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Abstract. In this note, we continue to investigate Bonnesen-type isoperimetric inequalities for
planar convex polygons. We shall first establish some analytic isoperimetric inequalities for a
special class of Schur convex functions. Subsequently, by using these analytic isoperimetric
inequalities, Bonnesen-type isoperimetric inequalities and related inverse inequalities for the
planar convex polygons are obtained.

1. Introduction

Schur convex functions [4] play an important role in the study of analytic inequal-
ities and geometric inequalities. Let us recall some notions and lemmas.

Let I ⊂ RRRR and In = I× I×·· ·× I (n copies).

LEMMA 1.1. ([13]) An n× n matrix S = [si j] is said to be a doubly stochastic
matrix if si j � 0 for 1 � i < j � n, and

n

∑
j=1

si j = 1, i = 1,2 · · · ,n;
n

∑
i=1

si j = 1, j = 1,2, · · · ,n.

LEMMA 1.2. ([13])
(1). A permutation matrix is a doubly stochastic matrix.
(2). S = [si j] with si j = 1

n , 1 � i, j � n, is a doubly stochastic matrix.

LEMMA 1.3. ([13]) A real function f : In → RRRR (n > 1) is called to be Schur
convex function if for any doubly stochastic matrix S and all xxxx ∈ In , f (Sxxxx) � f (xxxx) . It
is called to be strictly Schur convex if inequality is strict. f is said to be Schur concave
(resp. strictly Schur concave) if − f is Schur convex.
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LEMMA 1.4. ([4]) Let Ω ∈ RRRRn be symmetric and convex set with nonempty inte-
rior, and let f : Ω → RRRR be differentiable in the interior of Ω . Then f is Schur convex
(Schur concave) on Ω if and only if f is symmetric on Ω and

(x1 − x2)
(

∂ f
∂x1

− ∂ f
∂x2

)
� 0(� 0) for all x ∈ Ω0,

where Ω0 is the interior of Ω .

The above definitions and example can be found in many references such as [4]
and [14].

The classical isoperimetric inequality states that for a domain K with the boundary
composing of the simple curve C of length L and area A

L2 −4πA � 0, (1.1)

where equality holds if K is a circle. The isoperimetric deficit of K is defined as
Δ(K) = L2 − 4πA. Bonnesen in [8] gave a low bound for the isoperimetric deficit
Δ(K) , as follows

Δ(K) = L2 −4πA � π2(R− r)2,

where R is the circumradius and r is the inradius of the curve C .
Later Bonnesen proved a series of inequalities of the form

Δ(K) = L2 −4πA � B,

where the equality B is an invariant of geometric significance having the following basic
properties:

1. B is non-negative;
2. B is vanish only when K is a disc.
Many Bs are discovered in the last century and mathematicians are still working

on those unknown invariants of geometric significance. See references [1, 2, 3, 6, 7, 8,
9, 10] for more details.

Here are some of the different forms of Bonnesen-style isoperimetric inequality.

L2 −4πA � 4πd2; L2 −4πA � π2(re − ri)2;

L2 −4πA � (L−2πri)2; L2 −4πA � (L−2πre)2;

L2 −4πA � (
A
r
−πr)2; L2 −4πA � L2

(
re − ri

re + ri

)2

;

L2 −4πA � A2
(

1
ri
− 1

re

)2

; L2 −4πA � A2
(

1
r
− 1

re

)2

.

It is difficult to compare those isoperimetric deficit lower bounds and to determine
which lower bound is the best.

However, the literature on the study of Bonnesen-type isoperimetric inequalities
for planar convex polygon is relatively less (see [5, 11, 12, 13]).
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In 1998, Zhang [13] proved a form of Bonnesen-style isoperimetric inequality for
planar convex polygon, as follows.

Let Cn be an n -sided plane convex polygon inscribed in a circle of radius R with
side-length ai (i = 1,2, · · · ,n) and perimeter Ln , enclosing a domain of area An .

(Ln)2 −4n tan
π
n

An �
[
Ln −L∗

n

]2
. (1.2)

where L∗
n is the perimeter of the regular convex n -sides polygon inscribed in the same

circle with Cn .
In 2015, L. Ma [5] obtained a new Bonnesen-style inequality for planar convex

polygon

(Ln)2−4n tan
π
n

An � 1
R2

[
An −A∗

n

]2
, (1.3)

where A∗
n is the area of the regular convex n -sides polygon inscribed in the same circle

with Cn .
But Zhang’s result and Ma’s result are for the planar convex polygon inscribed in

a circle of radius R .
In the note, we continue to investigate the Bonnesen-type isoperimetric inequal-

ities for the planar convex polygon, but our results are for the planar convex polygon
circumscribed in a circle of radius r .

2. Some analytic inequalities

In order to simplify the statements. We set

I = (0, l); Hn = {Θ = (θ1, · · · ,θn) ∈ R
n|

n

∑
i=1

θi = ml} (0 < m < n);

Dn = In∩Hn; Ω = (σ ,σ , · · · ,σ) where σ =
1
n

n

∑
i=1

θi =
ml
n

.

THEOREM 2.1. Suppose that a real function f (θ ) is positive and strictly convex.
Then we have for α > 0

(
n

∑
i=1

f (θi)

)2α

− (n f (σ))α

(
n

∑
i=1

f (θi)

)α

�
[
(n f (σ))α −

(
n

∑
i=1

f (θi)

)α]2

. (2.1)

In order to prove above result, we need a lemma below.

LEMMA 2.1. ([13]) If real function f : In → R is Schur convex, then f (Ω) is a
global minimum in Dn . If f is a strictly Schur convex function, then f (Ω) is the unique
global minimum in Dn .



26 JIBING QI AND WEN WANG

Proof of Theorem 2.1. Consider the function

F(Θ) =

(
n

∑
i=1

f (θi)

)2α

− (n f (σ))α

(
n

∑
i=1

f (θi)

)α

−
[
(n f (σ))α −

(
n

∑
i=1

f (θi)

)α]2

,

we observe that F(Ω) = 0. We shall prove that F(Θ) is strictly Schur convex function
on In where I = (0, l) . Obviously, F(Θ) is a symmetric function on In . Hence, by
Lemma 1.4, to guarantee F(Θ) is strictly Schur convex, it suffices to verify that

Δ = (θ1 −θ2)
(

∂F
∂θ1

− ∂F
∂θ2

)
, i f θ1 �= θ2.

Furthermore, we set Tn = ∑n
i=1 f (θi) . Then

∂F
∂θi

=2α(Tn)2α−1 f ′(θi)−(n f (σ))α α(Tn)α−1 f ′(θi)+2 [n f (σ))α−(Tn)α ]α(Tn)α−1 f ′(θi)

= α(n f (σ))α (Tn)α−1 f ′(θi), i = 1,2. (2.2)

Δ = (θ1 −θ2)
(

∂F
∂θ1

− ∂F
∂θ2

)
= (θ1 −θ2)α(n f (σ))α (Tn)α−1

[
f ′(θ1)− f ′(θ2)

]
.

(2.3)

Since f is strictly convex, then f ′′ > 0 and

(θ1−θ2)
[
f ′(θ1)− f ′(θ2)

]
> 0. (2.4)

Combine (2.4) and (2.3), inequality (2.1) can be derived. �

By using the strictly convex properties of f (θ ) = tanθ and f (θ ) = 1
sinθ for θ ∈

(0,π/2) and Theorem 2.1, we get the following results.

COROLLARY 2.1. Let θi ∈ (0,π/2) , i = 1,2, · · · ,n; and ∑n
i=1 θi = π . Then for

α > 0(
n

∑
i=1

tanθi

)2α

− (n tan
π
n

)α

(
n

∑
i=1

tanθi

)α

�
[
(n tan

π
n

)α −
(

n

∑
i=1

tanθi

)α]2

. (2.5)

In particular, take α = 1 , we have(
n

∑
i=1

tanθi

)2

−n tan
π
n

(
n

∑
i=1

tanθi

)
�
[
n tan

π
n
−

n

∑
i=1

tanθi

]2

. (2.6)

COROLLARY 2.2. Let θi ∈ (0,π/2) , i = 1,2, · · · ,n; and ∑n
i=1 θi = π . Then for

α > 0

( n

∑
i=1

1
sinθi

)2α −
( n

sin π
n

)α( n

∑
i=1

1
sinθi

)α
�
[( n

sin π
n

)α −
( n

∑
i=1

1
sinθi

)α
]2

. (2.7)



BONNESEN STYLE ISOPERIMETRIC INEQUALITIES 27

COROLLARY 2.3. Let xi ∈ (0,1) , i = 1,2, · · · ,n; and ∑n
i=1 xi = m. Then for α >

0 (
n

∑
i=1

x2
i

)2α

−
(m2

n

)α
(

n

∑
i=1

x2
i

)α

�
[(m2

n

)α −
(

n

∑
i=1

x2
i

)α]2

. (2.8)

Where we use the fact that f (x) = x2 in (0,1) is strictly convex function.

3. Bonnensen style isoperimetric inequalities of plane convex polygon

In this section, by using above analytic isoperimetric inequalities, we establish
some Bonnesen-type isoperimetric inequalities and related inverse inequalities for the
planar convex polygon. Our first main result is stated as follows.

THEOREM 3.1. Let Cn be an n-sided plane convex polygon circumscribed in a
circle of radius r with perimeter Ln , enclosing a domain of area An . If α > 0 , then

(Ln)2α −4α
(
n tan

π
n

)α
(An)α � 4α

r2α

[
(A∗

n)
α − (An)α

]2
, (3.1)(

An

r2

)2α
−
(
n tan

π
n

)α
(

Ln

2r

)α
�
[(A∗

n

r2

)α
−
(

An

r2

)α ]2
, (3.2)

where A∗
n is the area of the regular convex n-sides polygon circumscribed in the same

circle with Cn .

Proof. We denote ai the length of the i th side of Cn , and θi the half of the central
angle subtended by the i th vertex Ai of Cn , i = 1,2, · · · ,n , then

Ln =
n

∑
i=1

ai = 2r
n

∑
i=1

tanθi; An =
1
2

n

∑
i=1

ai · r = r2
n

∑
i=1

tanθi; (3.3)

n

∑
i=1

θi = π ; A∗
n = nr2 tan

π
n

. (3.4)

Substituting (3.3) and (3.4) into (2.5), thus (3.1) and (3.2) are valid. �

REMARK 1. Inequality (3.2) can be regarded as inverse inequality of (3.1).
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THEOREM 3.2. Let Cn be an n-sided plane convex polygon circumscribed in a
circle of radius r with perimeter Ln , enclosing a domain of area An . If α > 0 , Then

(Ln)2α −4α
(
n tan

π
n

)α
(An)α �

[
(l∗n)

α − (Ln)α
]2

, (3.5)(
An

r2

)2α
−
(
n tan

π
n

)α
(

Ln

2r

)α
�
[( l∗n

r2

)α
−
(

Ln

r2

)α ]2
, (3.6)

where l∗n is the perimeter of the regular convex n-sides polygon circumscribed in the
same circle with Cn .

Proof. Similar to the proof of theorem 3.1 and pay attention to the equation l∗n =
2nr tan π

n . �

REMARK 2. Inequality (3.6) can be considered as inverse inequality of (3.5).
Taking α = 1, we can derive the following inequalities.

COROLLARY 3.1. Let Cn be an n-sided plane convex polygon circumscribed in
a circle of radius r with perimeter Ln , enclosing a domain of area An . Then

L2
n −4

(
n tan

π
n

)
An � 4

r2

[
(A∗

n)− (An)
]2

, (3.7)(
An

r2

)2

−
(
n tan

π
n

) Ln

2r
�
[(A∗

n

r2

)
−
(

An

r2

)]2
, (3.8)

L2
n −4

(
n tan

π
n

)
An �

[
(l∗n)− (Ln)

]2
, (3.9)(

An

r2

)2

−
(
n tan

π
n

) Ln

2r
�
[( l∗n

r2

)
−
(

Ln

r2

)]2
. (3.10)

REMARK 3. Our results (3.7) and (3.9) are different from (1.2) (Zhang’s result)
and (1.3) (Ma’s result). Their results are mainly about an n -sided plane convex polygon
inscribed in a circle of radius R , while our results in Theorem 3.1 and 3.2 are mainly
about an n -sided plane convex polygon circumscribed in a circle of radius r .
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