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NEW REFINEMENTS OF THE ERDÖS–MORDELL INEQUALITY
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(Communicated by J. Pečarić)

Abstract. In this paper, we present further extensions of two known refinements of the Erdös-
Mordell inequality. Several other new refinements of the Erdös-Mordell inequality are estab-
lished as well. Some closely related interesting conjectures which have been checked by com-
puter are also proposed.

1. Introduction

Given triangle ABC and its interior point P , let R1,R2,R3 denote the distances of
P from the vertices A,B,C and from the sides BC,CA,AB by r1,r2,r3 , respectively.
Then the famous Erdös-Mordell inequality states that

∑R1 � 2∑r1, (1.1)

where ∑ denote the cyclic sums over the triples (R1,R2,R3) and (r1,r2,r3). Equality
in (1) holds if and only if �ABC is equilateral and P is its center.

Since this inequality posed by Erdös in [5] in 1935, various proofs are given. See
[1], [3], [8], [9], [13], and [20] for example. On the other hand, many generalizations
are established from different directions (cf. [2], [4], [6], [7], [14–19], [21–23] and the
references therein). However, the refinements and sharpness of (1.1) rarely appeared in
the literature. Recently, the author of this paper obtained some related results, see [9],
[11] and [12].

In [12], Theorem 4.3 and 4.4 provide the following refinements of the Erdös-
Mordell inequality:

∑R1 �
√

∑
[
R2

1 +2R1r1 +(r2 + r3)2
]
� 2∑r1, (1.2)

∑R1 �
√

∑(R2 +R3)(R1 + r1) �
√

4
3 ∑(R2 + r2)(R3 + r3)

� 2∑r1, (1.3)

respectively.
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The author also obtained two refinements with one parameter for the Erdös-Mordell
inequality (see [12, Theorem 4.1 and 4.2]). Moreover, some other refinements involv-
ing elements such as sides, altitudes, and medians etc. of a triangle are presented by the
author in [12] and [9].

In this work we focus our attention on the refinements of the Erdös-Mordell in-
equality, which only concern six segments R1,R2,R3,r1,r2,r3 . We shall give further ex-
tensions of (1.2) and (1.3) and establish several new refinements of the Erdös-Mordell.
In the last section, we shall put forward some related interesting conjectures.

2. Lemmas

The following first lemma is well-known and important. For the proofs, see [1],
[3], [4], and [8] for example.

LEMMA 1. Let a,b,c denote the side lengths of the triangle ABC (a = BC, b =
CA, c = AB) and let O denotes the circumcenter of ABC, then for an arbitrary point
P inside triangle ABC

aR1 � br3 + cr2, (2.1)

with equality if and only if P lies on the segment AO.

LEMMA 2. ([12]) For any interior point P of the triangle ABC the following
inequality holds:

∑R2
1 � ∑R1(r2 + r3). (2.2)

Equality occurs only when �ABC is equilateral and P is its center.

LEMMA 3. ([18,22]) For any interior point P of the triangle ABC the following
inequality holds:

∑R1r1 � 2∑r2r3, (2.3)

with equality if and only if P coincide with one vertex of �ABC or �ABC is equilat-
eral and P is its center.

LEMMA 4. ([12]) For any interior point P of the triangle ABC the following
double inequality holds:

∑R2R3 � 1
2 ∑R1(2r1 + r2 + r3) � ∑(r3 + r1)(r1 + r2). (2.4)

Equalities in (2.4) hold if and only if �ABC is equilateral and P is its center.

REMARK 1. It is easily verified the following identity:

∑R1(2r1 + r2 + r3) = ∑(R2 +R3)(r2 + r3), (2.5)
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which means that (2.4) is equivalent to

∑R2R3 � 1
2 ∑(R2 +R3)(r2 + r3) � ∑(r3 + r1)(r1 + r2). (2.6)

LEMMA 5. ([10]) Let P be an interior point of the triangle ABC, then

R2 +R3 � 2r1 +
(r2 + r3)2

R1
, (2.7)

with equality if and only if CA = AB and P is the circumcenter of the triangle ABC.

LEMMA 6. Let P be an interior point of the triangle ABC, then we have

(R2 +R3)(R1 +2r1) � (2r1 + r2 + r3)2, (2.8)

with equality if and only if �ABC is equilateral and P is its center.

Proof. Using inequality (2.7) and the Erdös-Mordell inequality (1.1), we have

(R2 +R3)(R1 +2r1) = R1(R2 +R3)+2r1(R2 +R3)
� 2R1r1 +(r2 + r3)2 +2r1(R2 +R3)
= 2r1∑R1 +(r2 + r3)2

� 4r1∑ r1 +(r2 + r3)2

= (2r1 + r2 + r3)2,

as required.
In view of the equality conditions of (1.1) and (2.7), we conclude that the equality

condition of (2.8) is the same as that of (1.1). The proof of Lemma 6 is completed. �
Incidentally, inequality (2.8) can also be easily proved by using Lemma 1.

REMARK 2. By Lemma 6 and the Erdös-Mordell inequality (1.1), we immedi-
ately obtain the following two inequalities:

∑ (2r1 + r2 + r3)2

R2 +R3
� 2∑R1, (2.9)

∑ (2r1 + r2 + r3)2

R1 +2r1
� 2∑R1. (2.10)

The first inequality is weaker than the conjectured inequality (4.1) in [11], till can be
viewed as a sharpness of the Erdös-Mordell inequality (cf. [11]). The second inequality
is a special case of Theorem 3 in [11].

In addition, by inequality (2.7) and its two analogues we immediately obtain the
following symmetric inequality.
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LEMMA 7. For any interior point P of the triangle ABC

∑R2R3 � ∑R1r1 +∑r2
1 +∑r2r3, (2.11)

with equality if and only if �ABC is equilateral and P is its center.

REMARK 3. Inequality (2.11) is equivalent to the inequality (4.12) in [12] and
equivalent to

∑(R1− r2− r3)(R2 +R3 + r2 + r3) � 0. (2.12)

3. Main results

For simplicity, we shall not mention the equality conditions in the following theo-
rems. But we wish to point out that all the inequalities in our theorems hold if and only
if the �ABC is equilateral and P is its center (the equality conditions are in fact easily
determined).

3.1. Further refinements of (1.2) and (1.3)

For inequality chain (1.2), we have the following further refinements:

THEOREM 1. For any interior point P of the triangle ABC, we have

∑R1 �
√

∑
[
R2

1 +2R1r1 +(r2 + r3)2
]
� ∑

√
R1(r2 + r3)

� 2∑r1. (3.1)

Proof. Since the first inequality in (3.1) has already been proved in [12], we only
need to prove the second inequality and third one in (3.1). We have the following
identity:

∑
[
R2

1 +2R1r1 +(r2 + r3)2]−2∑R1∑ r1 = ∑(R1− r2− r3)2, (3.2)

which is easily checked by expanding both sides. Then√
∑
[
R2

1 +2R1r1 +(r2 + r3)2
]
�
√

2∑R1 ∑r1 � ∑
√

R1(r2 + r3),

where the last inequality is obtained by use of the Cauchy-Schwarz inequality. This
completes the proof of the second inequality in (3.1).

In the sequel, we let the sign ∑ denote cyclic sums over the triples (R1,R2,R3),
(r1,r2,r3) and (a,b,c) .

Using Lemma 1, the Cauchy-Schwarz inequality and the arithmetic-geometric
mean inequality, we have

∑
√

R1(r2 + r3) � ∑
√

(r2 + r3)(cr2 +br3)
a

� ∑
√

cr2 +
√

br3√
a

= ∑
(√

b
c

+
√

c
b

)
r1 � 2∑ r1.
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This completes the proof of the last inequality in (3.1) and we finish the proof of Theo-
rem 1. �

Another further refinement of (1.2) is as follows.

THEOREM 2. For any interior point P of the triangle ABC, we have

∑R1 �
√

∑
[
R2

1 +2R1r1 +(r2 + r3)2
]
�
√

∑(r2 + r3)(R2 +R3 + r2 + r3)

� ∑
√

1
2
(r2 + r3)(R1 + r2 + r3) � 2∑r1. (3.3)

Proof. Since the double inequality (1.2) holds, we only need to prove the remain-
ing inequalities of (3.3).

A short calculation gives

∑
[
R2

1+2R1r1+(r2+r3)2]−∑(r2+r3)(R2+R3+r2+r3) = ∑R2
1−∑R1(r2+r3).

(3.4)
Thus, by Lemma 2, we know that the second inequality in (3.3) holds.

We now prove the third inequality in (3.3). Applying the Cauchy-Schwarz in-
equality, we get

∑
√

1
2
(r2 + r3)(R1 + r2 + r3) �

√
∑ r1

(
∑R1 +2∑r1

)
. (3.5)

On the other hand, we have the following identity:

∑(r2+r3)(R2+R3+r2+r3)−∑r1
(
∑R1+2∑r1

)
= ∑R1r1−2∑r2r3, (3.6)

which is easily obtained by expanding. Thus, by Lemma 3 we deduce that

∑(r2 + r3)(R2 +R3 + r2 + r3) � ∑r1
(
∑R1 +2∑r1

)
, (3.7)

which together with (3.5) implies that the third inequality of (3.3) is true.
Finally, we prove the last inequality in (3.3). Applying Lemma 1, the Cauchy-

Schwarz inequality and the arithmetic-geometric mean inequality, we have

∑
√

1
2
(r2 + r3)(R1 + r2 + r3) � 1√

2
∑
√

(r2 + r3)
(

br3 + cr2

a
+ r2 + r3

)

=
1√
2

∑
√

(r2 + r3) [(a+ c)r2 +(a+b)r3]√
a

� 1√
2

∑ r2
√

a+ c+ r3
√

a+b√
a

=
1√
2

∑
√

b+ c

(
1√
b

+
1√
c

)
r1

� 1√
2

∑
(
2
√

bc
)1/2 ·2

(√
bc
)−1/2

r1

= 2∑ r1,
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as required. The proof of Theorem 2 is completed. �

REMARK 4. We have know that there is no strict comparison between the third
term of (3.1) and the third one of (3.3). But it seems likely that the third term of (3.1)
is greater or equal to the fourth one of (3.3) (see Conjecture 1 in the last section ).

In the following, we state and prove a further refinement of (1.3).

THEOREM 3. For any interior point P of the triangle ABC, we have

∑R1 �
√

∑(R2 +R3)(R1 + r1) �
√

4
3 ∑(R2 + r2)(R3 + r3)

� 2
3 ∑

√
(R2 + r2)(R3 + r3) � 2 3

√
(R1 + r1)(R2 + r2)(R3 + r3)

� 2∑r1. (3.8)

Proof. Note that inequality chain (1.3) has been proved in [12]. Also, it is obvi-
ous that the third inequality and the fourth one of (3.8) immediately follow from the
power mean inequality and the arithmetic-geometric mean inequality, respectively. So,
it remains to prove the last inequality which is equivalent to

(R1 + r1)(R2 + r2)(R3 + r3) �
(
∑r1

)3
. (3.9)

For proving this inequality, by Lemma 1 it is suffices to prove that(
br3 + cr2

a
+ r1

)(
cr1 +ar3

b
+ r2

)(
ar2 +br1

c
+ r3

)
− (∑r1

)3 � 0,

or equivalently

(ar1 +br3 + cr2) (br2 + cr1 +ar3)(cr3 +ar2 +br1)−abc
(
∑r1

)3 � 0.

Expanding out and rearranging, one further knows again that it is equivalent to

∑
[
(ab2 +bc2 + ca2−3abc)r2 +(ba2 + cb2 +ac2−3abc)r3

]
r2
1

+∑(a3 +b3 + c3−3abc)r1r2r3 � 0. (3.10)

But, from the arithmetic-geometric mean inequality, we have

ab2 +bc2 + ca2−3abc � 0,

ba2 + cb2 +ac2−3abc � 0,

a3 +b3 + c3−3abc � 0.

These three inequalities and the fact that r1 � 0 etc., shows that (3.10) holds. So we
have finished the proofs of (3.9) and the last inequality in (3.8). The proof of Theorem
3 is completed. �
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3.2. Some new results

We first point out that the following refinement of the Erdös-Mordell inequality
can be obtained by the previous inequalities. That is

THEOREM 4. For any interior point P of the triangle ABC, we have

∑R1 �
√

∑R1(R2 +R3 + r2 + r3)

�
√

1
2 ∑(R1 + r2 + r3)(R2 +R3 + r2 + r3)

�
√

∑(r2 + r3)(R2 +R3 + r2 + r3) � ∑
√

1
2
(r2 + r3)(R1 + r2 + r3)

� 2∑r1. (3.11)

Proof. It is clear that

∑(R2 +R3)(R1 + r1) = ∑R1(R2 +R3 + r2 + r3). (3.12)

Thus, the first inequality in (3.11) is equivalent with the first one of (1.3) and valid.
From the preceding inequality (2.12), one sees that the second inequality and the third
one of (3.11) hold. The last two inequalities of (3.11) are the same as in (3.3) and have
been already proved. The proof of Theorem 4 is completed. �

As a direct consequence of Theorem 4, one has

∑R1 �
√

1
2 ∑(R1 + r2 + r3)(R2 +R3 + r2 + r3) � 2∑r1. (3.13)

Moreover, we find that this double inequality can be extended to the following case
with one parameter.

THEOREM 5. For any interior point P of the triangle ABC and non-negative
number k , we have

∑R1 �
√

1
k+1 ∑(kR1 + r2 + r3)(R2 +R3 + r2 + r3) � 2∑r1. (3.14)

Proof. Note that the first inequality in (3.11). For proving the first inequality in
(3.14), it is suffices to prove that

√
∑R1(R2 +R3 + r2 + r3) �

√
1

k+1 ∑(kR1 + r2 + r3)(R2 +R3 + r2 + r3).

Since k � 0, we only need to prove that

(k+1)∑R1(R2 +R3 + r2 + r3)−∑(kR1 + r2 + r3)(R2 +R3 + r2 + r3) � 0,
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which is simplified to the previous inequality (2.12). Hence the first inequality in (3.14)
is proved.

In order to prove the second inequality of (3.14), we have to show that for k � 0

∑(kR1 + r2 + r3)(R2 +R3 + r2 + r3)−4(k+1)
(
∑r1

)2 � 0,

which can be written in the equivalent form

∑R1(2r1 + r2 + r3)−2∑(r3 + r1)(r1 + r2)

+k
[
∑(R2 +R3)(R1 + r1)−4

(
∑ r1

)2]� 0. (3.15)

Now, from the previous inequality chain (1.3), we deduce that

∑(R2 +R3)(R1 + r1) � 4
(
∑r1

)2
, (3.16)

which together with the second inequality of (2.4) imply that (3.15) holds for k � 0.
Thus, the second inequality in (3.14) is proved and the proof of Theorem 5 is com-
pleted. �

The special case k = 1 of (3.14) reduces to (3.13). For k = 0 in (3.14), we get

∑R1 �
√

∑(r2 + r3)(R2 +R3 + r2 + r3) � 2∑r1, (3.17)

which can also be obtained from Theorem 2 or Theorem 4.
Motivated by inequality chain (3.17), the author finds the following similar refine-

ment of the Erdös-Mordell inequality:

∑R1 �
√

1
2 ∑(R2 +R3)(R2 +R3 + r2 + r3) � 2∑r1. (3.18)

At first, the author gave a complicated proof for the second inequality of (3.18). Later,
two extensions of (3.18) are found and then the simpler proofs of (3.18) are obtained.
Now, we give the first extension of (3.18) as follows.

THEOREM 6. For any interior point P of the triangle ABC, we have

∑R1 �
√

1
2 ∑(R2 +R3)(R2 +R3 + r2 + r3)

� 1
2 ∑

√
(R2 +R3)(R1 +2r1) � 2∑r1. (3.19)

Proof. Firstly, one may check the following identity:

2
(
∑R1

)2 −∑(R2 +R3)(R2 +R3 + r2 + r3)

= 2∑R2R3 −∑(R2 +R3)(r2 + r3). (3.20)
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Thus, by the first inequality of (2.6) we see that the first inequality (3.19) holds.
Applying the Cauchy-Schwarz inequality, we obtain

∑
√

(R2 +R3)(R1 +2r1) �
√

2∑R1
(
∑R1 +2∑r1

)
. (3.21)

So, to prove the second inequality in (3.19) it is sufficient to prove that

∑R1
(
∑R1 +2∑r1

)
� ∑(R2 +R3)(R2 +R3 + r2 + r3). (3.22)

Again, one may check that

∑(R2 +R3)(R2 +R3 + r2 + r3)−∑R1
(
∑R1 +2∑r1

)
= ∑R2

1−∑R1(r2 + r3). (3.23)

Thus, by Lemma 2 we deduce that (3.22) holds and then the second inequality in (3.19)
is proved.

According to Lemma 6, we immediately obtain

∑
√

(R2 +R3)(R1 +2r1) � 2∑(2r1 + r2 + r3) = 4∑r1,

which shows that third inequality in (3.19) is proved. The proof of Theorem 6 is com-
pleted. �

Finally, we give another extension of (3.18) as follows.

THEOREM 7. For any interior point P of the triangle ABC, we have

∑R1 �
√

1
2 ∑(R2 +R3)(R2 +R3 + r2 + r3)

� ∑
√

1
2
R1(R1 + r2 + r3) �

√
1
2

(
∑R1

)2 +2
(
∑r1

)2
� ∑

√
1
2
(r2 + r3)(R1 + r2 + r3) � 2∑ r1. (3.24)

Proof. As we have shown the first inequality of (3.24) in (3.19), it is left to prove
the remaining inequalities of (3.24). Applying the Cauchy-Schwarz inequality, we ob-
tain the following identity:

∑
√

1
2
R1(R1 + r2 + r3) �

√
1
2 ∑R1

(
∑R1 +2∑r1

)
. (3.25)

which is similar to (3.22). Coupling (3.25) with (3.21) yields the second inequality in
(3.24).

We now prove the third inequality in (3.24), namely

∑
√

1
2
R1(R1 + r2 + r3) �

√
1
2

(
∑R1

)2 +2
(
∑r1

)2
. (3.26)
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Squaring both sides gives the next equivalent inequality (required to prove):

1
2 ∑R1(r2 + r3)+∑

√
R2R3(R2 + r3 + r1)(R3 + r1 + r2)

� ∑R2R3 +2
(
∑r1

)2
. (3.27)

By the Cauchy-Schwarz inequality we have√
(R2 + r3 + r1)(R3 + r1 + r2) �

√
R2R3 +

√
(r3 + r1)(r1 + r2).

Multiplying both sides by
√

R2R3 and then summing yields

∑
√

R2R3(R2 + r3 + r1)(R3 + r1 + r2) � ∑R2R3 +∑
√

R2R3(r3 + r1)(r1 + r2).

Hence, the proof of (3.27) becomes

1
2 ∑R1(r2 + r3)+∑

√
R2R3(r3 + r1)(r1 + r2) � 2

(
∑r1

)2
. (3.28)

Using Lemma 1, the Cauchy-Schwarz inequality, and the arithmetic-geometric mean
inequality we have

1
2 ∑R1(r2 + r3)+∑

√
R2R3(r3 + r1)(r1 + r2)

� 1
2 ∑ (br3 + cr2)(r3 + r2)

a
+∑

√
(cr1 +ar3)(ar2 +br1)(r1 + r3)(r2 + r1)√

bc

� 1
2 ∑ (

√
br3 +

√
cr2)2

a
+∑ (

√
cr1 +

√
ar3)(

√
ar2 +

√
br1)√

bc

=
1
2 ∑ br2

3 + cr2
2

a
+∑

√
bcr2r3

a
+∑

√
bcr2

1 +ar2r3 +
√

car1r2 +
√

abr3r1√
bc

=
1
2 ∑

(
b
c

+
c
b

)
r2
1 +∑

(√
bc
a

+
a√
bc

)
r2r3 +∑r2

1 +∑ b+ c√
bc

r2r3

� ∑r2
1 +2∑r2r3 +∑r2

1 +2∑r2r3

= 2
(
∑ r1

)2
,

which proves inequality (3.28).
Obviously, by the Erdös-Mordell inequality we have

1
2

(
∑R1

)2 +2
(
∑ r1

)2 � ∑ r1
(
∑R1 +2∑r1

)
.

Combining this with (3.26) and the previous inequality (3.5), we conclude that fourth
inequality in (3.24) holds. Finally, we notice that the last inequality in (3.24) has been
proved in Theorem 2. This completes the proof of Theorem 7. �

REMARK 5. There is no strict comparison between the third term of (3.19) and
the third one of (3.24), and the fourth one of (3.24).
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REMARK 6. If we replace the fifth term of (3.24) by the third one of (3.1), then
the inequality chain still holds. In deed, by the simplest power mean inequality and the
simplest arithmetic-geometric mean inequality we have

∑
√

1
2

(
∑R1

)2 +2
(
∑r1

)2 � 1
2

(
∑R1 +2∑r1

)
=

1
2

[
∑R1 +∑(r2 + r3)

]
� ∑

√
R1(r2 + r3).

Thus, by (3.26) we know that the statement above is true.

REMARK 7. From inequality chain (3.24) we conclude that

∑
(√

R1−
√

r2 + r3
)√

R1 + r2 + r3 � 0. (3.29)

It seems very difficult to give a direct proof of this inequality.

4. Open problems

It is worth noting that there are many interesting inequalities related to the results
of this paper should be studied. We introduce some of them in the following.

Motivated by (1.3) and inspired by the proved theorems in this paper, we propose
the following inequality chain.

CONJECTURE 1. If P is any interior point of the triangle ABC, then

√
∑(R2 +R3)(R1 + r1) � 1

2 ∑
√

(R2 +R3)(R1 +2r1)

� 2
3 ∑

√
(R2 + r2)(R3 + r3) � ∑

√
R1(r2 + r3)

� ∑
√

1
2
(r2 + r3)(R1 + r2 + r3). (4.1)

If (4.1) holds true, then we could obtain some new refinements of the Erdös-
Mordell inequality by our results.

CONJECTURE 2. If P is any interior point of the triangle ABC, then

∑
√

1
2
R1(R1 + r2 + r3) �

√
4
3 ∑(R2 + r2)(R3 + r3). (4.2)

If (4.2) is true, then we know that the second term of (3.8) can be replaced by the
left hand side of (4.2).

Comparing the middle terms of (3.17) with the one of (3.18), we propose the
following conjecture similar to the previous inequality (2.12).



74 J. LIU

CONJECTURE 3. If P is any interior point of the triangle ABC, then

∑(R2 +R3−2r2−2r3)(R2 +R3 + r2 + r3) � 0. (4.3)

It is well-known that the Erdös-Mordell inequality can be generalized to the case
with weights (cf. [15, p.318, Theorem 15]):

∑R1x
2 � 2∑yzr1, (4.4)

where x,y,z are arbitrary real numbers and ∑ denote the cyclic sums over the triples
(R1,R2,R3),(r1,r2,r3) and (x,y,z).

We here propose a weighted inequality as follows.

CONJECTURE 4. For any interior point P of the triangle ABC and all real num-
bers x,y,z, the following inequality holds:

∑(R1 + r1)x2 � ∑r1 ∑yz. (4.5)

Obviously, the special case x = y = z = 1 of (4.5) implies the Erdös-Mordell in-
equality. And moreover, a property of ternary quadratic inequalities shows that inequal-
ity (3.9) could be obtained immediately from (4.5). It can be stated that if the following
ternary inequality (with real coefficients p1, p2, p3,q1,q2,q3) :

p1x
2 + p2y

2 + p3z
2 � q1yz+q2zx+q3xy (4.6)

holds for all real numbers x,y,z , then

p1p2p3 � q1q2q3. (4.7)

According to this conclusion, inequality (3.9) follows at once from (4.5) if it is right.
Another similar conjecture should be more studied is the following.

CONJECTURE 5. For any interior point P of the triangle ABC and all real num-
bers x,y,z, the following inequality holds:

∑(R1 +2r1)x2 � 2∑yz(r2 + r3). (4.8)

We observe that if inequality (4.8) is valid then inequality (4.5) is obtained by
adding (4.8) with (4.4) and then dividing both sides by 2.
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