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OPTIMAL INEQUALITIES INVOLVING POWER–EXPONENTIAL

MEAN, ARITHMETIC MEAN AND GEOMETRIC MEAN

ZHEN-HANG YANG AND JINGFENG TIAN

Abstract. For a,b > 0 with a �= b , the power-exponential mean is defined by

Z ≡ Z (a,b) = exp

(
a lna+b lnb

a+b

)
=
√

abet tanht ,

where t = ln
√

a/b . In this paper, we prove the double inequality

(
Zp +Gp

2

)1/p

< A <

(
Zq +Gq

2

)1/q

holds for a,b > 0 , a �= b with the best constants p = 2/3 and q = 1 , where A = (a+b)/2 ,
G =

√
ab . We also establish the sharp bounds for et tanh t as follows:

1 <
et tanht

2cosh t −1
< 1.055,

1√
2

<
et tanht

2(cosh t)2/3 −1
< 1

for t > 0 . These improve some known results.
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