. We first prove inequality (3). Since [4]

∫ 1

0

√
t2 + cot2 θdt =

1
2

[
cscθ + cot2 θ log(tanθ + secθ )

]
, (26)



1142 J. J. WEN, S. H. WU, J. YUAN AND T. Y. HAN

Figure 6: The graph of the function dχ(θ)
dθ where θ ∈ (

0, π
2

)
.

we have

tanθ
∫ 1

0

√
t2 + cot2 θdt =

1
2
[secθ + cotθ log(tanθ + secθ )]. (27)

Consider the following auxiliary function

ω :
(
0,

π
2

)
→ R, ω(θ ) � log

{
1
2
[secθ + cotθ log(tanθ + secθ )]

}
. (28)

By means of the command D[ ] of the Mathematica software, we get

d2ω
dθ 2 = −

[
−csc2 θ log(secθ + tanθ )+ secθ tanθ +

cotθ(sec2 θ+secθ tanθ)
secθ+tanθ

]2

[cotθ log(secθ + tanθ )+ secθ ]2

+
ϖ(θ )

cotθ log(secθ + tanθ )+ secθ
,

where

ϖ(θ ) � 2cotθ csc2 θ log(secθ + tanθ )+ sec3 θ + secθ tan2 θ

−2csc2 θ
(
sec2 θ + secθ tanθ

)
secθ + tanθ

− cotθ
(
sec2 θ + secθ tanθ

)2

(secθ + tanθ )2

+
cotθ

(
sec3 θ +2sec2 θ tanθ + secθ tan2 θ

)
secθ + tanθ

.

By means of the command Plot[ ], we know that the graph of the function ω(θ ) is
depicted in Figures 2, and the graph of the function d2ω/dθ 2 is depicted in Figures 3
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and 4, and by means of the commands Solve[ ] and Limit[ ], we know that the equation
d2ω/dθ 2 = 0 has no any real root in the interval (0,π/2) and

d2ω
dθ 2 > lim

θ→0

d2ω
dθ 2 =

1
3

> 0.

So the ω is a convex function with respect to the variable θ ∈ (0,π/2).
By Lemma 2.4, (27) and (28), we get

log
rP

rP
� log

(
tan

∠APA+

2

∫ 1

0

√
t2 + cot2

∠APA+

2
dt

)
= ω

(
∠APA+

2

)
. (29)

Since the function ω is a convex function, according to (28), (29) and Lemma 2.5, we
get

1
|Γ|

∮
Γ
log

rP

rP
� 1

|Γ|
∮

Γ
ω

(∠APA+

2

)
� ω

(
1
|Γ|

∮
Γ

∠APA+

2

)
= ω

(
lπ
|Γ|

)

= log

{
1
2

[
sec

lπ
|Γ| + cot

lπ
|Γ| log

(
tan

lπ
|Γ| + sec

lπ
|Γ|

)]}
,

that is,

exp
(

1
|Γ|

∮
Γ logrP

)
exp

(
1
|Γ|

∮
Γ logrP

) � 1
2

[
sec

lπ
|Γ| + cot

lπ
|Γ| log

(
tan

lπ
|Γ| + sec

lπ
|Γ|

)]
. (30)

Hence inequality (3) is proved. The proof of Theorem 1.1 is completed. �

4. Proof of Theorem 1.2

Proof. Consider a new auxiliary function:

χ :
(
0,

π
2

)
→ R, χ(θ ) �

{
1
2
[secθ + cotθ log(tanθ + secθ )]

}−2

. (31)

By means of the command D[ ] of the Mathematica software, we get

dχ(θ )
dθ

= −
8

[
−csc2 θ log(secθ + tanθ )+ secθ tanθ +

cotθ(sec2 θ+secθ tanθ)
secθ+tanθ

]
[cotθ log(secθ + tanθ )+ secθ ]3

,

and by means of the command FindMinimum[ ], we get

min
0<θ<π/2

{
dχ(θ )

dθ

}
=

(
dχ(θ )

dθ

)
θ=θ0

= −1.2737520635993627 . . .,
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where θ0 = 1.246714063270445 . . ., which is also the unique real root of equation
(4), and the strictly decreasing interval of dχ(θ )/dθ is (0,θ0] , which is also strictly
concave interval of the function χ(θ ).

By means of the command Plot[ ] of the Mathematica software, we know that
the graph of the function χ(θ ) is depicted in Figure 5, and the graph of the function
dχ(θ )/dθ is depicted in Figure 6.

Since

A ∈ Γ ⇒ 0 < ∠APA+ � τ ⇒ 0 <
∠APA+

2
� τ

2
= θ0,

according to (28), (31), Cauchy inequality [2]

1
|Γ|

∮
Γ

f ×g �
√

1
|Γ|

∮
Γ

f 2 × 1
|Γ|

∮
Γ
g2,

Lemmas 2.1, 2.4 and 2.5, we get

MΓ (rP) � 1
|Γ|

∮
Γ
rP

� 1
|Γ|

∮
Γ
rP

(
tan

∠APA+

2

∫ 1

0

√
t2 + cot2

∠APA+

2
dt

)−1

=
1
|Γ|

∮
Γ
rP ×

√
χ
(

∠APA+

2

)

�
√

1
|Γ|

∮
Γ
r2
P ×

1
|Γ|

∮
Γ

χ
(

∠APA+

2

)

= M[2]
Γ (rP)

√
1
|Γ|

∮
Γ

χ
(∠APA+

2

)

� M[2]
Γ (rP)

√
χ
(

1
|Γ|

∮
Γ

∠APA+

2

)

= M[2]
Γ (rP)

√
χ
(

1
2|Γ|

∮
Γ
∠APA+

)

= M[2]
Γ (rP)

√
χ
(

1
2|Γ| ×2lπ

)

= M[2]
Γ (rP)

√
χ
(

lπ
|Γ|

)

= M[2]
Γ (rP)

{
1
2

[
sec

lπ
|Γ| + cot

lπ
|Γ| log

(
tan

lπ
|Γ| + sec

lπ
|Γ|

)]}−1

.

That is, inequality (5) holds.
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Based on the above proof, we know that equality in (5) holds if and only if Γ is a
circle and P is the center of the circle. This completes the proof of Theorem 1.2. �

5. Applications

Let S(2){P,Γ, l j
}

be a centered 2-surround system, where j = 1,2, . . . ,N, N � 3.
Then we say the set

S(2){P,Γ, l} � {P,Γ, l}
is a centered N -surround system and P is a center of the system, where

l � (l1, l2, . . . , lN) ∈ RN , 0 < l j <
|Γ|
2

, ∀ j : 1 � j � N,
N

∑
j=1

l j = |Γ|.

If we define

Aj � γ

(
tA +

j

∑
k=1

lk

)
, j = 1,2, . . . ,N,

then we say that the points A1,A2, . . . ,AN are N satellites of the system [4].
Suppose that S(2){P,Γ, l} is a centered N -surround system. Then we define

r( j)
P � Distance(P,Aj−1Aj) and r( j)

P � 1
‖Aj −Aj−1‖

∫
M∈[Aj−1Aj ]

‖M−P‖,

where 1 � j � N, N � 3.
Theorem 1.1 implies the following result.

THEOREM 5.1. (N –mean central distance–central distance inequality)
Let S(2){P,Γ, l} be a centered N -surround system. Then we have the following in-
equality:

GΓ

(
N
√

∏N
j=1 r( j)

P

)

GΓ

(
N
√

∏N
j=1 r( j)

P

) � 1
2

[
sec

π
N

+ cot
π
N

log
(
tan

π
N

+ sec
π
N

)]
. (32)

Equality in (32) holds if and only if Γ is a circle, P is the center of the circle and

l1 = l2 = · · · = lN =
|Γ|
N

. (33)

Proof. According to Theorem 1.1, we have

GΓ(r( j)
P )

GΓ(r( j)
P )

� 1
2

[
sec

l jπ
|Γ| + cot

l jπ
|Γ| log

(
tan

l jπ
|Γ| + sec

l jπ
|Γ|

)]
, j = 1,2, . . . ,N,
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that is,

log

[
GΓ(r( j)

P )

GΓ(r( j)
P )

]
� ω

(
l jπ
|Γ|

)
, j = 1,2, . . . ,N, (34)

where the function ω is defined by (28).
Since the function ω is a convex function, according to (34) and the Jensen’s

inequality (23), we have

log

⎡
⎢⎢⎣

GΓ

(
N
√

∏N
j=1 r( j)

P

)

GΓ

(
N
√

∏N
j=1 r( j)

P

)
⎤
⎥⎥⎦ =

1
N

N

∑
j=1

log

[
GΓ(r( j)

P )

GΓ(r( j)
P )

]
� 1

N

N

∑
j=1

ω
(

l jπ
|Γ|

)

� ω

(
1
N

N

∑
j=1

l jπ
|Γ|

)
= ω

( π
N

)

= log

{
1
2

[
sec

π
N

+ cot
π
N

log
(
tan

π
N

+ sec
π
N

)]}
.

That is, inequality (32) holds.
Based on the above proof, we know that equality in (32) holds if and only if Γ is

a circle, P is the center of the circle and equations (33) hold. This completes the proof
of Theorem 5.1. �

Theorem 1.2 implies the following result.

THEOREM 5.2. (Mean central distance–central distance–limit inequality)
Let S(2){P,Γ, l} be a centered 2 -surround system. then we have the following isoperi-
metric inequality:

lim
l→0

M[2]
Γ (rP)−MΓ(rP)

l2
� π2

3
× AreaD(Γ)

|Γ|3 , (35)

here we assume that the above limit exists.

Proof. Since
0 < ‖A+−A‖ � l, ∀A ∈ Γ,

we have
lim
l→0

∠APA+ = 0.

Consequently, there exists a δ > 0 such that

0 < ∠APA+ � τ, ∀l ∈ (0,δ ),

where τ is defined by Theorem 1.2.
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Since Γ is a smooth curve, so, for any point A ∈ Γ , there exists a line AT , such
that AT is tangent to Γ at the point A. Let ρ � Distance(P,AT ). Then ρ is a support
function of the curve Γ , and we have [25]

1
2

∮
Γ

ρ = AreaD(Γ) with lim
l→0

rP = ρ . (36)

By means of the command Limit[ ] of the Mathematica software, we get

lim
θ→0

1
2 [secθ + cotθ log(tanθ + secθ )]−1

θ 2 =
1
6
. (37)

Set

θ =
lπ
|Γ| ⇔ l =

(
π
|Γ|

)−1

θ .

According to Theorem 1.2, (36) and (37), when l ∈ (0,δ ), we have

M[2]
Γ (rP)−MΓ(rP)

l2
� MΓ(rP)

1
2 [secθ + cotθ log(tanθ + secθ )]−1

l2
,

and

lim
l→0

M[2]
Γ (rP)−MΓ(rP)

l2
� lim

l→0
MΓ(rP)

1
2 [secθ + cotθ log(tanθ + secθ )]−1

l2

= lim
l→0

MΓ(rP) lim
l→0

(
π
|Γ|

)2 1
2 [secθ+cotθ log(tanθ+secθ )]−1

θ 2

=
(

π
|Γ|

)2

MΓ(lim
l→0

rP) lim
θ→0

1
2 [secθ+cotθ log(tanθ+secθ )]−1

θ 2

=
1
6

(
π
|Γ|

)2

MΓ(ρ)

=
1
6

(
π
|Γ|

)2 1
|Γ|

∮
Γ

ρ

=
1
6

(
π
|Γ|

)2 1
|Γ| ×2AreaD(Γ)

=
π2

3
× AreaD(Γ)

|Γ|3 .

That is, inequality (35) holds. The proof of Theorem 5.2 is completed. �
We remark here that, by (35), we know that: for any ε > 0, there exists a real

δ > 0 such that

0 < l < δ ⇒ M[2]
Γ (rP)−MΓ(rP)

l2
>

π2

3
× AreaD(Γ)

|Γ|3 − ε. (38)
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6. Conclusions

In this paper, we first establish several identities and inequalities involving the
centered 2-surround system. Next, we prove two isoperimetric inequalities, which are
called the mean central distance–central distance inequalities. Finally, we demon-
strate the applications of our results, and obtain the N –mean central distance–central
distance inequality and mean central distance–central distance–limit inequality. The
proofs of our results are perfect coordination of the mathematical proof techniques and
computer.

One of the theoretical significance of this paper is to use the computer to deal with
some complex inequality problems, and another is to establish the geometric theory on
satellite motion. Large pieces of functional analysis, convex geometry, computer and
inequality theories are used in this paper, especially the theory of majorization.
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