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GENERALIZED WEIGHTED OSTROWSKI AND OSTROWSKI-GRUSS
TYPE INEQUALITIES ON TIME SCALES VIA A PARAMETER FUNCTION

SETH KERMAUSUOR, EZE R. NWAEZE AND DELFIM F. M. TORRES

(Communicated by A. Vukelic)

Abstract. We prove generalized weighted Ostrowski and Ostrowski—Griiss type inequalities on
time scales via a parameter function. In particular, our result extends a result of Dragomir and
Barnett. Furthermore, we apply our results to the continuous, discrete, and quantum cases, to
obtain some interesting new inequalities.

1. Introduction

In order to estimate the absolute deviation of a differentiable function from its
integral mean, Dragomir and Barnett [10] obtained in 1999 the following Ostrowski
type inequality.

THEOREM 1. (See [10]) Let f : [a,b] — R be continuous on |a,b] and twice dif-
ferentiable on (a,b) with second derivative " : (a,b) — R. Then,

= =R (-4 3) - [0

<M G2 11
) (b—a)? 4 12

forall x € [a,b], where M = sup |f"(t)] < oo.

a<t<b

By introducing a parameter, Liu [13] established in 2010 the following perturbed
weighted generalized three-point integral inequality with bounded derivative.
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THEOREM 2. (See [13]) Let 0 < k< 1 and f :[a,b] — R be a differentiable
mapping. Assume there exists a constant Y € R such that y < f'(x) for x € |a,b],
g [a,b] — [0,0) is continuous and positive on (a,b), and let h: [a,b] — R be differ-
entiable such that W' (1) = g(t) on [a,b]. Then,

Jrswar [ g
{(l—k)f() (o ”/g

_ y{(l —k) [(h(b) _h(a))<x_ a+b>

2
Y (b-a) (h(x) _ wﬂ /ab(h(;) —h(x))dt} —/abf(t)g(t)dt
[ /g dt+‘h (b>H(S—y)(b—a), ke,
[/g )t +|1(x) (b)”(S—y)(b—a)7 ke (1]

forall x € |a,b].

In order to unify the continuous and discrete calculus in a consistent manner,
Hilger introduced in 1988 the theory of time scales [8, 11]. Since the advent of this
calculus, many researchers have been able to extend known classical integral inequali-
ties to time scales. We refer the interested reader to papers [6, 7, 14, 15, 16, 18, 19, 20,

21, 22], books [1, 3, 5], and references therein. In 2014, Liu et al. [17] obtained the
following inequality on time scales.

THEOREM 3. (See [17]) Let 0 < k< 1, g:[a,b] — [0,%) be rd-continuous and
positive, and h : [a,b] — R be differentiable such that h*(t) = g(t) on [a,b]. Let
a,b,t,x€ T, a<b,and f:|a,b] — R be twice differentiable. Then,

(121 (x) m ( / bs<x,t>m) ( / bg(t)fA(G(t))At>
" ﬁ [t (7@ [[sms 20 [ soms)a

+(fg ( (@ [ s+ /g ) lz;‘m/bga)f(o(r»m'
gm / / 1S(x,1)|IS(2, 5) | AsAt

for all x € [a,b], where M = sup |f**(t)| < e and
a<t<b
S(rt) = h(t) — (1 —k)h(a) + kh(x)), a<t<x,
' h(x) — (kh(x)+ (1 = k)h(b)), x<t<b.
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Recently, in 2017, by using a different weighted Peano kernel, Nwaeze obtained
in [19] the following weighted Ostrowski type inequality.

THEOREM 4. (See [19]) Let v :[a,b] — [0,0) be rd-continuous and positive and
w: [a,b] — R be differentiable such that w™(t) = v(t) on [a,b]. Suppose also that
a,b,s,t € T, a<b, f:[a,b] — R is differentiable, and y is a function of [0,1] into
[0,1]. Then,

‘F+WO_M_WM)

b b
= [Tv@ro6)as| <M [Tkl

where

w(s) = (wl@) + w(2)28) | sefa),
K(s,t) = , (1
wis) = (wla)+ (1+y(1 - 2)220) e frp],

and M = sup |f2(1)] < oo.

a<t<b

Inspired by the ideas employed in [17, 19], here we obtain generalized Ostrowski
and Ostrowski—Griiss inequalities on time scales via a parameter function. Our results
are different from the ones given in [17] since we are using the generalized weighted
Peano kernel (1). Furthermore, we apply our results to the continuous, discrete, and
quantum cases, to obtain some interesting new inequalities. More corollaries are also
obtained by considering different parameter and weight functions. In particular, we
generalize and extend Theorem 1 to time scales (see Remark 20).

The paper is organized as follows. In Section 2, we provide the reader with essen-
tials on the calculus on time scales. Our results are then stated and proved in Section 3.

2. Preliminaries on time scales

In this section, we briefly recall the theory of time scales. For further details and
proofs we refer the reader to Hilger’s original work [11] and to the books [8, 9].

DEFINITION 5. A time scale is an arbitrary nonempty closed subset of the real
numbers R.

Throughout this work, we assume T to be a time scale with the topology that is
inherited from the standard topology on R. It is also assumed throughout that in T the
interval [a,b] means the set {r € T: a <t < b} for points a < b in T. Since a time
scale may not be connected, we need the following concept of jump operators.
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DEFINITION 6. The forward and backward jump operators o,p : T — T are de-
fined by o(r) =inf{s € T:s >t} and p(t) =sup{s € T : s <1}, respectively.

The jump operators ¢ and p allow the classification of points in T as follows.

DEFINITION 7. If o(t) > 1, then ¢ is right-scattered, while if p(¢z) < 7, then
we say that ¢ is left-scattered. Points that are simultaneously right-scattered and left-
scattered are called isolated. If o(¢) =1, then ¢ is called right-dense, and if p(r) =1,
then ¢ is left-dense. Points that are both right-dense and left-dense are said to be dense.

DEFINITION 8. The (forward) graininess function t : T — [0,0) is given by u(¢) =
o(t)—t,t€T. The set T* is defined as follows: if T has a left-scattered maximum
m, then TX =T — {m}; otherwise, T* =T.

If T=R,then u(r)=0;if T =Z, then we have u(r) =1.
DEFINITION 9. Assume f: T — R and fix t € T*. Then the (delta) derivative

fA(t) €R at ¢ € TX is defined to be the number (provided it exists) with the property
that given any € > 0 there exists a neighborhood U of ¢ such that

flo() — f(s) = f2@1) [o(r) —s]| <elo(r) —s| VseU.

If T=R, then f2(r) = LU if T =7, then f2() = Af(t) = f(t +1)— f(1).

THEOREM 10. Assume f,g:T — R are differentiable at t € T*. Then the prod-
uct fg: T — R is differentiable at t with (£g)* (t) = f2(t)g(t) + f(c(1))g*(t).

DEFINITION 11. Function f: T — R is said to be rd -continuous if it is continu-
ous at all right-dense points # € T and its left-sided limits exist at all left-dense points
t € T. Then, we write: f € Cy(T,R).

It turns out that every rd-continuous function has an anti-derivative (see, e.g.,
Theorem 1.74 of [9]).

DEFINITION 12. Function F : T — R is a delta anti-derivative of f: T — R pro-
vided F2(t) = f(t) for any ¢ € T*. In this case, one defines the A-integral of f by

/hf(s)As :=F(b)—F(a) forall a,beT.
THEOREM 13. Let f,g be rd-continuous, a,b,c € T and o, € R. Then,
L[] [of (6)+Be()] At = o [} f(0) A1+ B [ g(1)Ar,
2. [ (A =~ [ f(1)A,
3. [0 F0)Ar =[5 )M+ [ F(1)A
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4 [7 F(0)g (A = (fg) (b) — (fg) (@) = 7 A (1)g (o (r)) At

We use the following result to prove our generalized weighted Ostrowski inequal-
ity on time scales.

THEOREM 14. If f is A-integrable on [a,b], then so is |f|, and

[[rom|< [roi.

We also make use of the A polynomials, k € Ny. They are defined as follows:
!
ho(t,s) =1 forall s,z € T and then, recursively, by /1 (¢,s) :/ he(t,s)At, 5,0 €T.

3. Main results

For the proof of our main results (Theorems 16 and 24), we use the following
useful lemma.

LEMMA 15. (See [19]) Let v : [a,b] — [0,c) be rd-continuous and positive and
w: [a,b] — R be delta-differentiable such that w™(t) = v(t) on [a,b]. Moreover, sup-
pose also that a,b,s,t € T, a <b, f:[a,b] — R is delta-differentiable, and y is a
Sfunction of [0,1] into [0,1]. Then the following equality holds:

I+y(-4)-vy)
2

ICESEUERTCT N

£+ -

b b
= [ K @as+ [ vios(o(s)as

where K(-,-) is given by (1).

3.1. Generalized weighted Ostrowski inequality on time scales

We now state and prove our first main result.

THEOREM 16. Let v :[a,b] — [0,00) be rd-continuous and positive, and function
w: a,b] — R be delta-differentiable such that w*(t) = v(t) on [a,b]. Suppose also
that a,b,t,x € T, a<b, f:[a,b] — R is twice delta-differentiable, and  is a function
of [0,1] into [0,1]. Then, the inequality
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G20 (x) - ﬁ ( / bK(m)Az) ( [ V(S)fA(G(S))AS>

YA+ (VIO [P,

" 2 [F v o
o) (" v(A)f(a) + (1= w(l=2))f(b)
v | Vs + . CD(/I)‘
M
|K(2,x)||K(s,1)|AsAt
)
holds for all x € [a,b] and A € [0,1], where
M= supb fAA(t)) < oo, and K(-,-) is given by (1).
Proof. With ®(A) given by (3), it follows from Lemma 15 that
L \ G
QA = 5 [ K s s [vir(on)s
VOOV,
From (4) we get
_ 0@ /P o) [*
TS0 = oo [ Kera 5t [rnse
RIS VT IR
and
@) 10) = e [ Kl st o [V (o)A
JavoarJa = Ja v(O)Ar Ja
VRP@ A yI-APe)

2



GENERALIZED WEIGHTED OSTROWSKI AND OSTROWSKI-GRUSS TYPE INEQUALITIES 1 191
Substituting (6) into (5) results to

2 b Pk [Tk (s)s
B0 = o KO, >[ v, K0

1 b A Y(A) @)+ (1-y(1-2)) fA(b)
R / v(s)f2(0(s)) As— . At
fa;??/(é))m /[;bV(l)f(G(l))Al— W(A’)f(a) + (1 ; W(l _x’))f(b)q)(x)

— W (/a”l((t,x)At> </ahv(s)fA(G(5))AS>

+% / ’ / K 0K (5,0) £ (s) s

w(A)fAa) + (1 —y(1—2)) 4(b) /sz
2[7 v

o VU a

The desired inequality (2) is obtained by rearranging (7) and applying Theorem 14. [

)

REMARK 17. Let w(z) =¢. Then

b
/ |K(s,1)|As = hy (a,a—H// )—|—h2<

i (1110 50 ) (b at(1y(1-2) 57 )
and
[ K08 =1 (o w@) 25 ) < (aa v 5)
+h2<b7a+(l+u/(l—k))bz;a)—h2<t7a+(1+W(1—7L))b;a)

hold for all A € [0,1] such that a+ y(A)%5% and a+ (1+y(1 —1))%< arein T and
1€ fat w(x)”z;“,a+(1+w(1—k))”7].

COROLLARY 18. Let a,b,t,x € T, a <b, and f: [a,b] — R be twice delta-
differentiable. Then, for all x € [a,b], the following inequality holds for all A € [0,1]
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suchthata+7L ¢ and a+ (2 — 7L) arem']I‘andtG[a—i—lb a+(2_x)bz;a]’

‘W—MH)JC(X)_mlM(’ b;a>—h2<a7a+xb;“>

(b—a)?
+hy (b,a+(2—7t)b;a> iy <x7a+(2—/l)b;a>]
AL i (o 2257) i e 1757)

+hy (b,a—l—(Z—?L)

b;“) —hy (x,a+(2—l)b;a>]

M b — -
<m/a K(nx)l[hz(, 2a>+h2 ra+22 a)

+hy (t,a+(2—7t)b;a) +hy (b at(2- A)bz a)]At,

where M = sup ‘fAA(t)‘ < oo, and

a<t<b
B (a—l—lb_“), t € la,x),
K(t’x)_{t (a+(2-2)59), t€xb].

Proof. Let w(t) =t and w(A) = A . The result follows from Theorem 16 by using
Remark 17. [

As a particular case of Corollary 18, we obtain an extension of Theorem 1 to an
arbitrary time scale T.

COROLLARY 19. Let a,b,t,x € T, a <b, and f : [a,b] — R be twice delta-
differentiable. Then, the inequality

Sy 2 (0(5))As

f(x>_ (b_a)z

[hz(x,a) hsz — a/ /(o
#/a ‘K(t7x)|[hz(t,a)+h2(t7b)]m

t—a, tE€]la,x),

holds for all x € [a,b], where M = sup (—b, 1€ [ub)
—b, x,b].

a<t<b

fAA(t)) <ooand K(t,x) = {
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Proof. Choose A =0 in Corollary 18. [

REMARK 20. Theorem 1 is obtained from Corollary 19 by choosing T =R

To the best of our knowledge, Theorem 16 is new even when we consider particular
timescalesas T=R, T=7% or’]I‘:qNO, g>1

COROLLARY 21. Let v :[a,b] — [0,

) be continuous and positive and function
w: |a,b] — R be differentiable such that w'(t) = v(t) on |a,b]. Suppose also that
a<b, f:la,b] — R is twice differentiable, and v is a function of [0,1] into [0,1]
Then, the inequality

® (1) (x) - ﬁ ( / bK(ux)dr) ( / bV(S)f’(SMS)
" v(t)dt “ “

+W(7L)f/() (1- A))f (b /Ktx
2f v(
o) P v(A)f(a)+(1—w(l—2))f(b)
T / V() f(1)dt + - q>(7L)'

< W/ab/abm(t,x)m(mﬂdsdt
y(r)dr

holds for all x € [a,b] and A € [0,1], where K(-,-) is given by (1), ®(A) by (3), and
M = sup ‘f”(t)‘ < oo,

a<t<b

Proof. Choose T =R in Theorem 16. [J
COROLLARY 22. Let a,b€Z, a<b, v:{a

Sunction w:{a,...,b} — R be such that Aw(t)

.,b} — [0,00) be positive and
the given functions f : {a

=v(t), t=a,...,b—1. Consider also
b} =R and y:[0,1] — [0,1]. Then, the inequality

b—1
t=a V r=a

L YA (flat D)~ fla) +

D*(A)f(x) -

1—w(l—2 b+1)— f(b)) 2!
. é;a—lf((,) ) (F(b+1) — f( )),Zu’“t’x)
o)) ol M) fl(a 1—w(1=21))f(b
Z?Ev)(t),z;v(t)f(tHHW( @)+ y( = A)S >w>‘
b—1b—1
<M ST K@) IK(s.0)]
( fj:_ulv(t)> t=a s=a
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holds for all x € {a,...,b} and A € [0,1], where K(-,-) is given by (1), ®(A) by (3),
and M = sup )f(z+1)_zf(z)+f(t—1)] <

a<t<b

Proof. Choose T =7 in Theorem 16. [

An interesting (quantum) calculus is obtained by choosing T = ¢g™0 with ¢ > 1
[12]. In this case, o(t) =gt and f2(t) = D, f(t) := %. The corresponding
integral is known in the literature as the d,t integral [12].

COROLLARY 23. Let m,n € N with m <n, v:[q",q"] — [0,e0) be positive, and

function w: [q",q"] — R be such that Dyw(t) = v(t) on [qm q"]. Consider also func-
tions f:[q".,q"] — R and y: [0,1] — [0,1]. Then, the inequality

(S @ fg*s) — flgs)
*(4)f(x) - ;< K( ’,X)> ( () ———=——d S)
( ;’?V(I)dqt>2 ,;1 ! /q’" W e

g yA) g™ = flg™)] +q" A=y =) [f(g"") - flg")] "D

j
* qu+n(q— 1) qq,: V(l‘)dqt jg,‘,,K(q ’x>
fv wdww@mwwmewuﬁwﬂw¢mﬁ
dqt " 2
<7QZZIK61 XK (G q7)]
(St voydge) S=mi=n
holds for all x € [¢",q"] and A € [0,1], where
_ (¢%1) = (g +1)f(gr) +q/ (1)
M= q”’s<l;I<)q" CI(‘] - 1)2t2 ‘ =
[ = (Wl + ()M gl e g x)
K(q’,x) = @)

wigh) = (wlg™) + (14 y(1 = A) MO - g e g,
and ®(A) is given by (3).

Proof. Choose T=¢0, g>1,and a=¢" and b=¢q", m <n,in Theorem 16. [J

3.2. Generalized weighted Ostrowski—Griiss inequality on time scales

Follows the second main result of our paper.

THEOREM 24. Let v :[a,b] — [0,00) be rd-continuous and positive, and function
w: [a,b] — R be delta-differentiable such that w™(t) = v(t) on [a,b]. Suppose also
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that a,b,t,x € T, a<b, f:[a,b] = R is delta-differentiable and y is a function of
[0,1] into [0,1]. Then, the inequality

{Hw(l—m—w(x)
2(b—a)

fo) 4 YRS (@) 2((1b—_ vl - M)f(b)] /u”v@m

a)
- bia/abv(t)f(cf(t))m— (%/ K(t,x)m>

b
1oqho, 1 b ok

< [b_a/a K2(t,x)Ar — (b_a/a K(t,x)At)
[ oy (5 o) |

holds for all x € [a,b] and A € [0,1], where K(-,-) is defined as in (1).

€))

Proof. We sart by making the following computations:
[ (kKG9 (fA(t) — ) Ars
— (h— a/Ktx (/sz )([ﬁ@)m)
- ( / bK(s,xms) ( / bfA(t)At> +0-a) [ K07
~20-a) [ bK(m)fA(t)At—z( / bK(r,xw) ( / bfA(S)AS>~

This implies that

b b
(Z)At— (ﬁ‘/a K(t,x)At) (ﬁ‘/a fA(S)AS>
b b

B ﬁ/a /a <K(t’x)_K(S7x)) (fA(t)_fA(S)>AtAs. (10)
Following the same process, one gets

1 b 2
(t,x)At—< _a/ K(z,x)At>
b a)? / / AtAS (11)
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and

From Lemma 15, we also get that

[1+w<1—x>—w>

b b
—/a v(t)f(a(t))At:/a K(t,x) f2(0)Ar.

Using the Cauchy—Schwarz inequality on time scales (see [2]), we get

ﬁ/ﬂb/ab (K(t,X)_K(SaX)) (fA(t)—fA(s)>AtAs
[ 2(—ay // )Ams]
[ 2(b—a)? // AtAs‘|£,

Nl—

Inequality (9) is achieved by applying (10)—(13) and Definition 12 to (14). [

13)

(14)

COROLLARY 25. Let T be a time scale with a,b € T, a<b, and f : [a,b] — R

be delta-differentiable. Then the inequality

'(“%@)M%)/b(ammm

b—a a

1

< [bia/ablé(t,x)m—(b a/ K(t,x)A ) ]
[ ey (o) |

holds for all x € [a,b] and A € [0,1], where K(-,-) is defined by

tz—az—%(b —a?), té€ax),
K(t,x) = " )L
?—a?— A (b? —a?), te€xb|.

o [ (o)1) (o) ( iy )I

15)



GENERALIZED WEIGHTED OSTROWSKI AND OSTROWSKI-GRUSS TYPE INEQUALITIES 1197

Proof. Let y(A)=A and w(t) =#>+c, c € R, in Theorem 24. The result follows
because v(t) = o(t)+1¢ fort € [a,b]. O

COROLLARY 26. Let T be a time scale with a,b € T, a<b, and f : [a,b] — R
be delta-differentiable. Then the inequality

ﬁf(x) /ub (o(1) +t)At—bL  (0(t)+1) (o)A <LJ;(;)/;K(I,X)AI> ‘

—a Ja (b—a

1

. [biaLbK2(t,x)N_ <b1a/[le(l,x)At>2‘|7
1 2 1 gk
X lb_a/u (fA(t)> At — (b_a/u fA(t)At> ]

holds for all x € |a,b], where K(-,-) is defined by (15).

Proof. Choose A = 0 in the inequality of Corollary 25. [J

Our Theorem 24 is new even for very standard time scales.
COROLLARY 27. If w,f : [a,b] — R are differentiable, vy : [0,1] — [0, 1], then

‘ (LA vl ), v Ly I)IO)

o—a) T 2(b—a)

_bia/abW/(t)f(t)dt— (%/j[ﬂt,x)cﬁ)
273
< [bia/ablé(t,x)dt— (bia/abK(t’x)dl)
273
x [bia/ah (f/(’>)2dt_ (bia/abf/(t)dt> 1

holds for all x € [a,b] and A € [0,1], where K(-,-) is given by (1).

Proof. Choose T =R in Theorem 24. [J
COROLLARY 28. If w,f : {a,a+1,...,b—1,b} = R, y:[0,1] — [0,1], then

Loy =2) -y W)+ (1 y( - ) fB) ]!
H 26— a) | Z w0

fx)+

b—1
_ bia ZzlAw(l)f(l‘f' 1) — (W ZK(I7X)
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1
2711)1 lbl

b—1 b—1
%atzum(m)_ ﬁtz:ll{(t,x) — a2<Af( )2 — az Af (1)

holds for all x € {a,a+1,...,b—1,b} and A € [0,1], where K(-,-) is given by (1) and
A denotes the forward difference operator, that is, A& (t) = E(t+1) —&(z).

Proof. Choose T =7 in Theorem 24. [

COROLLARY 29. Let mn € N with m <n, w,f : [¢",q"] = R and y :[0,1] —
[0,1]. Then, the inequality

[1 +y(l-2)-vy()
2(q" —q™)

Dyw(t)dgt

m

v(A)f(g")+ (1 —y(l —l))f(CI")} /qn
2(q" —q™) q

—# qanqw(t)f(qt)dqt— ]E(b )2 ZKq X)

qn_qm m qn S
1 n—1 5, 1 n—1 . 2 %
—— 2 K@ x) = | = 2 K(4',x)
qn_qmjgm qn_qu§11
n—1 J+1 j 2 n—-1 J+1 J
o]t fl@)—fld)\ 1 flg") - flg’)
' —q" 5, (g—1)q’ -q" 5, (a—1)¢

holds for all x € [q",q"] and A € [0,1] with K(q’,x) given by (8).

Proof. Let T = g™ with ¢ > 1, a=¢” and b= ¢", m < n. Then the result is a
direct consequence of Theorem 24. [

Some other special cases of our Theorem 24 can be found in [4].
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