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BOUNDEDNESS OF SOME SUBLINEAR OPERATORS
ON WEIGHTED VARIABLE HERZ-MORREY SPACES

LIWEI WANG AND LISHENG SHU

(Communicated by R. Oinarov)

Abstract. A new class of generalized Herz-Morrey spaces with weight and variable exponent is
defined. In addition, the boundedness of some sublinear operators on such spaces is also con-
sidered. The approach is based on the Muckenhoupt theory with variable exponent and function
decomposition.

1. Introduction

Following the fundamental work of Kovacik and Rékosnik [15] in the early 1990s,
function spaces with variable exponents were investigated by a significant number of
authors, see [1, 2, 06,7, 8, 16, 19, 24, 25, 26, 27, 28] and the references therein. The the-
ory of these spaces had a remarkable development in part due to its useful applications.
For instance, they appear in the modeling of electrorheological fluids, in the study of
image processing and in PDE with non-standard growth conditions, for an overview we
refer to [5, 9, 20].

On the other hand, there do exist many different properties between the variable
function spaces and the classical cases. For instance, the variable exponent Lebesgue
spaces U’(')(R") are not translation invariant. More precisely, if p(-) is non-constant
in R”, then there always exists f € LP()(R") and h € R", such that f(x+ k) is not
in LPO)(R"). In addition, if p(-) is unbounded, then LP()(R") is no longer separable
and it can happen that L=(E) C LP)(E) when the set E C R” has infinite measure,
see [2] for further details. Therefore, apart from useful application considerations, the
motivation to study such spaces have an intrinsic interest.

Herz spaces KI‘;‘(%(R") and Herz-Morrey spaces MKZPA() (R") with variable expo-
nent p(-) were introduced first by Izuki [12, 13]. Very recently, the boundedness of
some important operators in harmanic analysis, such as the Hardy-Littlewood maximal
operator, Marcinkiewicz integrals and some sublinear operators and so on, were ob-
tained on these spaces, see [14, 22, 23]. In 2016, Izuki and Noi [10, 11] defined new
generalized Herz spaces having weight and variable exponent, namely, weighted Herz

spaces with variable exponent. Under proper assumptions on each exponent and weight,
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they proved the boundedness of fractional integral operators and intrinsic square func-
tions on those spaces. Inspired of their work [10, 13, 23], the aim of this paper is to
define weighted Herz-Morrey spaces with variable exponent and study the boundedness
of some sublinear operators on these spaces under certain weak size conditions, which
are similar to those introduced by Soria and Weiss in [21].

We usually denote the ball with radius » and center x by B. fp denotes the integral
averageof f on B,i.e. fp= ﬁ Jp f(x)dx. p'(-) means the conjugate exponent defined

by 1/p(-)+1/p'(-) = 1. The letter C stands for a positive constant, which may vary
from line to line.

2. Preliminaries and lemmas

2.1. Lebesgue spaces with variable exponent

Let p(-) be a measurable function with values in [1,e). The set Z?(R") consists
of all variable exponents p(-) satisfying

1 <p-<plx) < ps <o
where p_ :=ess inf{p(x) : x € R"}, py :=ess sup{p(x) : x € R"}. The variable expo-

nent Lebesgue space LP()(R") is the class of all measurable functions f on R such
that

o) = [ 1f@FOdx <o
This set becomes a Banach space when equipped with the norm
1Sl zp0) gy = inf{A >0 1) (f/A) <1}
It is easy to see that the variable Lebesgue exponent norm has the following property

Hf6||LP(')(R") = ||ngO'p(-)(Rn)7 o 2 l/p*

Given an open set Q C R”. For all compact subsets F' C Q, the space Lfa(c') (Q) is
defined by

Q) ={f: fel’I(F)}.

A measurable function g(-) : R” — (0, o) is called globally log-Holder continuous
if it satisfies

—C
e < —— x—y| < 1/2, x,y € R", 2.1
g(x) —8(y)] Tog(l—3T) =y <1/2, x,y € (2.1)
20 —gu| < — . xeR" (2.2)
FUTE  dogler ) T |
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for some real constant g... The set of p(-) satisfying (2.1) and (2.2) is denoted by
LH(R™). As is well-known, if p(-) € Z(R")\LH(R"), then the Hardy-Littlewood
maximal operator M, which is defined by

M(x) = sup / [F()ldy,
x B
is bounded on LP)(R"), see [3].

2.2. Weighted function spaces with variable exponent

Let o be a weight function on R”", that is, @ is real-valued, non-negative and
locally integrable. The weighted variable exponent Lebesgue space L(") (w) is defined
by

2P0(0) = {f: foil € LPOR")}.
The space LP() () is a Banach space equipped with the norm

1

100y = 107 [ 505-

A weight is said to be a Muckenhoupt A; weight if
Mo(x) < Co(x) ae.xeR".

For 1 < p < o, we say that @ is an A, weight if

sup<; / (x)dx) (ﬁ /B w(x)l—P’dx>p_l <o

The Muckenhoupt A, class with constant exponent p € (1,e0) was recently gen-
eralized by Izuki and Noi [10, 11] as follows.

DEFINITION 2.1. Let p(-) € Z(R"). A weight s said to be an A,y weight if

1 . _ .
s1;p®||w1/1’()x3\\m,)||w VPO gl iy < oo

REMARK 2.1. If p(-) = p € (1,), then we see immediately that the definition
reduces to the classical Muckenhoupt A, class. Cruz-Uribe et al. [4] showed that
® € Ay, if and only if the Hardy-Littlewood maximal operator M is bounded on the
space L) (w).

REMARK 2.2. Suppose that p(-),q(-) € Z(R")LH(R") and p(-) < ¢(-), then
we have Aj CA,) CAy.),see[11].

DEFINITION 2.2. Let 0 < 8 <n, and p;(-),p2(:) € Z(R") such that 1/ps(x) =
1/p1(x) — B /n. A weight o is said to be an A(py(-), p2(+)) weight if
C\B\l’g.

ol a0~ 25y <
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REMARK 2.3. Let p;i(:),p2(:) and @ be as in Definition 2.2, we then have
w €A(p1(),p2() & 0V € ALt pa() /()
Let By = {x € R" : |x| < 2*}, Ry = By \ By_1 and jx = xg, be the characteristic

function of the set R for k € Z.

DEFINITION 2.3. Let p(-) € Z(R"), 0 < ¢ <~ and a € R. The homogeneous
weighted Herz space K;‘(%(w) is defined as the set of all f € Lﬁ)(;) (R"\ {0}, w) such
that

1/q
o k q -
Wlgyon = ( Z 2t ) <o

with the usual modification when g = eo.

DEFINITION 2.4. Let 0 < A <o, p(:) € Z(R"), 0 < g <o and o € R. The
homogeneous weighted Herz-Morrey space MK;XP}E)((D) is defined as the set of all

feL?Y (R {0}, ) such that

loc
LA < k /e
- — o q
g =502 (3 281l ) <

=—o0

with the usual modification when ¢ = eo.
REMARK 2.4. Clearly, MK:;?(,)(CO) = Klf‘(’g(w). In the case @ =1 and p(-) =p,

then K;‘(%(a)) =Ky’ (R") and MKZPA() (@) = MK, (R") are the classical Herz spaces

and Herz-Morrey spaces in [18] and [17], respectively.

2.3. Key lemmas
In order to prove our main results, we need the following lemmas.

LEMMA 2.1. Let 2 be a Banach function space on R". If f € 2" and g € 2,
then we have

/8l gy < I1FN2 Nl 2
where 2" denotes the associated space of X .

We remark that Lemma 2.1 is the well-known generalized Holder inequality. As
a direct application of Lemma 2.1, we obtain the following result:

LEMMA 2.2. If 2 is a Banach function space on R", then we have

1B llall 5+ | xsll 5 < 1.

Lemmas 2.3 and 2.4 below have been proved by Izuki and Noi in [10, 11].
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LEMMA 2.3. Let p(-) € Z(R")NLH(R") and ® € A, (), 1/p— <r < 1. Then
there exists a constant O < 6 < 1 such that for all k, j € 7,

128l 10 (@)

e ALy S}
1281l 10 (@)

and
”XBk ”LP(-) (o)

2RO ook s
1283 1 10 (@)

LEMMA 2.4. Let p(-) € Z(R")\LH(R") and w”") € Ay. Then there exists
constants 0 < 8,8 < 1 such that

121l o) (@r _ (ﬂ)él 12l (220 (@p0))y _ (ﬂ)az
181l () Bl) 7 sl et oroyy Bl)

for all balls B and all measurable sets S C B.

REMARK 2.5. We remark that (L) (w?())) = L7'0) (~#'()) provided that p(-) €
Z(R") and ®”") € A|. The proof can be found in [11].

3. Main results and their proofs

In this section, we prove the boundedness of some sublinear operators under cer-
tain weak size conditions on weighted Herz-Morrey spaces with variable exponent. We
consider only 0 < A < oo, the arguments are similar in the case A = 0.

Our main results can be stated as follows.

THEOREM 3.1. Let 0 < A < oo, p(-) € Z(RN)NLHR"), 0 < g <eoo, 1/p_ <
r<l, €A, and —nd+A<a<n(l—r)+A, where 0 < § < 1 is the con-
stant appearing in Lemma 2.3. Suppose that a sublinear operator T satifies the size
conditions

ITF ) < CIF 1 eny /1L (3.1)

when suppf C Ry and |x| > 281 with k € Z, and
ITf ()] < C27%1 £l 1 ey (32)

when suppf C Ry and |x| <252 with k € 7. Then, if T is bounded on LP(')((D), T is

also bounded on MI'(O"A, (w).
4.p(")

COROLLARY 3.1. Let A,p(+),q,r,® and o be as in Theorem 3.1, if a sublinear
operator T satifies the size conditions

fO)]

R’ Jx —y|"

ITfx)|<C dy, x ¢ suppf, (3.3)
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for any integrable and compactly supported functions f and T is bounded on LP\") (w),
then T is bounded on MK:;l(,)(a)).

REMARK 3.1. We note that (3.3) is satisfied by many important operators in
harmonic analysis, such as the Hardy-Littlewood maximal operator, Calderén-Zymund
operators and Bochner-Riesz means at the critical index and so on, see [21].

Proof of Theorem 3.1. Let f € MK;CPA() (w). We decompose

Zf x)x;(x ij

j==e j==e

Then, we have

L
1T s =527 X 29T ()el

MK, 50 (@) Lez k=—oco

L k=2 q
< Csup2~t*a D 2aqk< > ||T(fj)Xk||Lp(-)(m)>

LeZ k=—o0 Jj=—oo

L [k q
+Csup2~Lra Z 2%4 < 2 ||T(fj)%k||m(-)(w))
j

LeZ k=—c0 j=k—1

L o q
+Csup2~tra Y 2aqk< > ||T(fj)Xk||Lp<-)(m))

LeZ A j=kt2
=L+hL+5

We first estimate /; . Noting that j < k—2 and x € R, by (3.1), Lemmas 2.1 and
2.2, we get

T (f;) ()] <C2"‘”||fJHL 1
<M\ fwrl xlle y@nllo P9 %l o) gy
1
<C2™ kn”fw % ||LP )(Rn) H(D ()xBjHLp’(-)(Rn) (3'4)
<C2 kn”fXJHLP HxB H Lp ( )
<C2U- IIfXJHLp HxB IIL,,

which combining with Lemma 2.3 yields

17 ()2l o )
< Cz(j_k)anXjHLl’(')(w) HXBI»HZPI(.)(Q,) HXBkHLP(-)(w) (3'5)
<2090 £l 1ot ()
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On the other hand, we see that

1/q
12l ) =2 ""(2""‘1||ijllL,,

1/q
<cz—m( 3 24y )

|=——oco

1/q
:CQ.f(/l—a) <2jl< Z Zlaqule ) )

[=—o0
< C2/A=9)| 1|

(3.6)

a .
MKq p(-)(w)

Hence, in view of @ < n(1 —r)+ A, combining (3.5) and (3.6), we have

L = q
L <Csup2~tta Yy 2°‘qk< D 2(1_k)"(1_r)||fljLn(-)(m)

LeZ k=—o0 ]__°°

q
<O 0y sup2 B0 Y Wk( S st 12 a>)

()@ Lez e

Jj=—o0

< q —LAgq Agk
<l sup2 (32

) a.p()\ LEL k=—oo

<C

<M g
4.p(")

For I, using the boundedness of T on LF(')(a)), we derive the estimate

L < Csup2 A4 2% fl o S CIANE
LeT. k_z_/oc H ||L’ H ||Mqu}E)(w)

We proceed now to estimate /3. As argued before, we apply the size condition
(3.2) and obtain

TN <2l 1

. 1 _ 1
< Cz_jn”fw PC) Xj”LP(-)(Rn) H(D r) XJ'”LP’(-)(RH) (3'7)
<C

£ 0 () 12685 1 sy
An application of Lemma 2.3 gives

”T(fj)XkHLP(-)(a))
S CUS A5 o) o) 1 285 H’1 )HkaHmo(w) (3.8)
<2l "5||fx 1200
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y (3.6) and (3.8), since o¢ > —nd + A, we arrive at

L 0 . a
I <Csup27tta 'y 2aqk< > z(k_’)"éf)cj||m-)(w))

LeZ k=—o0o j= k+2

o q
< q LAq Agk (k—j)(no+a—21)
<O 02 3 2[5

q.p()\" LE k=—co j=k+2

L
U oy s02 24 3 2)

p a.p()\ LEZ k=—co
< C”fHMK(X)L

4.p()

(0)

Consequently, the proof of Theorem 3.1 is complete. [

For the fractional singular integrals, we have a theorem similar to Theorem 3.1.

THEOREM 3.2. Let 0 < A < oo, pp(-) € Z(R")NLH(R"), 0”21) € Aj, 0< g1 <
g2 < oo, 0< 8),8 < 1 be the constants appearing in Lemma 2.4, 0 < y < min{n(0; +
8),n} and —ndy + 1 < & < nd —y+A. Define pi(-) by 1/pa(-) = 1/pi() — y/n.
Suppose that a sublinear operator T, satifies

Ty f ()] < CI Nl ey /12" (3.9)
when suppf C Ry and |x| > 261 ith k € 7, and
Ty f ()] < 270D ]| 1 ey (3.10)

when suppf C Ry and |x| <252 with k € Z.. Then, if Ty is bounded from L0 (@P10))
to LP20)(@P20)), Ty is also bounded from MK;’@I(,)(Q)I"(')) to MK;;’;Z(,)(Q)I’Z(')).

COROLLARY 3.2. Let A,p1(-),p2(-),4q1,92,01,02,7, 0 and o be as in Theorem
3.2, if a sublinear operator Ty satifies the size conditions

T ()] <C/ TNy v ¢ suppf, (3.11)

x— yl” Y

for any integrable and compactly supported functions f and T, is bounded from

L (@” ) 10 L) (@P20), then Ty is also bounded from MK;’;(,)(@I"(')) to
G oA )

MK¢127172(')((DP2 )-

Proof of Theorem 3.2. Let f € MK%

" m( )(a)l’l(')). As in the proof of Theorem
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3.1, we can write

L a1/92
k
I sy =502 (3 2T g

a2.02(") LeZ k=—oco
L
—LAq, oqik
<Cil€1[Z)2 kzmz ||T)/( )xk|Lp2 ) (wP2())
N L L q1
<cspz 2 5 205 0500 s g
LeZ k=—o0 j=—oo
N L . k+1 q1
+Csup2~thar ' 2% ( > ||Ty(fj)%k||mz(-)(wpz(-))>
LEZ k=—oo j:kfl
N L . q1
+Csup2~trar ' 20 ( 2 Tl oo ) (@2 )))
LEZ k=—oco j= =k+2
=:J1+Jr+J3.

For J; . Noting that j < k—2 and x € Ry, by (3.9) and Lemma 2.1, we get

1Ty (f5) ()] < CIXIY’”Hf,IILl R s
<C2ky_ ”fJHLPl wl’l ”)CJH LP1 (wl’l())) ’

Based on the fact that

ij”(Ll’l ICZICHTAS <2/t H?CB HLPZ (@0’

see [10, p.11]. From (3.12), Lemma 2 and Lemma 4, it follows that

”Ty(fj)%k”yu(-)(wﬁz(-))

<C2k =) Hfj”Lm (wm HXJH Lm ( wP1( ”XBk”Lm (wﬁz())
<C2kny/||LP1 ) (P10 HXJ” (LP10)(@P10) /HkaH (L20) (@2 0))y

I8, | (1P20) P20y

k
< 27”ff”m w113 w00 O 1283 st sy T T
[0}

<2y "ﬁzuf,nm ’”leB s o HxB A
<C2(k A y=nd) HfjHLm ) (wP1())
(3.13)
A simple caculation shows that
1/q

Hfj”Lm ) (wP1C )_2 ja<2mq||ijpl wl’l(‘)))

2 ) 1/q

ccx (3 2l )
. 1@ (3.14)

| ' 1/q
— 2/(A~a) (2—/7L< Z 2laq||fHLp1 wl’l(‘))> )

[=—oo
<2/ 1|

MK Pl(l)(wm(.)).
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Hence, in view of & < nd, — B+ A, combining (3.13) and (3.14), we get

L k=2 ' 0
Ji < Csup2~tra 3 2“‘“"( Y, 28T il wm(-)))
LeZ k=—oc0

L
SO Mges (o) SR270 3 za‘ﬂk( 2 2k rnd)i(h- °‘>)
[0
k——nx) Jffoo

MK
q
Supz—qul z 27Lq1k< 2 2 )(y—né&+a— l)) !

J=—o0

q1

CHf”;quKal

q1.p1()
q1 pl()( ot ) k=—oo j=—oo

L
—LA Aqik
) Sup2 q1 ( Z 2 q1 )

o) ez ke —oo

For J», by the boundedness of T, from LP1()(w”1()) to LP20)(@P2()), one can
easily obtain

< Csup2~Lra 2091K|| £, < ||| .
Leg k_Z_N 1fx IIL,,l Jr©) IIfH MK (@10

For J3. Noting that j > k+2 and x € R, Lemma 2.1 yields

T )] < 2/ 1y 1s)
<C2] HfjHLm ) (wP1() ”)CJH (L1 (@P10)y)yr '

Consequently, we have

||Ty(fj)%k||m ) (wP2())

< clrn ||fjHLm )(@P1() H?CJ” (LP10) (0P () H%B'(HL”2 O(r20))

HXBkH 223 P2(*)

< CYE 1l 16 (0100 128, 1100010 18,1 20 >W
[0}

<C2J(Y n) (k ‘n61||fjHLm wP1C ”%B || P10 (P1() HZB ”LPz P20y

(3.16)
Since w”2() € A; CALipy()/p()» SO ”20) € A(pi(-), p2(-)), then we obtain
”%B || Lpl ) (wP10) /H%B HLpz O (wP20))
<CH(D xB HLﬁl waB ”Lﬂz (3'17)
< i),

This combined with (3.16) shows that

1T (i) 2kl a0 (@200 < C2(k=ind 1Fill o) )y (3.18)
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From (3.14) and (3.18), since a > —nd; + A, we get

L @
J3 < Csup2~trar 2aq1k< > 2k jmsl”fjHLm ) (@P10) ))

Lez k=—co jkt2
q A i oy i)\ "
< C”fH ! 2 Sllp2 q 2%4q1 < 2 j)n 1] o )
MK:: Pl()(wm e k_—oo J=k+2
q
<clft sup2-LAar 2 SRk 2 Sk=)ndi+a-2) )
K (@n0) feb
q () k=—oc0 j=k+2

L
<A i supz—uql< ¥ Wlk)

p
MquJ’l(')(w )Lez. k=—oco

Thus, the proof of Theorem 3.2 is complete. [J
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