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OPTIMAL INEQUALITIES INVOLVING POWER–EXPONENTIAL

MEAN, ARITHMETIC MEAN AND GEOMETRIC MEAN

ZHEN-HANG YANG AND JINGFENG TIAN

(Communicated by E. Neuman)

Abstract. For a,b > 0 with a �= b , the power-exponential mean is defined by

Z ≡ Z (a,b) = exp

(
a lna+b lnb

a+b

)
=
√

abet tanht ,

where t = ln
√

a/b . In this paper, we prove the double inequality(
Zp +Gp

2

)1/p

< A <

(
Zq +Gq

2

)1/q

holds for a,b > 0 , a �= b with the best constants p = 2/3 and q = 1 , where A = (a+b)/2 ,
G =

√
ab . We also establish the sharp bounds for et tanh t as follows:

1 <
et tanht

2cosh t −1
< 1.055,

1√
2

<
et tanht

2(cosh t)2/3 −1
< 1

for t > 0 . These improve some known results.

1. Introduction and main results

Let p,q ∈ R and a,b ∈ R+ := (0,∞) . The Gini means [4] are defined as

Gp,q(a,b) =

⎧⎪⎪⎨
⎪⎪⎩
(

ap +bp

aq +bq

)1/(p−q)

if p �= q,

exp

(
ap lna+bp lnb

ap +bp

)
if p = q.

(1.1)

The basic properties of Gini means, as well as their comparison theorems, monotonicity,
and log-convexity can be found in [3, 4, 8, 12, 18, 19, 20].

As special cases of Gini means Gp,q(a,b) , we see that
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(i) A(a,b) = G1,0 (a,b) = (a+b)/2 is the arithmetic mean;
(ii) G(a,b) = G0,0 (a,b) =

√
ab is the geometric mean;

(iii) Z (a,b) = G1,1 (a,b) = aa/(a+b)bb/(a+b) is the power-exponential mean;
(iv) Ap (a,b) = Gp,0 (a,b) is the power mean of order p .
We remark that the power-exponential mean is also called “symmetric geometric

mean” ([15]), “special Gini mean” ([14]) and “weighted geometric mean” ([13]). In this
paper, we adopt the term “power-exponential mean” to name the mean Z (a,b) (see e.g.
[21], [22],). Although Z (a,b) is a weighted geometric mean with weights a/(a+b)
and b/(a+b), it is not widely known. So we hope to establish some new inequalities
for this mean.

Sándor [10, (30)] showed that for a,b > 0 with a �= b

A <
√

I (a2,b2) < Z (a,b) , (1.2)

where

I (a,b) = e−1
(

bb

aa

)1/(b−a)

, if a �= b and I (a,a) = a (1.3)

is the identric (exponential) mean of a and b . Yang [18] proved that

√
ab < I(a,b) < Z2

(√
a,
√

b
)

< I (a,b)exp(1− G2 (a,b)
L2 (a,b)

) < Z(a,b) (1.4)

hold for a,b > 0 with a �= b , where

L(a,b) =
b−a

lnb− lna
, if a �= b and L(a,a) = a (1.5)

is the logarithmic mean of a and b . Using comparison theorem of Páles’s [9] it is
obtained that

Z (a,b) > A2 (a,b) , (1.6)

and its companion inequality

Z (a,b) <
√

2A2 (a,b) (1.7)

is due to Neuman and Sándor [5, Theorem 4]. Yang [19, (5.15)], [22] showed that

√
Z (a,b)G(a,b) < A(a,b) <

Z (a,b)+G(a,b)
2

. (1.8)

In [17, (4.16)], Yang also presented a double inequality

1 <
Z(a,b)

2A(a,b)−G(a,b)
<

3
e
≈ 1.1036. (1.9)

More inequalities for mean Z can be found in [13, 14, 15, 19, 21, 22, 17].
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An identity related to means Z and I

Z(a,b) =
I
(
a2,b2

)
I (a,b)

is due to Sándor in [11] (see also [21]). Another one among means Z , L , A and G

Z2(
√

a,
√

b) = G(a,b)exp
A(a,b)−G(a,b)

L(a,b)
(1.10)

was obtained by Neuman and Sándor [6]. (see also [21]).
The main aim of this paper is to present the sharp bounds for arithmetic mean A

in terms of power-exponential mean Z and geometric mean G , that is, to determine the
best p such that

A >

(
Zp +Gp

2

)1/p

(1.11)

and its reverse hold for all a,b > 0 with a �= b .
Our main results are contained in the following theorems.

THEOREM 1. Let a,b > 0 with a �= b.
(i) When p � 2 , the double inequality

(
Zp +(2p−1)Gp

2p

)1/p

< A <

(
Zp +Gp

2

)1/p

(1.12)

holds with the best weights 1/2 and

βp =
{

2−p if p > 0,
1 if p � 0.

(1.13)

(ii) When p � 2/3 , the double inequality

(
Zp +Gp

2

)1/p

< A < (βpZ
p +(1−βp)Gp)1/p (1.14)

holds with the best weights 1/2 and βp , where the lower and upper bounds in the case
of p = 0 are defined by their limits as p → 0 .

(iii) When 2/3 < p < 2 , the double inequality

(γpZ
p +(1− γp)Gp)1/p � A < (δpZ

p +(1− δp)Gp)1/p (1.15)

holds, where δp = maxp∈(2/3,2)
(
2−1,2−p

)
and γp are the best constants, and here

γp =
(cosht0)

p−1
ept0 tanh t0 −1

,
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t0 is the unique solution of the equation

d
dt

(cosh t)p−1
ept tanh t −1

= 0

on (0,∞) .
In particular, taking p = 1 , we have

γ1Z +(1− γ1)G � A <
Z +G

2
, (1.16)

where γ1 ≈ 0.46814 and 1/2 are the best.

THEOREM 2. Let a,b > 0 with a �= b. Then the double inequality

(
Zp +Gp

2

)1/p

< A <

(
Zq +Gq

2

)1/q

(1.17)

holds with the best constants p = 2/3 and q = 1 .

Let M (x,y) be a homogeneousmean of positive arguments x and y . Then M (x,y)
can be expressed as

M (x,y) =
√

xyM
(
et ,e−t) ,

where t = (1/2) ln(x/y) .
By symmetry, we assume that b > a > 0. Then t = (1/2) ln(a/b) > 0. Therefore

we have

Z (a,b) =
√

abet tanh t , A(a,b) =
√

abcosht, G(a,b) = 1. (1.18)

Thus Theorems 1 and 2 can be restated in the form of hyperbolic functions.

THEOREM 3. Let t > 0 . (i) When p � 2 , the double inequality

(
βpe

pt tanh t +1−βp

)1/p
< cosh t <

(
1
2
ept tanht +

1
2

)1/p

(1.19)

holds with the best weights 1/2 and βp given in (1.13).
(ii) When p � 2/3 , the double inequality (1.19) is reversed, where the lower and

upper bounds in the case of p = 0 are defined by their limits as p → 0 .
(iii) When 2/3 < p < 2 , the double inequality

(
γpe

pt tanh t +(1− γp)
)1/p

� cosh t <
(

δpe
pt tanht +1− δp

)1/p
, (1.20)

where δp = maxp∈(2/3,2)
(
2−1,2−p

)
and γp are the best constants, and here

γp =
(cosht0)

p−1
ept0 tanh t0 −1

,
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t0 is the unique solution of the equation

d
dt

(cosh t)p−1
ept tanh t −1

= 0

on (0,∞) .
In particular, taking p = 1 , we have

γ1e
t tanht +(1− γ1) � cosht <

1
2
et tanh t +

1
2
, (1.21)

where γ1 ≈ 0.46814 and 1/2 are the best.

THEOREM 4. Let t > 0 . Then the double inequality(
1
2
ept tanh t +

1
2

)1/p

< cosht <

(
1
2
eqt tanh t +

1
2

)1/q

(1.22)

holds with the best constants p = 2/3 and q = 1 .

2. Proofs of main results

To prove our main results, we need the following lemmas.

LEMMA 1. ([7, Proposition 1.2, Corollary 1.3], [1, Theorem 2]) For −∞ � a < b
� ∞ , let f and g be differentiable functions on the interval (a,b) . Assume also that
the derivative g′ is nonzero and does not change sign on (a,b) . Suppose that f (a+) =
g(a+) = 0 or f (b−) = g(b−) = 0 . If f ′/g′ is increasing (decreasing) on (a,b) then so
is f/g.

LEMMA 2. ([16, Theorem 8]) Let −∞ � a < b � ∞ . Suppose that (i) f and g are
differentiable functions on (a,b); (ii) g′ �= 0 on (a,b); (iii) f (a+) = g(a+) = 0 ; (iv)
there is a c∈ (a,b) such that f ′/g′ is increasing (decreasing) on (a,c) and decreasing
(increasing) on (c,b) . Then

(1) when sgng′sgnHf ,g (b−) � (�)0 , f/g is increasing (decreasing) on (a,b) ,
where Hf ,g = ( f ′/g′)g− f .

(2) when sgng′sgnHf ,g (b−) < (>)0 , there is a unique number xa ∈ (a,b) such
that f/g is increasing (decreasing) on (a,xa) and decreasing (increasing) on (xa,b) .

LEMMA 3. ([2]) Let an and bn (n = 0,1,2, . . .) be real numbers and let the power
series A(t) = ∑∞

n=1 antn and B(t) = ∑∞
n=1 bntn be convergent for |t|< R. If bn > 0 for

n = 0,1,2, . . . , and an/bn is strictly increasing (or decreasing) for n = 0,1,2, . . . , then
the function t 	→ A(t)/B(t) is strictly increasing (or decreasing) on (0,R) .

LEMMA 4. Let h be the function defined on (0,∞) by

h(t) =
t cosh2 t + t sinh2 t − cosht sinh t

t + cosht sinht
cosh t
t sinh t

. (2.1)

Then h(t) is increasing from (0,∞) onto (2/3,2).
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Proof. Write

A(t) =
(
t cosh2 t + t sinh2 t− cosht sinht

)
cosh t,

B(t) = (t + cosht sinh t)t sinht.

Using “product into sum” formulas for hyperbolic functions leads to

4A(t) = 2t cosht − sinht− sinh3t +2t cosh3t,

4B(t) = 4t2 sinh t− t cosht + t cosh3t.

Expanding in power series gives

4A(t) = 2t cosht− sinht− sinh3t +2t cosh3t

= 2
∞

∑
n=1

t2n−1

(2n−2)!
−

∞

∑
n=1

t2n−1

(2n−1)!
−

∞

∑
n=1

32n−1t2n−1

(2n−1)!
+2

∞

∑
n=1

32n−2t2n−1

(2n−2)!

=
∞

∑
n=2

(4n−5)32n−2 +4n−3
(2n−1)!

t2n−1 :=
∞

∑
n=2

ant
2n−1,

and

4B(t) = 4t2 sinht − t cosht + t cosh3t.

= 4
∞

∑
n=2

t2n−1

(2n−3)!
−

∞

∑
n=1

t2n−1

(2n−2)!
+

∞

∑
n=1

32n−2t2n−1

(2n−2)!

=
∞

∑
n=2

32n−2 +8n−9
(2n−2)!

t2n−1 :=
∞

∑
n=2

bnt
2n−1.

From Lemma 3, to prove h is increasing, it suffices to prove

an

bn
=

(4n−5)32n−2 +4n−3
(2n−1)(32n−2 +8n−9)

is increasing for n � 2. A direct computation leads to

an+1

bn+1
− an

bn
=

(4n−1)32n +4n+1
(2n+1)(32n +8n−1)

− (4n−5)32n−2 +4n−3
(2n−1)(32n−2 +8n−9)

=
2un

(2n−1)(2n+1)(32n +8n−1)(32n−2 +8n−9)
,

where

un = 34n−1 +2(8n−1)(4n−5)(4n−3)32n−2− (32n2−16n−3
)
.

Clearly, 34n−1 � 37 = 2187 and 32n−2 � 1 for n � 2, so we get

un � 2187+2(8n−1)(4n−5)(4n−3)− (32n2−16n−3
)
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= 64n(n−1)(4n−5)+2160 > 0.

Hence, an/bn is increasing for n ∈ N with n � 2, and therefore, the function
t 	→ A(t)/B(t) = h(t) is increasing on (0,∞) .

Simple calculation gives

lim
t→0+

h(t) =
2
3

and lim
t→∞

h(t) = 2,

which proves this lemma. �
Now we are in a position to prove Theorems 3 and 4.

Proof of Theorem 3. For t > 0, we define

f (t) =
(cosht)p−1

p
if p �= 0 and f (t) = ln(cosht) if p = 0, (2.2)

g(t) =
ept tanh t −1

p
if p �= 0 and g(t) = t tanht if p = 0. (2.3)

Then
f (t)
g(t)

=
(cosh t)p−1
ept tanh t −1

if p �= 0 and
f (t)
g(t)

=
ln(cosht)
t tanh t

if p = 0.

Differentiation gives

f ′ (t)
g′ (t)

=
coshp+1 t
ept tanht

sinh t
t + sinht cosh t

, (2.4)(
f ′ (t)
g′ (t)

)′
= −coshp−1 t

ept tanh t

t sinht
t + sinht cosht

(p−h(t)) , (2.5)

where h(t) is defined by (2.1).
(i) When p � 2, by Lemma 4 we see that ( f ′/g′)′ < 0. It is deduced from Lemma

1 that f/g is decreasing on (0,∞) , and therefore, we have

βp = lim
t→∞

f (t)
g(t)

<
f (t)
g(t)

=
(cosht)p−1
ept tanht −1

< lim
t→0+

f (t)
g(t)

= α.

This together with the facts that

α = lim
t→0+

f (t)
g(t)

=
1
2
,

βp = lim
t→∞

f (t)
g(t)

=

⎧⎨
⎩

2−p if p > 0,
1 if p = 0,
1 if p < 0

(2.6)

implies the double inequality (1.19).
(ii) When p� 2/3, similarly, f/g is increasing on (0,∞) . This leads to the reverse

of (1.19).
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(iii) When 2/3 < p < 2, by Lemma 4 we see that t 	→ p−h(t) := j (t) is decreas-
ing on (0,∞) but j (0+) = p−2/3 > 0 and j (∞) = p−2 < 0, which implies that there
is a t1 ∈ (0,∞) such that j (t) > 0 for t ∈ (0,t1) and j (t) < 0 for t ∈ (t1,∞) . This in
conjunction with (2.5) indicates that ( f ′/g′) is decreasing on (0,t1) and increasing on
(t1,∞) .

It is easy to check that f (0+) = g(0+) = 0, g′ (t) = pcoshp−1 t sinh t > 0 and

Hf ,g (∞) = lim
t→∞

(
f ′ (t)
g′ (t)

g(t)− f (t)
)

= lim
t→∞

(
coshp+1 t
ept tanh t

sinht
t + sinht cosht

ept tanh t −1
p

− (cosht)p−1
p

)

=
1
p

lim
t→∞

⎛
⎝1−

(
cosht
et tanht

)p
+ t

sinht cosh1−p t
t

cosh t sinht +1

⎞
⎠=

1−2−p

p
> 0,

where the last equality holds due to

cosht
et tanht =

1+ e−2t

2
exp
(
− t

et cosht

)
→ 1

2
as t → ∞,

t

sinht cosh1−p t
=

cosh t
sinh t

t

cosh2−p t
→ 0 as t → ∞.

Then by Lemma 2 we see that there is a t0 ∈ (0,∞) such that f/g is decreasing on
(0,t0) and increasing on (t0,∞) . Thus we conclude that

γp =
f (t0)
g(t0)

<
f (t)
g(t)

< lim
t→0+

f (t)
g(t)

=
1
2

for t ∈ (0,t0) ,

γp =
f (t0)
g(t0)

<
f (t)
g(t)

< lim
t→∞

f (t)
g(t)

= βp = 2−p for t ∈ (t0,∞) .

So for t ∈ (0,∞) , it holds that

γp <
(cosh t)p−1
ept tanh t −1

< max
p∈(2/3,2)

(
1
2
,2−p

)
= δp,

which proves (1.20).
In particular, if p = 1, then δp = maxp∈(2/3,2)

(
2−1,2−p

)
= 1/2. Numeric com-

putation yields t0 ≈ 1.6223026, and so

γ1 =
cosht0−1
et0 tanht0 −1

≈ 0.46814.

Thus we complete the proof. �

Proof of Theorem 4. (i) Necessity. The first inequality of (1.22) is equivalent to
f (t)/g(t) > 1/2 or g(t)− 2 f (t) < 0, where f (t) and g(t) are defined by (2.2) and
(2.3), respectively. If g(t)−2 f (t) < 0 holds for t > 0, then there must be

lim
t→0+

g(t)−2 f (t)
t4

� 0. (2.7)
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Expanding in power series yields

g(t)−2 f (t) =
1
p

(
ept tanh t +1−2(cosh t)p

)
=

1
4

(
p− 2

3

)
t4 +O

(
t6
)

,

which together with (2.7) gives p � 2/3.
Sufficiency. It has been proved in part (ii) of Theorem 3.
(ii) Necessity. It follows from limt→∞ [ f (t)/g(t)] � 1/2, which by the limit rela-

tion (2.6) gives 2−q � 1/2, that is, q � 1.
Sufficiency. The increasing property of power mean in its parameter in combina-

tion with the second inequality of (1.21) gives the sufficiency.
This completes the proof. �

3. Further results and remarks

REMARK 1. Lemma 4 reveals a double inequality

2
3

<
t cosh2 t + t sinh2 t− cosht sinht

t + cosht sinh t
cosht
t sinht

< 2 (3.1)

for t > 0. Note that

cosh2 t + sinh2 t = cosh2t, cosht sinh t =
1
2

sinh2t,
cosh t
sinh t

=
sinh2t

cosh2t−1
,

and with 2t → t , inequalities (3.1) can be rewritten as

1
3

<
cosh t− sinht

t

1+ sinht
t

sinh t
t

1
cosh t−1

< 1.

By the relations given in (1.18) and

L(a,b) =
a−b

lna− lnb
=
√

ab
sinh t

t
,

the above double inequality is equivalent to

1
3

<
A−L
G+L

L
A−G

< 1,

or
A−L
G+L

<
A−G

L
< 3

A−L
G+L

.

This together with (1.10) gives

A−L
G+L

< ln
Z1/2

G
=

A−G
L

< 3
A−L
G+L

,

that is,

Gexp

(
A−L
G+L

)
< Z1/2 < Gexp3

(
A−L
G+L

)
,

where Z1/2 = Z2
(√

a,
√

b
)

.
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REMARK 2. In the double inequality (1.19), the right hand side is obviously in-
creasing in p on R . Also, we claim that the left one is decreasing in p on (0,∞) . For
this end, it suffices to show that the function U defined on (0,∞)2 by

U (p,x) = ln
(

βpe
pt tanht +1−βp

)1/p
=

1
p

ln
(
2−pepx +1−2−p) (3.2)

= − ln2+
1
p

ln(epx +2p−1)

is decreasing in p on (0,∞) , where x = t tanht .
Differentiations give

∂U
∂ p

=
1
p

xepx +2p ln2
epx +2p−1

− 1
p2 ln(epx +2p−1)

∂
∂x

(
∂U
∂ p

)
=

(2p−1)epx

(epx +2p−1)2

(
x− 2p ln2

2p−1

)
.

It is easy to see that x 	→ ∂U/∂ p is increasing for x > (2p ln2)/(2p−1) and decreasing
for 0 < x < (2p ln2)/(2p−1) . So, to show that ∂U/∂ p < 0 for p > 0, it suffices to
check that

lim
x→0+

∂U
∂ p

= 0 and lim
x→∞

∂U
∂ p

= 0.

In fact, a simple calculation yields limx→0+ ∂U/∂ p = 0. And

p
∂U
∂ p

=
2p ln2

epx +2p−1
+
(

xepx

epx +2p−1
− x

)
− 1

p
ln
(
1+(2p−1)e−px)

=
2p ln2

epx +2p−1
− x(2p−1)

epx +2p−1
− 1

p
ln
(
1+(2p−1)e−px)→ 0

as x → ∞ . Then we obtain limx→∞ ∂U/∂ p = 0
From (3.2), employing L’Hospital rule yields

lim
p→0+

U (p,x) = − ln2+ lim
p→0+

ln(epx +2p−1)
p

= lim
p→0+

xepx +2p ln2
epx +2p−1

− ln2 = x.

Similarly, we have

lim
p→∞

U (p,x) = − ln2+ lim
p→∞

ln(epx +2p−1)
p

= lim
p→∞

xepx +2p ln2
epx +2p−1

− ln2

= lim
p→∞

e−px ln2+(x− ln2)
1+(2e−x)p− e−px = max(x− ln2,0) .

Thus, taking p = 2,∞ in part (i) and p = 2/3, 1/2, 0+ in part (ii) of Theorem 3
we get the following corollary.
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COROLLARY 1. Let t > 0 . Then the following inequalities hold:

max

(
1
2
et tanh t ,1

)
<

(
1
4
e2t tanht +

3
4

)1/2

< cosh t <

(
1
2
e2t tanh t +

1
2

)1/2

< et tanh t ,

√
et tanh t <

(
1
2

√
et tanht +

1
2

)2

<

(
1
2

(
et tanh t

)2/3
+

1
2

)3/2

< cosht

<
1
2

((
et tanh t

)2/3
+22/3−1

)3/2

<
1
2

(√
et tanh t +

√
2−1

)2
< et tanh t .

REMARK 3. By the relations (1.18), two inequalities in the above corollary are
equivalent to two ones for means:

max

(
Z
2

,G

)
<

(
Z2 +3G2

4

)1/2

< A <

(
Z2 +G2

2

)1/2

< Z,

√
ZG <

(√
Z +

√
G

2

)2

<

(
Z2/3 +G2/3

2

)3/2

< A

<
1
2

(
Z2/3 +

(
22/3−1

)
G2/3

)3/2
<

1
2

(√
Z +

(√
2−1

)√
G
)2

< Z.

We now give the sharp lower and upper bounds for the ratio f1/ f2 , where

f1 (t) = w(cosht)p +1−w, (w > 0)
f2 (t) = exp(pt tanh t) .

Differentiation yields

f ′1 (t) = pw(cosh t)p−1 sinht,

f ′2 (t) = pexp(pt tanht)
cosht sinht + t

cosh2 t
,

then we have

f ′1 (t)
f ′2 (t)

= w
coshp+1 t
ept tanht

sinh t
t + sinht cosh t

= w
f ′ (t)
g′ (t)

,

(
f ′1 (t)
f ′2 (t)

)′
= w

(
f ′ (t)
g′ (t)

)′
= −coshp−1 t

ept tanh t

t sinht
t + sinht cosht

(p−h(t)) ,

where f (t) , g(t) and h(t) are defined by (2.2), (2.3) and (2.1), respectively. We have
shown in the proof of Theorem 3 that

(
f ′1 (t)
f ′2 (t)

)′
⎧⎪⎪⎨
⎪⎪⎩

� 0 for t ∈ (0,∞) if p � 2,{
< 0 for t ∈ (0,t1)
> 0 for t ∈ (t1,∞) if 2

3 < p < 2,

� 0 for t ∈ (0,∞) if 0 < p � 2
3 .
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It is easy to verify that(
f1
f2

)′
=

f ′2
f2

(
f ′1
f ′2

f2 − f1

)
=

f ′2
f2

Hf1, f2 ,

H ′
f1, f2 =

(
f ′1
f ′2

)′
f2,

which in combination with the facts that f2 (t) , f ′2 (t) > 0 lead us to

sgn

(
f1
f2

)′
= sgnHf1, f2 and sgnH ′

f1, f2 = sgn

(
f ′1
f ′2

)′
.

Also, we have

Hf1, f2 (t) =
f ′1 (t)
f ′2 (t)

f2 (t)− f1 (t)

= w
coshp+1 t
ept tanh t

sinht
t + sinht cosh t

ept tanh t − (w(cosh t)p +1−w)

= −w
t coshp t

t + cosht sinht
−1+w→

⎧⎨
⎩

w−2
2 as t → 0,
−∞ if p � 2

w−1 if p < 2
as t → ∞.

Then the ratio f1/ f2 has the following monotonicity pattern:

p w sgnH ′
f1, f2

Hf1, f2 Hf1, f2 (0) Hf1, f2 (∞) sgnHf1, f2 f1/ f2

[2,∞) (2,∞) − ↘ + −∞ +− ↗↘
[2,∞) (0,2] − ↘ � 0 −∞ − ↘( 2

3 ,2
)

(2,∞) −+ ↘↗ + + +?+ ↗? ↗( 2
3 ,2
)

(1,2] −+ ↘↗ � 0 + −+ ↘↗(
2
3 ,2
)

(0,1] −+ ↘↗ − � 0 − ↘
(0, 2

3 ] [2,∞) + ↗ � 0 + + ↗
(0, 2

3 ] (1,2) + ↗ − + −+ ↘↗
(0, 2

3 ] (0,1] + ↗ − � 0 − ↘,

where “?” denotes sgnHf1, f2 and the monotonicity of f1/ f2 are indeterminate, respec-
tively.

From the above table and the limits

lim
t→0

f1 (t)
f2 (t)

= lim
t→0

w(cosht)p +1−w
exp(pt tanht)

= 1,

lim
t→0

f1 (t)
f2 (t)

= lim
t→∞

w(cosht)p +1−w
exp(pt tanht)

= w2−p for p > 0,

we immediately obtain the results as follows.
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THEOREM 5. Let p,w > 0 . Then for (p,w) ∈ (0,2/3]× [2,∞) , the double in-
equality

2

w1/p
(w(cosh t)p +1−w)1/p

< et tanh t < (w(cosht)p +1−w)1/p

holds for t > 0 with the best constants 2/w1/p and 1 . It is reversed for (p,w) ∈ E1 ,
where

E1 = [2,∞)× (0,2]∪
(

2
3
,2

)
× (0,1]∪ (0,

2
3
]× (0,1].

In particular, taking (p,w) = (2/3,2) , (2,2) , (p,1) , we have

1√
2

(
2(cosht)2/3−1

)3/2
< et tanh t <

(
2(cosh t)2/3−1

)3/2
, (3.3)√

cosh(2t) < et tanh t <
√

2
√

cosh(2t), (3.4)

cosh t < et tanh t < 2cosht. (3.5)

REMARK 4. Inequalities (3.3), (3.4) and (3.5) can be equivalently rewritten in the
form of means as follows:

1√
2

(
2A2/3−G2/3

)3/2
< Z <

(
2A2/3−G2/3

)3/2
, (3.6)

A2 < Z <
√

2A2, (3.7)

A < Z < 2A, (3.8)

where the lower and upper bounds are sharp. The inequalities (3.6) seem to be a new
comer, while (3.7) are due to [9] and [5, Theorem 4].

THEOREM 6. (i) If (p,w) ∈ [2,∞)× (2,∞) , then the double inequality

min
(
1,

w
2p

)
<

w(cosht)p +1−w
exp(pt tanh t)

<
1

λp,w
,

or equivalently,

λ 1/p
p,w (w(cosht)p +1−w)1/p

< exp(t tanht)< max

(
1,

2

w1/p

)
(w(cosht)p +1−w)1/p

,

holds for t > 0 , where

λp,w =
exp(pt0 tanht0)

w(cosht0)
p +1−w

, (3.9)

and here t0 is the unique solution of the equation

Hf1, f2 (t) = w−1−w
t coshp t

t + cosht sinh t
= 0
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on (0,∞) .
(ii) If (p,w) ∈ (2/3,2)× (1,2]∪ (0,2/3]× (1,2) , then the double inequality

min

(
1,

2

w1/p

)
(w(cosht)p +1−w)1/p

< exp(t tanht) < λ 1/p
p,w (w(cosh t)p +1−w)1/p

holds for t > 0 , where λp,w is defined by (3.9).

Letting (p,w) = (1,2) in Theorem 6 and solving the equation

Hf1, f2 (t) =
[
w−1−w

t coshp t
t + cosht sinht

]
p=1,w=2

= 0

for t , we find t0 ≈ 1.87897594, and so

λ1,2 =
exp(t0 tanht0)
2cosht0−1

≈ 1.0543.

Thus we have the following interesting Corollary.

COROLLARY 2. The double inequality

1 <
exp(t tanht)
2cosht−1

< λ1,2 (3.10)

holds for t > 0 with the best constants 1 and λ1,2 ≈ 1.0543 .

REMARK 5. The double inequality (3.10) is equivalent to the following inequali-
ties for means:

1 <
Z

2A−G
< λ1,2 ≈ 1.0543.

Clearly, this double inequality is an improvement of (1.9).
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[6] E. NEUMAN AND J. SÁNDOR, On certain means of two arguments and their extensions, Int. J. Math.

Math. Sci., 16 (2003), 981–993.
[7] I. PINELIS, L’Hospital type rules for oscillation with applications, J. Inequal. Pure Appl. Math. 2, 3

(2001), Art. 33.
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