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A GENERALIZED NONLINEAR SUMS-DIFFERENCE
INEQUALITY AND ITS APPLICATIONS

Z1ZUN LI

(Communicated by Q.-H. Ma)

Abstract. In this paper, we established a generalized sums difference inequality with two vari-
ables, which included five sums. By using a lemma, we turned the inequality into a common
form. We applied our result to boundary value problem of a partial difference equation for
boundedness, uniqueness.

1. Introduction

Gronwall-Bellman inequality is an important tool in the study of existence, unique-
ness, boundedness of solutions of differential equations and integral equation. Various
generalizations of Gronwall-Bellman type inequality [4, 14] and their applications have
attracted great attention of many mathematicians (e.g., [5, 6, 9, 15, 20]). Some recent
works can be found, e.g.,in [2, 3, 7, 8, 11, 12, 16, 17, 27] and some references therein.
In 2005, Agarwal et al. [2] investigated the inequality

norbi(t)
u(t) < alt) + E/b o S (s))ds, 1o <1<
i=172il0

In 2008, Agarwal et al. [3] discussed the retarded integral inequality

noro(t)
o) < e+ 3 [ A p(u(r) + i)

where ¢ is a constant. In 2009, Chen et al. [7] studied the following retarded integral
inequality

ax) rB(y)
y(ulx,y)) < C+/ / g(s,t)u(s,t)drds
o(xo) /B (v0)

v 80)
[ L fnutsaeuls.)drds
¥(x0) 7/ 8(v0)

Mathematics subject classification (2010): 34B15, 26D15, 26D10.

Keywords and phrases: Sum-difference inequality, monotonicity, boundary value problem, bounded-
ness.

This work is supported by the National Natural Science Foundation of China (11561019), the Natural Science Foun-
dation of Guangxi Autonomous Region (2013GXNSFAA019022), the Scientific Research Foundation of the Education
Department of Guangxi Autonomous Region (201204L.X423, 2013LX148).

© depay, Zagreb 77

Paper IMI-12-06


http://dx.doi.org/10.7153/jmi-2018-12-06

78 Z.L1

where ¢ is a constant. In 2016, Qin et al. [22] studied the following retarded integral
inequality

o(r)
u(t) <ci+ae F(s)w(u(s))ds

ato)

B(r)
—|—C3/I3 g(s)w(u(s))ds+C4/Tu(s)’lds.

(to) )

With the development of the theory of difference equations, more attentions are
paid on some discrete versions of Gronwall type inequalities (e.g., [1, 19, 25, 26, 27, 28]
for some early works). Some recent works can be found, e.g., in [10, 18, 21, 23] and
some references therein. In 2006, Chueng et al. [10] discussed the inequality

m—1 n—1 m—1 n—
ny<c+ Y, Ea(s, u(s,t)+ Y, stt (u(s,1)),
Ss=mgyt=ngy s=mqy=ng

where ¢ > 0, and a,b are nonnegative real-valued functions in Zi, and ¢ is a contin-
uous nondecreasing function with ¢(r) > 0, for » > 0. In 2007, Ma and Cheung [18]
studied the inequality

m—1 oo
y(u(m,n)) < a(m,n)+ c(m,n) ZO > 1 v/ (u(s,1))[d(s,)w(u(s, 1)) +e(s,1)].
s=0t=n+

In 2009, Wang et al. [24] investigated the inequality

v(u(m,n)) < c(m,n —|—22 Ef,m,n,st(p, u(s,r)).

i=1s=myt=ngy

In 2013, Feng et al. [13] discussed the inequalities including four sums

m—1 n—1
u?(m,n) < c(m,n) + z z [b(s,t,m n)ul(s,t) + z 2 (&,n,m,n)u (é,n)}

s=mqt=ng E=mpN=no
1N—-1
+22{ds,t7mn st—l—E 2 (&,n,m,n)u (é,n)}
s=mq t=ng E=myN=ng

Motivated by the ideas in [2, 10, 13, 18, 24], in this paper, we establish a more general
form of sum-difference inequality

n—1s—1t—

ko m—1 t—1
y(u(m,n)) < c(mn)+ Y < S SN fils,t, g, DuP (s,1)
2050 50150

i=1

m—1ln—1s—1r—1

+3 33 s il (s0euGD)). (LD

5=0 1=0 j=01=0
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2. Lemma

LEMMA 1. Suppose w is a continuous and positive functions on R, f is a non-
negative function on A X A, u is a nonnegative function on A, then we can obtain the
following formula:

m—1ln—1s—1r—1 m—1n—1

m—1 n—1
DI Zf st Dwu(iD) =Y Y wu(s,t) Y, Y, fUls1).

5s=01t=0 j=0]= s=0 =0 Jj=s+11=t+1

where A is defined in section 3. Main result.

Proof. We use mathematical induction with respectto m and n. f m=n=2, we
obtain
1 s—11—1

1
DI Zf sty j,Dw(u(j.1)) = £(1,1,0,0)w(u(0,0)),

s=01=0 j=0[=

1 1
%Zw(u(s,t)) 2 2 f(j,1,s,t) = w(u(0,0))£(1,1,0,0).

=01=0 j=s+11=t+1

Thus
1 s—1t—1 11

SEYY fon i) = 3 Sutus) S Y (L),

s=07=0j=01=0 s=07=0 Jj=s+1l=t+1

It means that the lemma is true for m = n = 2. Suppose that the lemma is true for
m=my, n=ny, thatis

mi—lnj—ls—1¢t—1 my—1n;—1 mi—1 ny—1
Z > ZZfs,t,J, Z Z wu(s,0) ¥, 3, f7Ls.1).
s=0 1=0 j=0I= j=s+1l=t+1

Consider m =m;+ 1, n=n; + 1, then we have

mp np my np my—ln;—1

S S ulus0) 33 fidan) = 3, 5 wlulan) S S fGilsi)

5=01= j=st+1i=t+1 5=0 =0 j=stli=t+1

mlflnlfl mlfl nlfl

Zz) ZE)W(M(S,I)) 2 2 f(j’lwgat)

Jj=s+11=t+1

ml—lnl—l

+ 2 z w(u(s,t))f(my,ny,s,t)
s=0 =0

mlflnlfl mlfl nlfl

= 26 Z{)w(u(s,t)) > Y flls)

j=s+1l=t+1

ml—lnl—l

+ 3% fminn, i, Dw(u(j,l))

j=0 1=0

my np s—1r—1

=YY NN fls.t g Dw(u(il))

s=01=0 j=01=0
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Using the inductive assumption, thus

myp np s—11—1 myp nj mp o
>y Zf 5,1, j,1) = Zw 5,0) Y, >, fUsLs.1).
s=01=0 j=0/= s=01= j=s+1i=t+1

It implies that it is true for m = my + 1,n = ny + 1. Therefore, it is true for any natural
numberm>2,n>2. U

3. Main result

Throughout this paper, R denote the set of all real numbers, let Ry :=[0,0) and
No:={0,1,---}. my,n; € Ny are given numbers, I := [0,m;) NNy and J := [0,n;) NNy
are two fixed lattices of integer points in R, A :=1xJ C N3. For any (s,) € A, let
A(s,) denote the sublattice [0,5) x [0,£) N A of A. For functions w(m),z(m,n),m,n €
N, let Aw(m) :=w(m+1) —w(m) and Az(m,n) := z(m+ 1,n) —z(m,n). Obviously,
the linear difference equation Ax(m) = b(m) with the initial condition x(0) = 0 has the
solution X" b(s). For convenience, in the sequel we define that ¥~ b(s) = 0.

Consider (1.1)and suppose that

(Hy) v is a strictly increasing continuous function on Ry, w(u) > 0 for all
u>0;

(Hy) all ¢;,(i=1,2,---,k) are continuous functions on R and positive on (0,);

(H3) c¢(m,n) >0 on IxJ,and c(m,n) is nondecreasing in each variable;

(Hy4) p> 0,9 >0 are constants and p > ¢;

(Hs) all f;,hi(i=1,2,--- k) are nonnegative functions on A x A.

We technically consider a sequence of functions w;(s), which can be calculated
recursively by

w1 (s) = maxecio ) @1 (7). o
Wwit1(8) 1= maxe(o, (P’“ }w,( ), i=1,2,---k— L. ’
we define the functions:
= u>0, 3.2)
0
= u>0, 3.3)
0
= , =12, k, u>0, (3.4)
Uiy (¥ ()
o ds .
Wl(u) ::/ AT W l:1,2,"',k, u>0.
1wy~ 1(Yp (s)))

Obviously both ¥, and W; are strictly increasing and continuous functions, let ‘P;l , Wi’1
denote W, W; inverse function, respectively, then both ‘P;l and Wlf1 are also continu-
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ous and increasing functions. Furthermore, let

fi(m,n,s,t) = max (1,8 .5,1), (3.5)
f( ) (T,é)G[O,m]X[O,n]f( 5 )
hi(m,n,s,t) == max hi(t,&,s,1), (3.6)

(7.8)€[0,m]x[0,n]

which are nondecreasing in m and n for each fixed s and 7 and satisfies film,n,s,t) >
film,n,s,t) >0, hi(m,n,s,t) > hi(m,n,s,t) >0, forall i=1,2,--- k.

THEOREM 3.1. Suppose that (H,—Hs) hold and u(m,n) is a nonnegative func-
tion on A satisfying (1.1). Then, case one: if w~'(z(m,t)) > 1,
m—1n—1
u(m,n) < q/—l{\{’;l (W (We(Eemn)+ 3 S (mon,s,0))] } (3.7)
5s=0t=0
for (m,n) € Ay, Ny, where
k m—1n—1s—17—1

Ei(m,n) == ¥ ,(c(m,n) +22222ﬁ s,t,7,10)

i=1 5=0 t=0 j=01=

Ei(m,n) == W_ }(W, 1(Ei—1(myn)) Z Z mnst) i=2,3,....k,

and (My,Ny) € A is arbitrarily given on the boundary of the lattice

m—1n— oo ds
w={mn) A WE )+ 5 S a0 < [
m—1n—1 oo s
WTl(VVi(Ei(mm))-f' Z Zle(m n,s t)) </1 Wfil(s)’l: 1,2, ’k}

Case two: if w~'(z(m,t)) <1,
m—1n—1

u(m,n) < l//fl{‘{’;l [VNV,:] (Wk(Ek(m,n)) + ;) Z{)gk(m,n,s,t))] }, (3.8)

for (m,n) € Ay, n,), where

k m—1n—1s—1t—
i) = el + 555 5 5 o0

m—1n—1

+Y Zgi—l(m,n,s,t)>, =23,k
5s=0 =0
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and (My,Ny) € A is arbitrarily given on the boundary of the lattice

m—ln=1_ oo ds
%:{(m,n)EA W,(E,(mm))—l—szoZ{)hi(m,n,s,t)</1 )
(B - S S (s A o
W (WiEGmm) + 3, S Rmonssi)) < [ Srsi= 12,00k,

Proof of Theorem 3.1. First of all, we monotonize some given functions ¢; in the
sums. Obviously the sequence w;(s) defined by @;(s) in (3.1) are nondecreasing and
nonnegative functions and satisfy w;(s) > @i(s), i = 1,2,---,k. Moreover, the ratio
wit1(s)/wi(s) are also nondecreasing, i = 1,2,---,k. By (1.1), (3.5) and (3.6), from
(3.1), we have

k —1n—
wlumm) < )+ 3 (53 2 ) zﬁ s g (s.1)
2_6 2 Z 2 (8,2, j,Dud (s,t)w;(u (j,l))). (3.9)
n) >

We consider the case that ¢(m, for all (m,n) € A. By Hj, from(3.9), we have

—1ln—1s—1t—

Vutmn) <N+ Y (TS ZEﬁ (ss1, j,L)u? (s,1)

i=1 " 5=0 t=0 j=0I=

22 (5.8, > D) (s,0)wi(u (jJ))). (3.10)

/-\

é

for all (m,n) € Am,n)» where 0 <M <M, and 0 <N < N, are chosen arbitrarily.
Let z(m,n) denote the function on the right-hand side of (3.10), which is a nonnegative
and nondecreasing function on Ay y) and z(0,n) = ¢(M,N). Then we obtain the
equivalent form of (3.10)

u(m,n) <y (z(m,n)), Y(m,n)e A, N)- (3.11)

HM\

Since w; is nondecreasing and satisfy w;(u) > 0, for u > 0. By the definition of z and
(3.11), from (3.10), we have

22
i 1m

Ayz(m,n) = f (myt, j,1)u? (m,t)

HM»
”M‘

T
—

n

mat’.hl) (m’t)wi(u(j’l»

1t

iy WM|

Z (m,t, 1)y (2(m.1)))”

||Ma~

-
II

I M»

H Mi I
T °M
||MT °

—_ \ |

m7t’]7 (Wil(Z(m’t»)qwi(wil(Z(j7l)))~ (3.12)
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Case one: if y~!(z(m,t)) > 1. Using the monotonicity of y~! and z, from (3.12),

we have
k n—1m—1t—
Ayz(m,n) < (lV_l(Z (Z Z Z film,t,j,1)
i=11=0 j=01=0
k n—1m—1r—
ZZZZIML<mem. (3.13)
that is

Ayz(m,n) ~1
i < (S8 om0

11—1

~
|

HM\
?WMw

n—1

it g iy D)) G4

'M» T M»

Il
-
-
Il

0

-
\ |

0

~.
Il

On the other hand, by the mean-value theorem for integrals, for arbitrarily given (m,n),
(m+1,n) € Ay, in the open interval (z(m,n),z(m+1,n)), there exists &, which

satisfies

ma)  (pHs)r (W (E))r

z(m+1,n) s mn
‘WQW+meJm@mm»=[(+ d Ar(m,n)
_ Aiz(mn)
(= "(z(m,n)))?

<
(3.15)

where we use the definition of ¥}, in (3.2). From (3.14) and (3.15), we obtain

I M»

55 e

¥, (z(m+1,n)) < ¥p(z(m (

gig’ML TURICERI))) REERT

||M»

Keep n fixed and substitute m with s in(3.16). Then, taking the sums on both
sides of (3.16) over s =0,1,---,m— 1, we have

zéigam

M»

¥, (z(m,n)) < ¥, (z(0 +

é

1

(s 1wy G0))

HM\
HM\
”MLH
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M—1IN—1s—

k
S RCUSNEDAGID) Z Zﬁ s.1,J.1)

=1 " s=0 =0 j=0

i
m—1n—1s—171—1

£33 Y s ity (1))

5=0 1=0 j=01=0

:Ck(M7N)+Z i hi(s,t, j,Dwi(w= 1 (z(j,1))), (3.17)

where
k M—1N—1s—17—1
Ce(M,N) =Y¥p(c(M.N)+ D > D > > fils.1,4.0) (3.18)
i=1 s=0 =0 j=01=0
Let

From (3.17), we have

k m—1n—1s—11—
v(m,n) < Ce(M,N)+ 3 2 2 2 2 (.2, 7, wi(y™ (¥, (v(7.1))), (3.19)
i=1 s=0 =0 = 1=0
for all (m,n) € Ay, n)- Using the lemma 1, (3.19) can be written as
k m—1n—1
v(m,n) <C(M,N)+ Y Zgl myn, s, t)wi(y~ 1(‘I‘;l(\/(s7t)))), (3.20)
i=1s5=0 1=

where g;(m,n,s,t) = ZJ s+lzl i1 hi(Gi1,s,t). Obviously, gi(m,n,s,t), i=1,2,---k
are nondecreasing in m and n for each fixed s and 7 and g;(m,n,s,r) > 0. Then from
(3.20), we have

k m—1n—

v(m,n) <C(M,N)+ 3, Y Zg, (M N,s,0)wi(y ' (¥, (v(s,0))),  (3:21)

i=1s5=0 t=

forall (m,n) € Ay, ny-
From (3.21), we can conclude that

m—1n—1
v(m,n) < W' (Wk(Ek(m,n)) +¥ Y gk(M7N7s7t)>7 (3.22)
s=0 =0

forall (m,n) € Agy,y), Where

M—1N—
E(M,N) = W_ (m (it (M,N))+ ZZg MNst)) i=2,. k (3.23)

E\(M,N) := C{(M,N).
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For k =1, let z;(m,n) denote the function on the right-hand side of (3.21), which is a
nonnegative and nondecreasing function on Ay v, z1(0,n) =C1(M,N) and v(m,n) <
z1(m,n). Then we get

n—1

Aizy (m7n) = Z 81 (M7N7m7t)wl (W_l(\l’;l (V(mvt))))

t

Il
=}

n—1
< Y &M N,m,)wi (y (¥, (z1(m,1)))), (3.24)

=0
for all (m,n) € Ay, y). From (3.24), we have

A121 (m,n)
wi(y=! (¥ (21 (m,n)

i (M,N.m.1). (3.25)

By the mean-value theorem for integrals, there exists & in the open interval (z; (m,n),z; (m+
1,n)), for arbitrarily given (m,n), (m+1,n) € Ay, such that

/Zl (m+l,n) ds
amn)  wi(y (P, (s)))

Wi(zi(m+1,n)) — Wi(z1(m,n))

_ Ayz1(m,n)
wi(y=1 (¥, (£)))
< AIZ‘(’”’") . (3.26)
wi(y~! (¥, (z1(m,n))))
From (3.25) and (3.26), we have
Wi(z1(m+1,n)) < Wi(zy (m,n))+nz;g1(M,N,m,t). (3.27)

Keep n fixed and substitute m with s in (3.27). Then, taking the sums on both sides
of (3.27)over s =0,1,---,m— 1, we have

m—1n—1
Wi(z1(m,n)) < Wi(z1(0,n)) + Z Zgl(MJv?s?t)
s=0 =0
m—1n—1
=Wi(C1(M,N))+ Y, > 81(M,N,s,1), (3.28)
s=0 =0

forall (m,n) € Ay, n)- Using v(m,n) < zi(m,n), from (3.28), we get
m—1n—1
v(m,n) < z1 (m,n) < Wy <W1(C1(M N+ Y Zgl(M7N7s7t)>7 (3.29)

s=0 =0

for all (m,n) € A, n) - This proves that (3.22) is true for k = 1.
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Next, we make the inductive assumption that (3.22) is true for k = [, then

m—1n—1

v(m,n) < W, <WZ(EI(M N+ S S @(MN,s t)) (3.30)
s=0 t=0
for all (m,n) € Ay ), where
EI(M7N) L= Cl(MvN)v
M—1N—1
EMN): = W (Wit (B (M) + 3, Y & 1(MN,s.1)),
s=0 t=0
i=2,3,,1
Now we consider
I+1m—1n—1
vim,n) < Croa(M,N)+ 3, Y, D &M N, s,0wi(y ' (¥, (v(s,)))), (33D
i=1 s=0t=0

for all (m,n) € Apyy)- Let z2(m,n) denote the nonnegative and nondecreasing func-
tion of the right-hand of (3.31), then z,(0,n) = C;+1(M,N) and v(m,n) < zp(m,n).
Let
Oi(u) :=wi(u)/wi(u), i=1,2,---1+1. (3.32)
By (3.1), we conclude that ¢; i =1,2,---,] are nondecreasing functions. From (3.31),
we have
Ayzo(m,n)
wi(y~ (Y~ (z2(m,n))))
_ IS5 SN m iy (¥, (v(m, 1))
wi(y = (W1 (z2(m,n))))
2’“2? S0 &M N, m,wi(y ! (P, (z2(m,1))))

wi (Y~ (Y1 (z2(m,n))))
[+1n—1

|
_

n

SUM N m,t)+ > Y &M N, m,t)¢i(w " (¥, (z2(m.1))))
t=0 i=21t=0
n—1 I n—1
= Y &(MNm1)+ ¥ Y Gt (MN,m, )1 (v (¥, (z2(m,1)))). (3.33)
t=0 i=1t=0

By the mean-value theorem for integrals, there exists & in the open interval
(z2(m,n),za(m+ 1,n)), for arbitrarily given (m,n), (m+1,n) € Ay y), then we can
obtain the following formula:

22(m+1,n) s
W1(12(m—|—l7n))—W1(Zz(M,n)) :/( -: l(w—lc(l\y—l( )))
a2 m,n w V4 N
n)

A1z (m,
wi(y=1 (¥, (6)))
A1zo(m,n)
wi(y = (¥, (z2(m,n))))

(3.34)
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From (3.33) and (3.34), we get

114 (Zz(m—H n)) —Wi(za(m,n))
[ n—1

2g1 (M,N,m,0)+ 3 giri(M,N,m,0)¢ic1 (' (¥, (z2(m,1))))  (3.35)
i=1t=0

Substitute m with s in (3.35) and keep n fixed, then taking the sum on both sides of
(3.35)over s =0,1,---,m—1, we have

m—1n—1
WI(Z2(mvn)) < WI(CI+1(M7N))+ 2 Zgl(M,N,S,I)
s=0 t=0
I m—1n—
2 ng (M.N, 5,001 (v (¥, (22(s5,0))),  (3.36)
i=15=0 1=
for all (m,n) € Ay, ny-
Let
0(m,n) := W (z2(m,n)), (3.37)
M—1N—
p1(M,N) := W (Ci41(M,N)) Z Z (M,N,s,t). (3.38)

Using (3.37) and (3.38), from (3.36) we have

[ m—1n—1

0(m,n)) < pi(M,N)+ Y, D D gt (M,N,s,0) 01 [y (¥, (W' (0(s,0))))].

i=1s=0 =0
(3.39)
It has the same form as (3.21). We are ready to use the inductive assumption for (3.39).
Let 8(s) ==y '(W,'(W; '(s))). Since y~',¥~!, W' ¢; are continuous, nonde-
creasing and positive on (0,0), each ¢;(6(s)) is continuous and nondecreasing on
(0,00). Moreover

9i:1(8(s) _ wir1(8(s) _ {<p,~+1(r)} i=1,2,--,0, (3.40)
7€(0, 8(s)] 7 B .

9:i(6(s))  wi(8(s)) wi(7)

which is also continuous and nondecreasing on [0,c0) and positive on (0,e0). There-
fore, by the inductive assumption in (3.30), from (3.39), we have

m—1n—1

0(m,n) < @ <q>,(p,(M N)+ 3 Y &1 (M,N,s z)) (3.41)
s=0 n=0
forall (m,n) € Ay, y), where
u ds
®;(1) ::/ v w0, i=12,-.1 (3.42)
0 G (Y (¥ (W' (5))))
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M—-1N—-1

pl(M7N) = q);ll (q)i—l(pi—l(M7N>)+ 2 2 gNi(M7N7s7I)>7 l:27377l (343)
s=0 n=0

Note that

b

oy (O W (9)))ds
®i0)=, Wit (T (W (5))

Wi () ds
- Wit (v (%, (s))
= Wi (W, Hu), i=1,2,---,L. (3.44)
Thus, from (3.37), (3.41) and (3.44), we have
v(m,n) < zo(m,n) = W, 1(6(m,n))

< Wl_l<q’z_1(q’z(P1(M,N))+’1§;2§z+1(M,N757I)>>
_ ‘}Vl:rll<m+l( Ypi(M,N)) ) mzolnzng M,N,s,t ) (3.45)

for all (m,n) € Ay, ny. We can prove that the term of W, ' (pi(M,N)) in (3.45) is just
the same as Ej 1 (M,N) defined in (3.23). Let p;(M,N) := Wl’l(p,-(M7N)). By (3.38),
we have

pi1(M.N) =W ' (pi(M,N))
—1N-1

= w;! (WI(CZH(MN v 2 Y & Mst))
s=0 =0

= E»(M,N).
Then by the mathematical induction for i, using (3.43) and (3.44), we get

M—-1N—-1

piN) = wyt (@7 (d>f-1<pi_1<M,N>>+ p) zogl-(M,N,s,o))
—1N—-1

=W Wi(Wi ! (pica (M.N +2 ZglMNst]
s=0 1=
M—-1N-1

= W, [Wi(pi_1(M,N)) +2020g,Mst)]

= Ej ((M,N), i=23-1.

This prove that W, ' (p;(M,N)) in (3.45) is just the same as E;1(M,N) defined in
(3.23). Hence (3.45) can be equivalently written as
m—1n—1
v(m,n) <W (W/HI(EHI(M’N)) +> §l+1(M,N,SJ)) ,V(m,n) € A, ny-

s=0 1=0
(3.46)
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The estimation (3.22) of unknown function v in the inequality (3.19) is proved by
induction. By (3.11), (3.22) and (3.46), we have

u(m,n) <y~ (zlmn) <y~ (¥, (v(mm) ) )
m—1n—1

< vt (%, (W (BN + go ZE)gNk(MyN;S;f)>>>, (3.47)

forall (m,n) € Ay, n)- Let m=M,n =N, from (3.47), we have

0 4 (0510 O+ 55 o)

This proves (3.7), since M and N are chosen arbitrarily.
Case two: if y~!(z(m,t)) < 1. Using the monotonicity of y~! and z, we can
deduce (y~!(z(m,n)))? < (y~(z(m,n)))4, from (3.12), we have

k n—lm—1t—
Alz(m7n) < (W <2 2 2 Efl m7ta.]7
i=11=0 j=0I[=
k n—1m—1r—1 5
+y Bi(mt, jDwiw™ (D). (348)
i=11=0 j=01=0
Using the similar proof process, we get
—1n—1
u(m,n) < y! (‘I’;l (W (Wk(Ek(m n))+ 2 ng m,n,s, t)))) O
s=0 1=

REMARK 1. When f;=0,i=1,2,---,k, g =0, Theorem 2.1 reduces to Theo-

rem 2.1 in [24].
kiq=0, @i(u)=u?, g2(u)=u", @3(u)

REMARK 2. When f;=0,i=1,2,---,k,
©4(u) =u’, Theorem 2.1 reduces to Theorem 5 in [13].

4. Corollary

COROLLARY 1. Suppose that (H,,Hs,Hs) hold and p = g =1, y(u(m,n)) =

u(m,n) is a nonnegative function on A satisfying
—In—1s—1t—

() +i IPIIPWIINY

i=1 " s=0 =0 j=0]=

g (5,11, (s, (7, 1))

/-\

§
L

HM\
HM\
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Then
R A m—1n—1
u(m,n) <exp (W' (We(Ex(m,n)+ Y, Y gi(m,n,s,1))],
s=0 =0
for (m,n) € Ay, n,)» Where
. u d
Wi :/ =120k 40
1 wi(exp(s))

and (M;,N;) € A is arbitrarily given on the boundary of the lattice.

COROLLARY 2. Suppose that (H—Hs) holdand f; =0, 0< p < 1, y(u(m,n))
= u(m,n) is a nonnegative function on A satisfying

k m—1n—1s—11—1

u(m,n) <c(mn)+y, Y Zzzh 8,1, j, DuP (s,0) @i (u(j,1)).

i=1s=0 =0 j=01=
Then
m—1n—1 L
u(m,n) < [Wy (Wk(Ek(m n)+ Y, Y &(mn,s,))] T
s=0 =0
for (m,n) € Ay, n,)» Where
_ u d
W i(u) ::/ B =12,k u> 0.
U ywi(sT7)
_ 1
Ey(m,n) := c(m,n)Tp
— 1 _ _ m—1n—1
Ei(m,n) := W,-,l(Wi_l(E,-_l(m,n))—i- 2 Zgi_l(m,n,s,t)>, i=2,3,...,k,
s=0 r=0

and (M;,N;) € A is arbitrarily given on the boundary of the lattice.

5. Applications

In this section, we apply our result to study the boundedness, uniqueness of the
solutions of boundary value problems to certain difference equations. We consider the
partial difference equation with the initial boundary value conditions.

A2A1V1(Z(m7n)) = F(m7n7(pl (z(m,n)),~~~,(pk(z(m,n))), (5.1)
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Y(2(m,0)) = ai(m), y(z(0,n)) = az(n),a1(0) =a2(0) =0, (5.2)

for all (m,n) € A, where A =1 xJ is defined as in the section 2, y is a continuous
and strictly increasing odd function on R, satisfying y(0) =0 and y(u) > 0 for u >
0, F:AXxRf =R, a:1—Rand ar:J — R, ¢ : R, — R, are nondecreasing
continuous functions and the ratio @;1/@; are also nondecreasing, ¢;(«) > 0 for u >0
i=1,2,--- k.

In the following corollary, we firstly apply our result to discuss boundedness on
the solution of problem (5.1).

COROLLARY 3. Assume that F : A x R¥ — R is a continuous function satisfying

k

|F(m7n7(pl(u)a"'7(pk(u))‘ < 2 [f,(M,N,m,n)|u|p—|—g,(M,N,m,n)|u|q(pl(\u|)], (53)
i=1

|a1(m) —|—a2(n)\ < a(m,n), (54)

for all (m,n) € A, where p > g > 0 is a constant, f;(M,N,m,n),g;(M,N,m,n), i =
1,2,--- k, are continuous nonnegative functions and nondecreasing in M and N for
each fixed m and n, a(m,n) : A — Ry is nondecreasing in each variable. If z(m,n) is
any solution of (5.1) with the condition (5.2), then, case one: if y~!(z(m,t)) > 1,

m—1n—1

2lmm)| <y~ { ¥, (G (GulHlmm) + 3, T @M Ns0) |} 59)

5s=0 r=0
forall (m,n) € Ay, Ny, where W), (u) is defined by (3.2), and

u ds
6= | ey 0
Hi(m,n) :=¥p(a(m,n)),
m—1n—1

H,-(m7n) = G;ll[Gifl(Hifl(m7n))+ Z Zg,-,l(M,N,s,t)],
s=0 =0

‘P;l and G ' denote the inverse function of ¥, and G.

Case two: if Y1 (z(m,1)) <1,

m—1n—1

jemm)| <y {9 G (GulBulmm) + X, T eMN,s.0)] - (5.6)
s=0 =0

forall (m,n) € Aqy,n), where Wy (u) is defined by (3.3), and

m—1n—1

Hi(m,n) := Gi__ll [Gi_1(H;_1(m,n)) + Z Zgi_l(M,N,s,t)],
s=0 =0

‘P;l and G,:l denote the inverse function of ¥, and G.
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Proof. The solution z(m,n) of (5.1) satisfies the following equivalent difference
equation:

W(Z(Wlﬂ’l)) _al +a2 + 2 ZF SJ»(PI ))7"'7(Pk(z(s»t)))~ (57)

s=0 1=
By (5.3), (5.4) and (5.7), we obtain

Wl = o) o)+ 3 3 6,015 ()
n—1

a(m,n +ZZZ fi(M,N,s,t)|z(s,1)"|

i=1s=01
k m—1n—

22 Z [2(s,1) 78 (M.N,5,0)] @i(2(5.0)])- (5.8)
i=1 s=0 t=
Since |y (z(m,n))| = y(|z(m,n)|), (5.8) has the same form of (1.1). Let Z(m,n) denote
the function on the right-hand side of (5.8), then |z(m,n)| < w~!(2(m,n)). Applying
Theorem 3.1 to inequality (5.8), we obtain the estimation of z(m,n) as given in (5.5)
and (5.6).
If there exists a constant M > 0,

m—1n—1
Hi(m,n) <M, Y Y g(M,N.s;t)<M, i=12, Kk, (5.9)
5s=0 =0

forall (m,n) € Ay ), then every solution z(m,n) of (5.1) is boundedon Ay ). O
Next, we discuss the uniqueness of the solutions of (5.1).

COROLLARY 4. Assume additionally that

‘F(mvnv(pl(ul)f"v(pk(ul)) _F(m7n7q)1 (u2)7"'v(pk(u2))|

k
< DL (M N,mn) [y (un) — w(u) 1 9i(|w(ur) — y(ua)]) (5.10)
i=1

for uj,up € R and (m,n) € A, where A is defined in the section 2, h; : A — Ry are
nonnegative functions, i =1,2,--- ,k, ¢;: Ry — R, are continuous nondecreasing with
the nondecreasing ratio @;1/¢; such that ¢;(«) >0 forall u >0, and fol % = oo, for
i=1,2,--- k,and y: R — R is a strictly increasing odd function satisfying y(u) > 0,

forall u > 0. Then, (5.1) has at most one solution on A.

Proof. Let z(m,n) and Z(m,n) are two solutions of (5.1). By (5.7) and (5.10),
we have

[ (z(m, ))— ¥ (Z(m,n))|

k m—1n—

<Y Eh (M,N,s,0) |y (z(s,0) = w(E(s,0)[ " @il|w(2(s,2)) =y (Z(s,2))]) (5.11)

i=1s5=0 t=
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for all (m,n) € A, (5.11) is the special form of (1.1), where f; =0, i=1,2,---k,

a(m,

n) =0, hij(M,N,s,t), i =1,2,--- k, are continuous nonnegative functions and

nondecreasing in M and N for each fixed s and 7. Applying Theorem 3.1, we ob-
tain an estimation of the difference |y (z(m,n)) — w(Z(m,n))| in the form (5.5), where
Hi(m,n) =0, because ¥, (0) = 0. Furthermore, by the definition of G;, we conclude

that
lim Gi(u) = —eo,  lim G (u) =0, i=1,2,-,k.
u— U—s00
It follows that
m—1n—1
Gi(Hi(m,n))+ > ¥ hi(M,N,s,1) = —oo,
s=0 =0
N m—1n—1
G Gi(Hi(mn)+ Y, > hi(M,N,s,t)] =0, i=1,2,- k.
s=0 =0

From (5.5), we deduce that |y(z(m,n)) — y(Z(m,n))| < 0, implying that z(m,n) =
Z(m,n), forall (m,n) e A. O
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