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UNIQUENESS THEOREMS ON FUNCTIONAL INEQUALITIES
CONCERNING CUBIC-QUADRATIC-ADDITIVE EQUATION

YANG-HI LEE, SOON-MO JUNG AND MICHAEL TH. RASSIAS

(Communicated by A. Gildnyi)

Abstract. We prove uniqueness theorems concerning the functional inequalities in connection
m

with an n-dimensional cubic-quadratic-additive equation Y, ¢;f (a,-lxl +apxy+--- +a,~,1x,1) =0
i=1

by applying the direct method.

1. Introduction

Let V and W be real vector spaces. For a given mapping f : V — W, we define

Af(x7y) = f(x—|—y) _f(x) _f(y)a
Of(x,y) == flx+y)+flx—y) —2f(x) = 2f(y),
Cf(x,y) == fx+2y) =3f(x+y) = flx—y) +3f(x) = 6f(»)

for all x,y € V. A mapping f:V — W is called an additive mapping, a quadratic
mapping, or a cubic mapping provided f satisfies the functional equation Af(x,y) =
0 for all x,y € V, Qf(x,y) =0 for all x,y €V, or Cf(x,y) =0 for all x,y €V,
respectively. We note that the mappings g,h,k: R — R given by g(x) = ax, h(x) =
ax?, and k(x) = ax® are solutions of Ag(x,y) =0, Qh(x,y) =0, and Ck(x,y) =0,
respectively.

A mapping f:V — W is called a cubic-quadratic-additive mapping if and only
if f is represented by the sum of an additive mapping, a quadratic mapping, and a
cubic mapping. A functional equation is called a cubic-quadratic-additive functional
equation provided that each of its solutions is a cubic-quadratic-additive mapping and
every cubic-quadratic-additive mapping is also a solution of that equation. The mapping
f:R — R givenby f(x) = ax®+bx’> +cx is a solution of the cubic-quadratic-additive
functional equation.

For the study of functional inequalities concerning the cubic-quadratic-additive
equations and a broad variety of other types of functional inequalities, the reader is
referred to [1, 2, 3,4,5,6,7,8,9,10, 11, 12, 13, 15, 16, 17, 18].
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Throughout this paper, let V and W be real vector spaces, X a real normed space,
Y areal Banach space, and let Ny denote the set of all nonnegative integers. For a given
mapping f:V — W, we define Df : V" — W by

m
Df(x1,x2, ... xn) == Y, cif (ainx1 +apxa+ -+ + @inxy) (1.1)
i=1

for all x1,xs,...,x, €V, where m is a positive integer and c;,qa;; are real constants.

In this paper, we prove uniqueness theorems that can be easily applied to the in-
vestigation of functional inequalities concerning a large class of functional equations
of the form Df(xy,x,,...,x,) =0, which includes the cubic-quadratic-additive func-
tional equation as a special case. This theorem is particularly useful for proving the
Hyers-Ulam stability of a variety of functional equations.

2. Preliminaries

For a given mapping f: V — W, we use the following abbreviations:

(o ) SN LG B )

o . 2 9 e . 2 9
a3()x_0ax aAfo\X) — Jolax
£V = T lox) ~ Jolax) (ag _Z ( ), £ 0 = _ol¥) — Jolax) (61)3 _J;( )

for all x € V. We will now introduce a lemma that was proved in [14, Corollary 2].

LEMMA 2.1. Let k> 1 be a real constant, let ¢ 1V \ {0} — [0,e0) be a function
satisfying either

@@y:2%¢W@<w (2.1)
i=0
forall x e V\ {0} or
D(x) = ik% (%) <oo 2.2)
i=0

Jorall xe V\{0}, and let f :V — Y be an arbitrarily given mapping. If there exists a
mapping F .V —Y satisfying

1/ (x) = F(x)[| < D(x) (2.3)
forall x e V\ {0} and
FV (k) =k (x), Fulkn) = BR(x), FyD (k) = B (v) (2.4)

forall x eV, then F is a unique mapping satisfying (2.3) and (2.4).
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We introduce lemmas that were proved in [14, Corollary 3].

LEMMA 2.2. Let k > 1 be a real number, let ¢,y :V\{0} — [0,00) be functions
satisfying each of the following conditions

o | .
%kw(%) e 5 o (k) <

1 i
2 v (k) <

i=0

o > X -
Ox):= > Kol =) <o, Y(x) :=
=50 )
forall xe V\{0}, and let f :V — Y be an arbitrarily given mapping. If there exists a

mapping F .V — Y satisfying the inequality

1f(x) = F(x)[| < ®(x) + ¥(x) (2.5)

forall xe V\ {0} and the conditions in (2.4) forall x €V, then F is a unique mapping
satisfying the conditions (2.4) forall x €V and the inequality (2.5) forall x € V\{0}.

LEMMA 2.3. Let k > 1 be a real number; let ¢,y :V \ {0} — [0,0) be functions
satisfying each of the following conditions

R X <1 ,
Zkzllﬂ(E) < oo, l:ZOE(P(klx) <
D(x) := Ekzl(b (k’) <oo, P(x):= i %l]/(kix) <

i=0 i=0

Jorall xe V\{0}, and let f :V — Y be an arbitrarily given mapping. If there exists a
mapping F .V — Y satisfying the inequality

1f(x) = F(x)[| < ®(x) +¥(x) (2.6)

Jorall xe V\ {0} and the conditions in (2.4) forall x €V, then F is a unique mapping
satisfying the conditions (2.4) for all x €V and the inequality (2.6) forall x € V\ {0}.

3. Main results

In the following four theorems, we prove that there exists only one exact solution
near every approximate solution to Df(xy,x2,...,%,) = 0.

THEOREM 3.1. Let a be a real constant with a ¢ {—1,0,1}, let n be a fixed
integer greater than 1, let u,v:V\ {0} — [O,oo) be functions satisfying the conditions

g Hlax) <
2 < Z

< oo when la| < 1,
G.1)

<°°when la] > 1

g Hlax)
2 a 3
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forall xe V\{0}, andlet ¢ : (V\{0})" — [0,00) be a function satisfying the condition

< oo when |a| < 1,

i Q(a'xi,d'xy,... a'x,)
= |a‘3i
(3.2)

< oo when |a| > 1

i Q(a'xi,d'xy,... a'x,)
i—0 ‘a|l

forall x1,x2,...,x, € V\{0}. If a mapping f:V — Y satisfies f(0) =0,
1folax) =) < () and | fola®s) — (a+a) folax) +a* fo(@)| < V() (3.3)
forall x e V\ {0}, and if f moreover satisfies
DS (x1,2x2, .- x0) || < @(x1, %05+, X0) (3.4
Jorall x,x3,...,x, € V\ {0}, then there exists a unique mapping F : V — Y such that
DF (x1,x2,...,%,) =0 (3.5)
forall x1,x2,...,x, € V\{0}, and
F,(ax) = a®F,(x), Fa(l)(ax) = aFo(l)(x)7 Fa(z)(ax) = *F? (x) (3.6)

forall x €V, and such that

oo i 2i+2 1 i
) ~Fl < 3 (‘Zgi;? - _a|LT3§i§)) 37)

=l

Sforall x e V\{0}.
Proof. First, we define A:={f:V — Y| f(0) =0} and a mapping J,,, : A — A by

(2) m m (1) m
Jmf(x) = fO agc; )C) + feElZmX) + fO LE: )C)

for x € V and m € Ny. It follows from (3.3) that

([T f () = Tns1f ()]

m+l—1
< Z I7i.f (x) = Jip1f (x) ]
&t fo(aiﬂx) - aﬁ)(aix) ﬁ,(ai+2x) - afo(aiﬂx)
- = (a3 _ a)a3i o (a3 _ a)a3i+3
fe(aix) fE(ain) Jo (aiﬂx) - a3ﬁ,(aix)
+ 2 gt (a3 —a)d

fola™?x) —a*fy(a™x)

(@ —a)a''! (3.8)

+
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m+l—1 fe(ai+1x) _ a2fe(aix)

212
fold?dx) — (a+a) f,(a ' x) +a*f,(a'x)
B (a3 — a)a3i 3
N fold?aix) — (a+a’) fo(a*'x) +a*f,(a'x)

(a3 _ a)aiJrl

<m+2“< w(a'x) a2i+2—1|v(aix)>

2i+2 a® — af|aP3

<

i=m
m+1—1

+ X

1=m

forall x e V\ {0}.

In view of (3.1) and (3.8), the sequence {J,,f(x)} is a Cauchy sequence for all
x €V \{0}. Since Y is complete and f(0) = 0, the sequence {J,,f(x)} converges for
all x € V. Hence, we can define a mapping F': V — Y by

(2)/ m m (D) m
F(x) := lim J,,f(x) = lim (fo (a™x) +fe(a x) o (Z x))

m—soo M—oo a3m a2m a

forallxeV.
We easily obtain from the definition of F' that

Fy(a*x) — @’F,(ax)
a—a

(fo(a1n+3x) _ afa(arn+2x) fa (a1n+3 ) _ a3f ( m+2x))

F(ax) = —

= — lim —
m—eo a’m(a’ —a)? am(a® — a)?

) 3 f()( (m+1)+2 )—le( (m+1)+1 )
t Jim a ( B (g3 )2

f( (m+1)+2 ) 3f( (m+1)+1 )
o amt) (a3 — a)? )
. fol@"x) —d fy (a1 2x)
=g (M)
~ bm (f()(a’“ﬂax) _an()(am-&-lax))

am+l (a3 _ a)

B i a(f“( (m+l )+2 ) 3f( (m+1) +l ))

a am D+ (g3 — q)

m+1—o0

m-—oo

m-—oo

m+1—o0

= aFo(l)(x),

F(ax)+ F(—ax)
2

m+1 m+l
@)+ f(aty
m—oo 2a2m

F(ax) =
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f(am'Hx) =+ f(_a;n+1x)

_ 2
“ m-}-lln—lwo 242(m+1)

= azFe(x)7

F(a*x) —aF
E (an) < Fa*2) —aF (@)
a’—a
) ﬁ,(am+3x)—aﬁ,(am+2x) ﬁ,(am+3x)—a3f(,(am+2x)
= lim —

M—seo a3m (a3 _ a)2 am (a3 _ a)2

m+1—oo

— lim a<f0( a" ¥ 2x) —afy(alm Ty

a3(m+1)(a3 _ )

_f( (m+1+2 )—a3f( m+l+1 ))

(m+1)(a3 —Cl)
fa(am+2ax) _ afo(am-Hax)
()

:a3 lim (fa( (m+1 )+2 )—af( (m+1) +1 ))

aS(m+1)+3(a3 _ a)

for all x € V, and by (1.1) and (3.2), we get

|IDF (x1,x2,...,xn)]|

.|| Dfo(a™ iy, .. ,a" x,) —aDf, (a"xy,. .. .a"x,)
= lim 33
m—sco a’(a® —a)
Dfe(a X1, - a’”xn)
2m
_Df(,(amel,...,amen) —a&Df, (a"xy,...,d"x,)
am(a® —a)
) 1 |a‘2m+3 ta
S ((Iazm - la® — al|a|>™ Oe(" 1, i)
|a‘2m+l m+1 m+1
—l—W(pe(a Xlyeo-,ya xn)
=0

forall x1,x2,...,x, € V\ {0}, where @, (x1,...,x,) := q’(xl7""x”)+92°(_xl""’_x") Jie.,
DF(.Xl,xz, v ,xn) =0

for all xy,x2,...,x, € V\ {0}. Moreover, if we put m = 0 and let [ — o in (3.8), then
we obtain the inequality (3.7).
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Notice that the equalities

(1)
FY(Jal) = [alF 0, d”(i):ﬂ )

)" T
= |af? L2 W G
Rl =lPRe, R( )= (9)

(2)
Aok = PR, B () =0

are true in view of (3.6). Therefore, the equalities in (2.4) hold, for all x € V, with
k=|a| if |a| > 1 or k = ﬁ if |a| < 1.
When |a| > 1, in view of Lemma 2.1, there exists a unique mapping F : V — Y

satisfying the equalities in (3.6) and the inequality (3.7), since the inequality

*(uwm mm14vwn)

1f(x) = F(x)|| < Z(,) 272 T TP _gllap

& [ u(a'x) v(a'x) )

< A :
(e
o ¢(k'x)

< .
2

holds for all x € V\ {0}, where we set k := |a| and ¢ (x) := pt(x)+ u(—x)+ %

When |a| < 1, in view of Lemma 2.1, there exists a unique mapping F : V — Y
satisfying the equalities in (3.6) and the inequality (3.7), since the inequality

W<uww+m%%4vww)

1f(x) = F(x)|| < Z(,) 272 T P —gllap
& [ u(a'x) v(d'x) )
< =4 :
Z{)(a|gl+3 a3 — al[a[3+3

5()
Z o\

X)+U(—x X)+VvV(—x
holds for all x € V\ {0}, where k := ﬁ and ¢(x) := U )Iaﬁ( )4 Vfaﬁ_:l‘(aP) . O
In the following theorem, we assume that @, v and ¢ satisfy other conditions
than those of Theorem 3.1 and we prove that there exists a unique exact solution near
every approximate solution to Df (xy,x2,...,x,) = 0.

THEOREM 3.2. Assume that a is a real constant with a ¢ {—1,0,1}. Let n be
a fixed integer greater than 1, let w,v : V\ {0} — [0,0) be functions satisfying the
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conditions

Z|au< )<°o and Z|av< )<°° when |a| < 1,

1=

(3.10)

Zlayu(ﬁ) <eo and Zla“v(ﬁ.) < oo when |a| > 1
i=0 a a

i=0

forall x e V\{0}, andlet ¢ : (V\{0})" — [0,00) be a function satisfying the condition

Z| o (xi,x% x")<<x> when |a] < 1,
al

a’’’

m G.11)
Z|a\3i <x17x2- 7xn> < oo when |a| > 1
i=0 a

a’’
Jorall x,x3,...,x, € V\{0}. If a mapping f:V — Y satisfies f(0) =0, the inequal-
ities in (3.3) for all x € V\ {0}, and (3.4) for all x1,x2,...,x, € V\ {0}, then there

exists a unique mapping F 1V — Y satisfying (3.5) for all xy,xa,...,x, € V\ {0} and
(3.6) forall x € V, and such that

o 3i43 i+l
/)~ F@) <20(a w( ) () e

forall x e V\{0}.

Proof. First, we define the mappings J,,f : V — Y by

. 3m43 £(2) 2m m+1 (1) X
Jmf(x)-_a Jo <m+1>+a fe( >+a fo (aerl)

forall x € V and m € Ny . It follows from (3.3) that

H-Imf(x) - Jm-‘rlf(x)”

m+1—1 )
< :2 ’fe( l+1> <al+1)H
1 m+1—1
T a ; 3z+3<f(,< —(a+ad f0< l+2>+ f( )) (3.13)

o (n(Ger) v () v () )|
m+1l—1 ; X |a3z+3 +1| X
P (“”(afﬂ)* @ —d v(a,+2))

forall x e V\ {0}.
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On account of (3.10) and (3.13), the sequence {J,,f(x)} is a Cauchy sequence for
all x € V\ {0}. Since Y is complete and f(0) = 0, the sequence {J,,f(x)} converges
forall x € V. Hence, we can define a mapping F : V — Y by

1 3m+3 £(2) X 2m X m+1 £(1) i
o0 ) e )

for all x € V. Moreover, if we put m = 0 and let [ — o in (3.13), we obtain the
inequality (3.12).

In view of the definition of F', (3.4), (3.11), and

DF (x1,x2,...,%)

3m+3 m+1
. X a —a X1 X
—lim (2D (2, ) T pe (A
M—roo am am a3 —a am am
am+4 _ a3m+4D X1 X
+ a—a f“ a1’ gmtl

forall x1,x2,...,x, € V\ {0}, we get the equalities in (3.6) for all x € V and we further
obtain DF (xy,x2,...,x,) =0 forall x;,x3,...,x, € V\ {0}. We notice that the equali-
ties in (3.9) hold in view of (3.6). Therefore, the equalities in (2.4) hold, for all x € V,
with k = |a] if |a| > 1 or k= ﬁ if [a| < 1.

When |a| > 1, according to Lemma 2.1, there exists a unique mapping F :V — Y
satisfying the equalities in (3.6) and the inequality (3.12), since the inequality

1) = F(x)|

x)—

R
) 5 )
=Lk

3
holds for all x € V\ {0}, where k := |a| and ¢(x) := pu (%) +p (=) + a‘f | v(‘f—z) +
|a’| =
|a3—a| v(a_;) :
When |a| < 1, according to Lemma 2.1, there exists a unique mapping F : V —Y
satisfying the equalities in (3.6) and the inequality (3.12), since the inequality

1/(0) = F)|

oo 3i+3 i+1
; X |@”' > —a' | X
< 2 - + ———V| =
) 20( u() (=)
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5 ((a) (@) e g (@) (7))

holds for all x € V' \ {0}, where k := ﬁ and ¢ (x) = p (%) +pu (=) + ﬁv(a%) +
ﬁv(;—f) O

We assume that p, v and ¢ satisfy different conditions from those of Theorems
3.1 and 3.2 and prove that there exists a unique exact solution near every approximate
solution to Df (x1,x2,...,%,) = 0.

THEOREM 3.3. Let a be a real constant with a ¢ {—1,0,1}, let n be a fixed
integer greater than 1, let 1 : V\ {0} — [0,00) be a function satisfying the conditions

=

Z |a\2’ oo when |a] > 1,

(3.14)
2 la|*'u ( ) < oo when |a] < 1
forall x e V\{0}, let v:V\ {0} — [0,00) be a function satisfying the conditions

(a'x)

i ‘Ll|2l

M s

<eo and 2a|v< ><°o when |a| > 1,
1

(3.15)

> V(g oo _
D (a x) <oo and Y a|2’v<£i) < oo when |a] < 1
: : a

forall xe V\{0}, andlet ¢ : (V\{0})" — [0,00) be afunction satisfying the conditions

o i i i
Z(p(axlaax27-“'7axn)<oo and Z‘av (xl,x2‘ 7x_rf><°o
i=0

|Cl‘2l = i al’

when |a] > 1,

LA

(p(a"xl,a"xz,....,aixn) < oo and iwzl-(p X1 xz', x,f oo
al I

when |a| < 1

Sfor all x1,xp,...,x, € V\{0}. If a mapping f:V — Y satisfies f(0) =0 and the
inequalities in (3.3) for all x € V\ {0} and (3.4) for all xi,xa,...,x, € V\ {0},
then there exists a unique mapping F :'V — Y satisfying the equality (3.5) for all
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X1,X2,...,%, € V\{O}, the equalities in (3.6) forall x €V, and
1F () = F ()|
oo i
2”21+2 l—a|i§6<|‘;(?iﬁ +“|iv<azﬁ1)>
when \a| > 1,

2 X 1 & (v(dx) 3 x
2‘ | ( z+1> | 3_a|2{)<a|i+l +lalv ait1

when |a| < 1

N

(3.17)

Sforall x e V\{0}.

Proof. We will divide the proof of this theorem into two cases, the case for |a| > 1
and the other case for |a| < 1.

Case 1. Assume that |a| > 1. We defineaset A:={f:V —Y|f(0) =0} and a
mapping J,, : A — A by

Inf(a) i L) ) ()

a3m
for all x € V and m € Ny. It follows from (3.3) that

[ f () = T f ()|

m+l—1 fe(ai“x) _a2fe(aix)
S Pt q2i+2
1 m+l—1 fo(az-aix)—(a+a3)f0(ai+1x)+a4f(aix)

(.18

) 2
) (20|

m+l—1 m—+l—1
u(a 1 v(a'x)
< Z 21+2 _ Z <| ‘3l+3 +‘ |V l+l

Cl a| i=m

la’—a| =

forall x e V\ {0}.

In view of (3.14), (3.15), and (3.18), the sequence {J,,f(x)} is a Cauchy sequence
forall x € V\{0}. Since Y is complete and f(0) = 0, the sequence {J,,f(x)} con-
verges for all x € V. Hence, we can define a mapping F': V — Y by

(2) m m
F(x) := lim Jo (;; %) + fe(czlmx) —l—amfcgl) (%)
m—e @ a a

for all x € V.. Moreover, if we put m = 0 and let / — oo in (3.18), we obtain the first
inequality of (3.17).




54 Y.-H. LEE, S.-M. JUNG AND M. TH. RASSIAS

Using the definition of F', (3.4), (3.16), and

DF(XI,XQ,... )
) Df( mtly ..,a’““x,,) —an(,(a’“xl,...,a’”x,,)
= lim T
M—soo a’(a® —a)

Dfe (a™x1,...,d"x,)
a2m

_%< f"(czm’ f;f:) _a3Dﬁ)<%""’;_Zz>)>

forall x1,xp,...,x, € V\ {0}, we get the equalities in (3.6) for all x € V and we further
get DF (x1,x2,...,x,) =0 for all xj,x2,...,x, € V\ {0}. We notice that the equalities
in (2.4) are true in view of (3.6), where k = |a].

Using Lemma 2.2, we conclude that there exists a unique mapping F : V — Y
satisfying the equalities in (3.6) and the first inequality in (3.17), since the inequality

H iy
Irt)—Fl < 5 5 5 ( |3,+3+H (7))

St pra s (i)
5% ’+k‘¢(kl))

holds for all x € V \ {0}, where k := |a], ¢(x) := %, and y(x) := p(x)+
[ (—x) 4+ Yty

la?—alla]?

Case 2. We now consider the case of |a| < | and define a mapping J,, : A — A by

Inf () :=a3’”fa(2)<a> 2"%( ) i ém %)

forall x € V and n € Ny. It follows from (3.3) that

([T f () = T f ()]

m+l—1 )
el o)
1 m+l—1
a Z 31(]‘0( l+l> (a+a)f(,< ZH)—i—a ﬁ,( z+1)> (3.19)

f(,(a a'x) — (a+a) f,(ax) + a*f, (a'x)

qit1

m+l—1 m+l—1
2 X | v(a'x) 3 X
<3 () s 2 (T

i=m i=m
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forall x € V\ {0}.

On account of (3.14), (3.15), and (3.19), the sequence {J,,f(x)} is a Cauchy se-
quence for all x € V\ {0}. Since Y is complete and f(0) = 0, the sequence {J,,.f(x)}
converges for all x € V.. Hence, we can define a mapping F : V — Y by

F(x) = lim <a3mf(§2)<a >+ 2mfe< m) £ LEm ))

for all x € V.. Moreover, if we put m = 0 and let / — = in (3.19), we obtain the second
inequality in (3.17).
By the definition of F', (3.4), (3.16), and

DF (x1,x2,...,%,)

a3m X Xn a3m+1 X Xn
t—Dfo =i, ) = 5—Dfo| S
a’ —da a a a —da a a

Df, (cz”““l)cl7 ... ,a’"“xn) —a’Df, (a’“xl7 ... ,a’"xn) )

am™(a® —a)
for all xy,xz,...,x, € V\ {0}, we get the equalities in (3.6) for all x € V and we more-
over obtain DF (x,xa,...,x,) = 0 for all x|,x2,...,x, € V'\ {0}. We remark that the
equalities in (2.4) hold by considering (3.6) with k = ﬁ .

Using Lemma 2.2, we conclude that there exists a unique mapping F : V — Y
satisfying the equalities in (3.6) and the second inequality in (3.17), since the inequality

15 =Fel < Sl () + g & (Tt + ey (57 )
S () ()
)
<3 (% (v))

holds for all x € V\ {0}, where k := ﬁ, o(x):= m(v(x)—kv(—x)) ,and y(x) =
g (V@) +v(E)) FuE) Fu(F). O

Suppose 1, v and ¢ satisfy other conditions from those of preceding three theo-
rems. In the following theorem, we prove that there exists a unique exact solution near
every approximate solution to Df(x,xz,...,x,) = 0.
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THEOREM 3.4. Suppose a is a real constant with a & {—1,0,1}. Let n be a fixed
integer greater than 1, let 1 : V\ {0} — [0,00) be a function satisfying the conditions

Z\a|2’ ( ) < oo when |a] > 1,

(3.20)

< oo when |a] < 1
forall x e V\{0}, let v:V\ {0} — [0,00) be a function satisfying the conditions

Y (a;) <eo and 2\a|2’ ( ) < oo when |a| > 1,
i—0 \a| !

_ 3.21)
ZM;.) <eo and 2\a|3’ ( ) < oo when |a] < 1
i—0 \a| !

forall xe V\{0}, andlet ¢ : (V\{0})" — [0,00) be afunction satisfying the conditions

o aixy,dixy, ... d'x X] X X
2(.0( 1y 27- ) n)<°° and Z‘a|2l (1, 2 n)<°°

|Cl‘3l = a’al e al

when |a] > 1,
(3.22)

< @aix,aixs, ... ax,) &1 3 X1 X Xn
g ] <o and 2\a| ‘¢ g g ) <

when |a| < 1

Sfor all x1,xp,...,x, € V\{0}. If a mapping f:V — Y satisfies f(0) =0 and the
inequalities in (3.3) for all x € V\{0} and (3.4) for all x1,x2,...,x, € V\ {0},
then there exists a unique mapping F :'V — Y satisfying the equality (3.5) for all
X1,X2,...,% € V\{0}, the equalities in (3.6) forall x €V, and

1F () = F ()|
2i X 1 V(a x) iy X
|al u(a—l‘rl) +7|a3—a| <| EIE +al'v (ai+1)> when |a] > 1,
; . (3.23)
‘u(alx) 1 V(a’x) 3 X
|a |22 + @ —a| \ Ja]! + la[™'v pras| when |a| < 1
forall x e V\ {0}.

Proof. We will divide the proof of this theorem into two cases; namely, the case
for |a] > 1 and the other case for |a| < 1.

Case 1. Assume that |a| > 1. We defineaset A:={f:V —Y|f(0) =0} and a
mapping J,, : A — A by

() m
Jmf(x) = fO a(;rln x) +asze<;7) +amﬁ£1) (;7)
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for all x € V and m € Ny. It follows from (3.3) that

H-Imf( )_ m+lf( )”

i () - a2fe(afi1>)H

<X
1 st B fo(d?aix) — (a+a) f,(a ' x) + a* f(a'x)

i=m
2 a3i+3

i=m 2x
(g ) - @ 5 ) vatr(
m+l—1 ; 1 v z
<2 ('““(ail)%ta((ﬁlfg” ()))

forall x e V\ {0}.

In view of (3.20), (3.21), and (3.24), the sequence {J,,f(x)} is a Cauchy sequence
for all x € V\ {0}. Since Y is complete and f(0) = 0, the sequence {J,,f(x)} con-
verges for all x € V. Hence, we can define a mapping F': V — Y by

(2) (m
F(x) == lim (Wﬂzmﬂ(%) +amﬁ51)<1m>>

for all x € V.. Moreover, if we put m = 0 and let / — oo in (3.24), we obtain the first
inequality of (3.23).
Using the definition of F, (3.4), (3.22), and

+ (3.24)

)l

|a* —a

a’m(a® —a)

(Dfa(a’"“xh...,am“xn) —ano(a’“xh...,amxn) "Dy, <;C_l ) x_,,)

for all x,x;,...,x, € V\ {0}, we obtain the equalities in (3.6) for all x €V and we
further get DF (x,x2,...,x,) = 0 for all x,x2,...,x, €V \ {0}. We notice that the
equalities in (2.4) are true in view of (3.6), where k = |a|.

Using Lemma 2.3, we conclude that there exists a unique mapping F : V — Y
satisfying the equalities in (3.6) and the first inequality in (3.23), since the inequality

1) = F(x)|

<5 (1) + e (v ()
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S 2i X 2 —x |a|* X —x
< % <|a l“<ai+1> +la| l“<ai+1> + P v aitl TV aitt
=
1 v(dix) v(—ad'x)
+ \a3 —d <a|3i+3 + PIEGE

<5 (o)

holds for all x € V\ {0}, where k := |a|, ¢(x) := pu (%) +pu (=) + 4 Y@ ang

@
Y v()
ll/(.x) T |a3_a‘|a|3 *

Case 2. We now consider the case of |a| < 1 and define a mapping J,,, : A — A by

m (D¢ m
Inf(x) := a3’”f(§2) (%ﬂ) i feiﬂzlmx) N 39 (a"x)

am

forall x € V and n € Ny. It follows from (3.3) that

([T f () = Tns1f ()]

< ! azfe (aix) - fe(aiax)
= = 22 +2
1 m+l—1
|a® —al ig;n 3l<f“< z+1> (a+a >f”< z+1)+ fv( z+1)> (3.25)
f(,(a a'x) — (a+a) f,(ax) + a* £, (a'x)
i

m+l—1 [J(aix) 1 V( ) l X

< Z <a|2f+2+a3— (G v ()
forall x € V\ {0}.

On account of (3.20), (3.21) and (3.25), the sequence {J,,f(x)} is a Cauchy se-
quence for all x € V\ {0}. Since Y is complete and f(0) = 0, the sequence {J,,.f(x)}
converges for all x € V. Hence, we can define a mapping F' : V — Y by

m M/ m
F(x) = lim a3’"fa(2)<6%) A I

m—oo am

for all x € V.. Moreover, if we put m = 0 and let / — = in (3.25), we obtain the second
inequality in (3.23).
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By the definition of F', (3.4), (3.22), and
DF (x1,X2,...,%y)
~im ( () g ()
m—e \ a® —a a a a—a a a

| Dfe(a™xs;....d")
a2m

Df, (a”““l)cl7 ... ,a’"“xn) —a’Df, (a’"xl, ... ,a’“x,,) )

am™(a® —a)
for all xj,x2,...,x, € V\ {0}, we get the equalities in (3.6) for all x € V and we more-
over have DF (x1,x2,...,x,) = 0 for all xj,xs,...,x, € V\{0}. We remark that the
equalities in (2.4) hold by considering (3.6) with k = ﬁ .

Using Lemma 2.3, we conclude that there exists a unique mapping F : V — Y
satisfying the equalities in (3.6) and the second inequality in (3.23), since the inequality

(x) —

mm )
5 (e s ()
<5 (M ea(3))

holds for all x € V\ {0}, where k:= ﬁ, o(x):= #([J(x)—i—u(—x)) +Wlaual(v(x)+
v(=x)), and y(x) == o (u(f) +u(-3). O

By using Theorems 3.1, 3.2, 3.3, and 3.4, we can prove the following corollary.

COROLLARY 3.5. Let X be anormed space and let p, €, 0, & be real constants
such that p ¢ {1,2,3}, a¢ {-1,0,1}, £ >0, and 6 > 0. If a mapping f:X —Y
satisfies f(0) =0

(| fe(ax) — @ fo(x)|| < €]lx]|7, (3.26)
and
[fo(@x) = (a+a) folax) +a* f,(x)[| < O]|x]]” (3.27)
Sforall x € X\ {0}, as well as if f satisfies the inequality

IDf (ersoe2, ) | < E (e | -+ flea|P) (3.28)
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Jorall xi,x3,...,x, € X\ {0}, then there exists a unique mapping F : X — Y satisfying
(3.5) forall x1,x2,...,x, € X\ {0}, (3.6) forall x € X, as well as

la| jaf? 6 |[x[1” e|lx[|1”
+ +

llal —lal?] ~ |lal> —lal?| ) a|?|a® —a| ~ |a* —|a|?|

when either |a| and p < 1 or |a| > 1 and p > 3,
17 () = Foll < (3.29)

1 1 Ollxll” , _ ellx]l”
+ 3 3 + 2
llal =lal?| ~ [la]* —lal?| ) |@* —a] * |a® - a|?|

for the other cases

forall x e X\ {0}.

Proof. Letusput fi(x) :=g|[x||”, v(x) := 0|x||”, and @(x1,x2,...,x,) := 0 (||x1]|”
+ -+ + [lxa||P) for all xp,x2,...,x, € X\ {0}. Then ¢, p, v satisfy (3.1) and (3.2)
when either |a| > 1 and p < 1 or when |a| < 1 and p > 3. If either |a| > 1 and p >3
orif |a| <1 and p <1, then ¢, u, v satisfy (3.10) and (3.11). Moreover, @, i, v
satisfy (3.14), (3.15), and (3.16) when 1 < p <2 and ¢, u, v satisfy (3.20), (3.21),
and (3.22) when 2 < p < 3. Therefore, by Theorems 3.1, 3.2, 3.3, and 3.4, there exists
a unique mapping F : X — Y such that (3.5) holds for all xj,x,,...,x, € X\ {0}, and
(3.6) holds for all x € X, and such that (3.29) holds for all x € X\ {0}. O
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