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A GENERALIZED NONLINEAR SUMS–DIFFERENCE

INEQUALITY AND ITS APPLICATIONS

ZIZUN LI

(Communicated by Q.-H. Ma)

Abstract. In this paper, we established a generalized sums difference inequality with two vari-
ables, which included five sums. By using a lemma, we turned the inequality into a common
form. We applied our result to boundary value problem of a partial difference equation for
boundedness, uniqueness.

1. Introduction

Gronwall-Bellman inequality is an important tool in the study of existence, unique-
ness, boundedness of solutions of differential equations and integral equation. Various
generalizations of Gronwall-Bellman type inequality [4, 14] and their applications have
attracted great attention of many mathematicians (e.g., [5, 6, 9, 15, 20]). Some recent
works can be found, e.g., in [2, 3, 7, 8, 11, 12, 16, 17, 27] and some references therein.
In 2005, Agarwal et al. [2] investigated the inequality

u(t) � a(t)+
n

∑
i=1

∫ bi(t)

bi(t0)
gi(t,s)wi(u(s))ds, t0 � t < t1.

In 2008, Agarwal et al. [3] discussed the retarded integral inequality

ϕ(u(t)) � c+
n

∑
i=1

∫ αi(t)

αi(t0)
uq(s)[ fi(s)ϕ(u(s))+gi(s)]ds,

where c is a constant. In 2009, Chen et al. [7] studied the following retarded integral
inequality

ψ(u(x,y)) � c+
∫ α(x)

α(x0)

∫ β (y)

β (y0)
g(s,t)u(s,t)dtds

+
∫ γ(x)

γ(x0)

∫ δ (y)

δ (y0)
f (s,t)u(s,t)ϕ(u(s,t))dtds,
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where c is a constant. In 2016, Qin et al. [22] studied the following retarded integral
inequality

u(t) � c1 + c2

∫ α(t)

α(t0)
f (s)w(u(s))ds

+ c3

∫ β (t)

β (t0)
g(s)w(u(s))ds+ c4

∫ T

t0
u(s)λ ds.

With the development of the theory of difference equations, more attentions are
paid on some discrete versions of Gronwall type inequalities (e.g., [1, 19, 25, 26, 27, 28]
for some early works). Some recent works can be found, e.g., in [10, 18, 21, 23] and
some references therein. In 2006, Chueng et al. [10] discussed the inequality

up(m,n) � c+
m−1

∑
s=m0

n−1

∑
t=n0

a(s,t)u(s,t)+
m−1

∑
s=m0

n−1

∑
t=n0

b(s,t)u(s,t)ϕ(u(s,t)),

where c � 0, and a,b are nonnegative real-valued functions in Z
2
+ , and ϕ is a contin-

uous nondecreasing function with ϕ(r) > 0, for r > 0. In 2007, Ma and Cheung [18]
studied the inequality

ψ(u(m,n)) � a(m,n)+ c(m,n)
m−1

∑
s=0

∞

∑
t=n+1

ψ ′(u(s,t))[d(s,t)w(u(s,t))+ e(s,t)].

In 2009, Wang et al. [24] investigated the inequality

ψ(u(m,n)) � c(m,n)+
k

∑
i=1

m−1

∑
s=m0

n−1

∑
t=n0

fi(m,n,s, t)ϕi(u(s,t)).

In 2013, Feng et al. [13] discussed the inequalities including four sums

up(m,n) � c(m,n)+
m−1

∑
s=m0

n−1

∑
t=n0

[
b(s,t,m,n)uq(s,t)+

s

∑
ξ=m0

t

∑
η=n0

c(ξ ,η ,m,n)ur(ξ ,η)
]

+
M−1

∑
s=m0

N−1

∑
t=n0

[
d(s,t,m,n)uh(s,t)+

s

∑
ξ=m0

t

∑
η=n0

e(ξ ,η ,m,n)u j(ξ ,η)
]
.

Motivated by the ideas in [2, 10, 13, 18, 24], in this paper, we establish a more general
form of sum-difference inequality

ψ(u(m,n)) � c(m,n)+
k

∑
i=1

(m−1

∑
s=0

n−1

∑
t=0

s−1

∑
j=0

t−1

∑
l=0

fi(s,t, j, l)up(s,t)

+
m−1

∑
s=0

n−1

∑
t=0

s−1

∑
j=0

t−1

∑
l=0

hi(s,t, j, l)uq(s,t)ϕi(u( j, l))
)
. (1.1)
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2. Lemma

LEMMA 1. Suppose w is a continuous and positive functions on R+ , f is a non-
negative function on Λ×Λ , u is a nonnegative function on Λ , then we can obtain the
following formula:

m−1

∑
s=0

n−1

∑
t=0

s−1

∑
j=0

t−1

∑
l=0

f (s,t, j, l)w(u( j, l)) =
m−1

∑
s=0

n−1

∑
t=0

w(u(s, t))
m−1

∑
j=s+1

n−1

∑
l=t+1

f ( j, l,s,t).

where Λ is defined in section 3. Main result.

Proof. We use mathematical induction with respect to m and n . If m = n = 2, we
obtain

1

∑
s=0

1

∑
t=0

s−1

∑
j=0

t−1

∑
l=0

f (s,t, j, l)w(u( j, l)) = f (1,1,0,0)w(u(0,0)),

1

∑
s=0

1

∑
t=0

w(u(s,t))
1

∑
j=s+1

1

∑
l=t+1

f ( j, l,s,t) = w(u(0,0)) f (1,1,0,0).

Thus
1

∑
s=0

1

∑
t=0

s−1

∑
j=0

t−1

∑
l=0

f (s,t, j, l)w(u( j, l)) =
1

∑
s=0

1

∑
t=0

w(u(s,t))
1

∑
j=s+1

1

∑
l=t+1

f ( j, l,s,t).

It means that the lemma is true for m = n = 2. Suppose that the lemma is true for
m = m1 , n = n1 , that is

m1−1

∑
s=0

n1−1

∑
t=0

s−1

∑
j=0

t−1

∑
l=0

f (s,t, j, l)w(u( j, l))=
m1−1

∑
s=0

n1−1

∑
t=0

w(u(s,t))
m1−1

∑
j=s+1

n1−1

∑
l=t+1

f ( j, l,s,t).

Consider m = m1 +1, n = n1 +1, then we have

m1

∑
s=0

n1

∑
t=0

w(u(s, t))
m1

∑
j=s+1

n1

∑
l=t+1

f ( j, l,s,t) =
m1−1

∑
s=0

n1−1

∑
t=0

w(u(s,t))
m1

∑
j=s+1

n1

∑
l=t+1

f ( j, l,s,t)

=
m1−1

∑
s=0

n1−1

∑
t=0

w(u(s,t))
m1−1

∑
j=s+1

n1−1

∑
l=t+1

f ( j, l,s,t)

+
m1−1

∑
s=0

n1−1

∑
t=0

w(u(s,t)) f (m1,n1,s, t)

=
m1−1

∑
s=0

n1−1

∑
t=0

w(u(s,t))
m1−1

∑
j=s+1

n1−1

∑
l=t+1

f ( j, l,s,t)

+
m1−1

∑
j=0

n1−1

∑
l=0

f (m1,n1, j, l)w(u( j, l))

=
m1

∑
s=0

n1

∑
t=0

s−1

∑
j=0

t−1

∑
l=0

f (s,t, j, l)w(u( j, l))
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Using the inductive assumption, thus

m1

∑
s=0

n1

∑
t=0

s−1

∑
j=0

t−1

∑
l=0

f (s,t, j, l)w(u( j, l)) =
m1

∑
s=0

n1

∑
t=0

w(u(s, t))
m1

∑
j=s+1

n1

∑
l=t+1

f ( j, l,s,t).

It implies that it is true for m = m1 +1,n = n1 +1. Therefore, it is true for any natural
number m � 2,n � 2. �

3. Main result

Throughout this paper, R denote the set of all real numbers, let R+ := [0,∞) and
N0 := {0,1, · · ·} . m1,n1 ∈N0 are given numbers, I := [0,m1)∩N0 and J := [0,n1)∩N0

are two fixed lattices of integer points in R , Λ := I × J ⊂ N
2
0 . For any (s,t) ∈ Λ , let

Λ(s,t) denote the sublattice [0,s)× [0,t)∩Λ of Λ . For functions w(m),z(m,n),m,n ∈
N0 , let Δw(m) := w(m+1)−w(m) and Δ1z(m,n) := z(m+1,n)− z(m,n) . Obviously,
the linear difference equation Δx(m) = b(m) with the initial condition x(0) = 0 has the
solution ∑m−1

s=0 b(s) . For convenience, in the sequel we define that ∑0−1
s=0 b(s) = 0.

Consider (1.1)and suppose that
(H1) ψ is a strictly increasing continuous function on R+ , ψ(u) > 0 for all

u > 0;
(H2) all ϕi,(i = 1,2, · · · ,k) are continuous functions on R+ and positive on (0,∞) ;
(H3) c(m,n) > 0 on I× J , and c(m,n) is nondecreasing in each variable;
(H4) p > 0,q > 0 are constants and p > q ;
(H5) all fi,hi(i = 1,2, · · · ,k) are nonnegative functions on Λ×Λ .
We technically consider a sequence of functions wi(s) , which can be calculated

recursively by{
w1(s) := maxτ∈[0,s] ϕ1(τ),
wi+1(s) := maxτ∈[0,s]{ϕi+1(τ)

wi(τ) }wi(s), i = 1,2, · · · ,k−1.
(3.1)

we define the functions:

Ψp(u) :=
∫ u

0

ds
(ψ−1(s))p , u > 0, (3.2)

Ψq(u) :=
∫ u

0

ds
(ψ−1(s))q , u > 0, (3.3)

Wi(u) :=
∫ u

1

ds

wi(ψ−1(Ψ−1
p (s)))

, i = 1,2, · · · ,k, u > 0, (3.4)

W̃i(u) :=
∫ u

1

ds

wi(ψ−1(Ψ−1
p (s)))

, i = 1,2, · · · ,k, u > 0.

Obviously both Ψp and Wi are strictly increasing and continuous functions, let Ψ−1
p ,W−1

i

denote Ψ,Wi inverse function, respectively, then both Ψ−1
p and W−1

i are also continu-
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ous and increasing functions. Furthermore, let

f̃i(m,n,s,t) := max
(τ,ξ )∈[0,m]×[0,n]

fi(τ,ξ ,s,t), (3.5)

h̃i(m,n,s,t) := max
(τ,ξ )∈[0,m]×[0,n]

hi(τ,ξ ,s, t), (3.6)

which are nondecreasing in m and n for each fixed s and t and satisfies f̃i(m,n,s,t) �
fi(m,n,s, t) � 0, h̃i(m,n,s,t) � hi(m,n,s,t) � 0, for all i = 1,2, · · · ,k .

THEOREM 3.1. Suppose that (H1 –H5) hold and u(m,n) is a nonnegative func-
tion on Λ satisfying (1.1) . Then, case one: if ψ−1(z(m,t)) > 1 ,

u(m,n) � ψ−1
{

Ψ−1
p

[
W−1

k

(
Wk(Ek(m,n))+

m−1

∑
s=0

n−1

∑
t=0

g̃k(m,n,s,t)
)]}

, (3.7)

for (m,n) ∈ Λ(M1,N1) , where

E1(m,n) := Ψp(c(m,n))+
k

∑
i=1

m−1

∑
s=0

n−1

∑
t=0

s−1

∑
j=0

t−1

∑
l=0

f̃i(s,t, j, l),

Ei(m,n) := W−1
i−1

(
Wi−1(Ei−1(m,n))+

m−1

∑
s=0

n−1

∑
t=0

g̃i−1(m,n,s,t)
)
, i = 2,3, . . . ,k,

and (M1,N1) ∈ Λ is arbitrarily given on the boundary of the lattice

R:=
{
(m,n) ∈ Λ : Wi(Ei(m,n))+

m−1

∑
s=0

n−1

∑
t=0

h̃i(m,n,s, t) �
∫ ∞

1

ds

wi(ψ−1(Ψ−1
p (s)))

,

W−1
i

(
Wi(Ei(m,n))+

m−1

∑
s=0

n−1

∑
t=0

h̃i(m,n,s,t)
)

�
∫ ∞

1

ds
ψ−1(s)

, i = 1,2, · · · ,k
}

.

Case two: if ψ−1(z(m,t)) < 1 ,

u(m,n) � ψ−1
{

Ψ−1
q

[
W̃−1

k

(
W̃k(Ek(m,n))+

m−1

∑
s=0

n−1

∑
t=0

g̃k(m,n,s,t)
)]}

, (3.8)

for (m,n) ∈ Λ(M1,N1) , where

E1(m,n) := Ψq(c(m,n))+
k

∑
i=1

m−1

∑
s=0

n−1

∑
t=0

s−1

∑
j=0

t−1

∑
l=0

f̃i(s,t, j, l),

Ei(m,n) := W̃−1
i−1

(
W̃i−1(Ei−1(m,n))+

m−1

∑
s=0

n−1

∑
t=0

g̃i−1(m,n,s,t)
)
, i = 2,3, . . . ,k,
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and (M1,N1) ∈ Λ is arbitrarily given on the boundary of the lattice

R:=
{
(m,n) ∈ Λ : W̃i(Ei(m,n))+

m−1

∑
s=0

n−1

∑
t=0

h̃i(m,n,s, t) �
∫ ∞

1

ds

w̃i(ψ−1(Ψ−1
q (s)))

,

W−1
i

(
W̃i(Ei(m,n))+

m−1

∑
s=0

n−1

∑
t=0

h̃i(m,n,s,t)
)

�
∫ ∞

1

ds
ψ−1(s)

, i = 1,2, · · · ,k
}

.

Proof of Theorem 3.1. First of all, we monotonize some given functions ϕi in the
sums. Obviously the sequence wi(s) defined by ϕi(s) in (3.1) are nondecreasing and
nonnegative functions and satisfy wi(s) � ϕi(s) , i = 1,2, · · · ,k . Moreover, the ratio
wi+1(s)/wi(s) are also nondecreasing, i = 1,2, · · · ,k. By (1.1), (3.5) and (3.6), from
(3.1), we have

ψ(u(m,n)) � c(m,n)+
k

∑
i=1

(m−1

∑
s=0

n−1

∑
t=0

s−1

∑
j=0

t−1

∑
l=0

f̃i(s,t, j, l)up(s, t)

+
m−1

∑
s=0

n−1

∑
t=0

s−1

∑
j=0

t−1

∑
l=0

h̃i(s,t, j, l)uq(s,t)wi(u( j, l))
)
. (3.9)

We consider the case that c(m,n) > 0, for all (m,n) ∈ Λ . By H3 , from(3.9), we have

ψ(u(m,n)) � c(M,N)+
k

∑
i=1

(m−1

∑
s=0

n−1

∑
t=0

s−1

∑
j=0

t−1

∑
l=0

f̃i(s,t, j, l)up(s, t)

+
m−1

∑
s=0

n−1

∑
t=0

s−1

∑
j=0

t−1

∑
l=0

h̃i(s,t, j, l)uq(s, t)wi(u( j, l))
)
. (3.10)

for all (m,n) ∈ Λ(M,N) , where 0 � M � M1 and 0 � N � N1 are chosen arbitrarily.
Let z(m,n) denote the function on the right-hand side of (3.10), which is a nonnegative
and nondecreasing function on Λ(M,N) and z(0,n) = c(M,N) . Then we obtain the
equivalent form of (3.10)

u(m,n) � ψ−1(z(m,n)), ∀(m,n) ∈ Λ(M,N). (3.11)

Since wi is nondecreasing and satisfy wi(u) > 0, for u > 0. By the definition of z and
(3.11), from (3.10) , we have

Δ1z(m,n) =
k

∑
i=1

n−1

∑
t=0

m−1

∑
j=0

t−1

∑
l=0

f̃i(m,t, j, l)up(m,t)

+
k

∑
i=1

n−1

∑
t=0

m−1

∑
j=0

t−1

∑
l=0

h̃i(m,t, j, l)uq(m,t)wi(u( j, l))

�
k

∑
i=1

n−1

∑
t=0

m−1

∑
j=0

t−1

∑
l=0

f̃i(m,t, j, l)(ψ−1(z(m, t)))p

+
k

∑
i=1

n−1

∑
t=0

m−1

∑
j=0

t−1

∑
l=0

h̃i(m,t, j, l)(ψ−1(z(m,t)))qwi(ψ−1(z( j, l))). (3.12)
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Case one: if ψ−1(z(m,t)) > 1. Using the monotonicity of ψ−1 and z , from (3.12),
we have

Δ1z(m,n) � (ψ−1(z(m,n)))p
( k

∑
i=1

n−1

∑
t=0

m−1

∑
j=0

t−1

∑
l=0

f̃i(m,t, j, l)

+
k

∑
i=1

n−1

∑
t=0

m−1

∑
j=0

t−1

∑
l=0

h̃i(m,t, j, l)wi(ψ−1(z( j, l)))
)
. (3.13)

that is

Δ1z(m,n)
(ψ−1(z(m,n)))p �

( k

∑
i=1

n−1

∑
t=0

m−1

∑
j=0

t−1

∑
l=0

f̃i(m,t, j, l)

+
k

∑
i=1

n−1

∑
t=0

m−1

∑
j=0

t−1

∑
l=0

h̃i(m,t, j, l)wi(ψ−1(z( j, l)))
)
. (3.14)

On the other hand, by the mean-value theorem for integrals, for arbitrarily given (m,n) ,
(m + 1,n) ∈ Λ(M,N) , in the open interval (z(m,n),z(m + 1,n)) , there exists ξ , which
satisfies

Ψp(z(m+1,n))−Ψp(z(m,n)) =
∫ z(m+1,n)

z(m,n)

ds
(ψ−1(s))p =

Δ1z(m,n)
(ψ−1(ξ ))p

� Δ1z(m,n)
(ψ−1(z(m,n)))p

(3.15)

where we use the definition of Ψp in (3.2). From (3.14) and (3.15), we obtain

Ψp(z(m+1,n)) � Ψp(z(m,n))+
( k

∑
i=1

n−1

∑
t=0

m−1

∑
j=0

t−1

∑
l=0

f̃i(m,t, j, l)

+
k

∑
i=1

n−1

∑
t=0

m−1

∑
j=0

t−1

∑
l=0

h̃i(m,t, j, l)wi(ψ−1(z( j, l)))
)
. (3.16)

Keep n fixed and substitute m with s in(3.16) . Then, taking the sums on both
sides of (3.16) over s = 0,1, · · · ,m−1, we have

Ψp(z(m,n)) � Ψp(z(0,n))+
k

∑
i=1

(m−1

∑
s=0

n−1

∑
t=0

s−1

∑
j=0

t−1

∑
l=0

f̃i(s,t, j, l)

+
m−1

∑
s=0

n−1

∑
t=0

s−1

∑
j=0

t−1

∑
l=0

h̃i(s,t, j, l)wi(ψ−1(z( j, l)))
)



84 Z. LI

� Ψp(c(M,N))+
k

∑
i=1

(M−1

∑
s=0

N−1

∑
t=0

s−1

∑
j=0

t−1

∑
l=0

f̃i(s,t, j, l)

+
m−1

∑
s=0

n−1

∑
t=0

s−1

∑
j=0

t−1

∑
l=0

h̃i(s,t, j, l)wi(ψ−1(z( j, l)))
)

= Ck(M,N)+
k

∑
i=1

m−1

∑
s=0

n−1

∑
t=0

s−1

∑
j=0

t−1

∑
l=0

h̃i(s,t, j, l)wi(ψ−1(z( j, l))), (3.17)

where

Ck(M,N) = Ψp(c(M,N))+
k

∑
i=1

M−1

∑
s=0

N−1

∑
t=0

s−1

∑
j=0

t−1

∑
l=0

f̃i(s,t, j, l). (3.18)

Let

v(m,n) = Ψp(z(m,n)).

From (3.17), we have

v(m,n) � Ck(M,N)+
k

∑
i=1

m−1

∑
s=0

n−1

∑
t=0

s−1

∑
j=0

t−1

∑
l=0

h̃i(s,t, j, l)wi(ψ−1(Ψ−1
p (v( j, l)))), (3.19)

for all (m,n) ∈ Λ(M,N) . Using the lemma 1, (3.19) can be written as

v(m,n) � Ck(M,N)+
k

∑
i=1

m−1

∑
s=0

n−1

∑
t=0

g̃i(m,n,s,t)wi(ψ−1(Ψ−1
p (v(s,t)))), (3.20)

where g̃i(m,n,s, t) = ∑m−1
j=s+1 ∑n−1

l=t+1 h̃i( j, l,s,t) . Obviously, g̃i(m,n,s, t) , i = 1,2, · · ·k
are nondecreasing in m and n for each fixed s and t and g̃i(m,n,s,t) � 0. Then from
(3.20), we have

v(m,n) � Ck(M,N)+
k

∑
i=1

m−1

∑
s=0

n−1

∑
t=0

g̃i(M,N,s,t)wi(ψ−1(Ψ−1
p (v(s,t)))), (3.21)

for all (m,n) ∈ Λ(M,N) .
From (3.21), we can conclude that

v(m,n) � W−1
k

(
Wk(Ek(m,n))+

m−1

∑
s=0

n−1

∑
t=0

g̃k(M,N,s,t)
)
, (3.22)

for all (m,n) ∈ Λ(M,N) , where

Ei(M,N) := W−1
i−1

(
Wi−1(Ei−1(M,N))+

M−1

∑
s=0

N−1

∑
t=0

g̃i−1(M,N,s,t)
)
, i = 2, · · · ,k, (3.23)

E1(M,N) := C1(M,N).
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For k = 1, let z1(m,n) denote the function on the right-hand side of (3.21), which is a
nonnegative and nondecreasing function on Λ(M,N) , z1(0,n)=C1(M,N) and v(m,n)�
z1(m,n) . Then we get

Δ1z1(m,n) =
n−1

∑
t=0

g̃1(M,N,m,t)w1(ψ−1(Ψ−1
p (v(m,t))))

�
n−1

∑
t=0

g̃1(M,N,m,t)w1(ψ−1(Ψ−1
p (z1(m,t)))), (3.24)

for all (m,n) ∈ Λ(M,N) . From (3.24), we have

Δ1z1(m,n)
w1(ψ−1(Ψ−1

p (z1(m,n))))
�

n−1

∑
t=n0

g̃1(M,N,m,t). (3.25)

By the mean-value theorem for integrals, there exists ξ in the open interval (z1(m,n),z1(m+
1,n)), for arbitrarily given (m,n) , (m+1,n) ∈ Λ(M,N) such that

W1(z1(m+1,n))−W1(z1(m,n)) =
∫ z1(m+1,n)

z1(m,n)

ds

w1(ψ−1(Ψ−1
p (s)))

=
Δ1z1(m,n)

w1(ψ−1(Ψ−1
p (ξ )))

� Δ1z1(m,n)
w1(ψ−1(Ψ−1

p (z1(m,n))))
. (3.26)

From (3.25) and (3.26), we have

W1(z1(m+1,n)) � W1(z1(m,n))+
n−1

∑
t=0

g̃1(M,N,m,t). (3.27)

Keep n fixed and substitute m with s in (3.27) . Then, taking the sums on both sides
of (3.27) over s = 0,1, · · · ,m−1, we have

W1(z1(m,n)) � W1(z1(0,n))+
m−1

∑
s=0

n−1

∑
t=0

g̃1(M,N,s,t)

= W1(C1(M,N))+
m−1

∑
s=0

n−1

∑
t=0

g̃1(M,N,s,t), (3.28)

for all (m,n) ∈ Λ(M,N) . Using v(m,n) � z1(m,n) , from (3.28), we get

v(m,n) � z1(m,n) � W−1
1

(
W1(C1(M,N))+

m−1

∑
s=0

n−1

∑
t=0

g̃1(M,N,s, t)
)
, (3.29)

for all (m,n) ∈ Λ(M,N) . This proves that (3.22) is true for k = 1.
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Next, we make the inductive assumption that (3.22) is true for k = l , then

v(m,n) � W−1
l

(
Wl(El(M,N))+

m−1

∑
s=0

n−1

∑
t=0

g̃l(M,N,s,t)
)
, (3.30)

for all (m,n) ∈ Λ(M,N) , where

E1(M,N) : = C1(M,N),

Ei(M,N) : = W−1
i−1

(
Wi−1(Ei−1(M,N))+

M−1

∑
s=0

N−1

∑
t=0

g̃i−1(M,N,s,t)
)
,

i = 2,3, · · · , l.
Now we consider

v(m,n) � Cl+1(M,N)+
l+1

∑
i=1

m−1

∑
s=0

n−1

∑
t=0

g̃i(M,N,s,t)wi(ψ−1(Ψ−1
p (v(s, t)))), (3.31)

for all (m,n) ∈ Λ(M,N) . Let z2(m,n) denote the nonnegative and nondecreasing func-
tion of the right-hand of (3.31), then z2(0,n) = Cl+1(M,N) and v(m,n) � z2(m,n) .
Let

φi(u) := wi(u)/w1(u), i = 1,2, · · · , l +1. (3.32)

By (3.1), we conclude that φi i = 1,2, · · · , l are nondecreasing functions. From (3.31),
we have

Δ1z2(m,n)
w1(ψ−1(Ψ−1(z2(m,n))))

=
∑l+1

i=1 ∑n−1
t=0 g̃i(M,N,m,t)wi(ψ−1(Ψ−1

p (v(m,t))))
w1(ψ−1(Ψ−1(z2(m,n))))

� ∑l+1
i=1 ∑n−1

t=0 g̃i(M,N,m,t)wi(ψ−1(Ψ−1
p (z2(m,t))))

w1(ψ−1(Ψ−1(z2(m,n))))

�
n−1

∑
t=0

g̃1(M,N,m,t)+
l+1

∑
i=2

n−1

∑
t=0

g̃i(M,N,m,t)φi(ψ−1(Ψ−1
p (z2(m,t))))

=
n−1

∑
t=0

g̃1(M,N,m,t)+
l

∑
i=1

n−1

∑
t=0

g̃i+1(M,N,m,t)φi+1(ψ−1(Ψ−1
p (z2(m, t)))). (3.33)

By the mean-value theorem for integrals, there exists ξ in the open interval
(z2(m,n),z2(m+ 1,n)) , for arbitrarily given (m,n) , (m+ 1,n) ∈ Λ(M,N) , then we can
obtain the following formula:

W1(z2(m+1,n))−W1(z2(m,n)) =
∫ z2(m+1,n)

z2(m,n)

ds

w1(ψ−1(Ψ−1
p (s)))

=
Δ1z2(m,n)

w1(ψ−1(Ψ−1
p (ξ )))

� Δ1z2(m,n)
w1(ψ−1(Ψ−1

p (z2(m,n))))
. (3.34)
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From (3.33) and (3.34), we get

W1(z2(m+1,n))−W1(z2(m,n))

�
n−1

∑
t=0

g̃1(M,N,m,t)+
l

∑
i=1

n−1

∑
t=0

g̃i+1(M,N,m,t)φi+1(ψ−1(Ψ−1
p (z2(m,t)))) (3.35)

Substitute m with s in (3.35) and keep n fixed, then taking the sum on both sides of
(3.35) over s = 0,1, · · · ,m−1, we have

W1(z2(m,n)) � W1(Cl+1(M,N))+
m−1

∑
s=0

n−1

∑
t=0

g̃1(M,N,s, t)

+
l

∑
i=1

m−1

∑
s=0

n−1

∑
t=0

g̃i+1(M,N,s,t)φi+1(ψ−1(Ψ−1
p (z2(s,t)))), (3.36)

for all (m,n) ∈ Λ(M,N) .
Let

θ (m,n) := W1(z2(m,n)), (3.37)

ρ1(M,N) := W1(Cl+1(M,N))+
M−1

∑
s=0

N−1

∑
t=0

g̃1(M,N,s,t). (3.38)

Using (3.37) and (3.38), from (3.36) we have

θ (m,n)) � ρ1(M,N)+
l

∑
i=1

m−1

∑
s=0

n−1

∑
t=0

g̃i+1(M,N,s,t)φi+1[ψ−1(Ψ−1
p (W−1

1 (θ (s,t))))].

(3.39)
It has the same form as (3.21). We are ready to use the inductive assumption for (3.39).
Let δ (s) := ψ−1(Ψ−1

p (W−1
1 (s))) . Since ψ−1,Ψ−1,W−1

1 ,φi are continuous, nonde-
creasing and positive on (0,∞) , each φi(δ (s)) is continuous and nondecreasing on
(0,∞) . Moreover

φi+1(δ (s))
φi(δ (s))

=
wi+1(δ (s))
wi(δ (s))

= max
τ∈[0,δ (s)]

{
ϕi+1(τ)
wi(τ)

}
, i = 1,2, · · · , l, (3.40)

which is also continuous and nondecreasing on [0,∞) and positive on (0,∞) . There-
fore, by the inductive assumption in (3.30), from (3.39), we have

θ (m,n) � Φ−1
l

(
Φl(ρl(M,N))+

m−1

∑
s=0

n−1

∑
n=0

g̃l+1(M,N,s,t)
)
, (3.41)

for all (m,n) ∈ Λ(M,N) , where

Φi(u) :=
∫ u

0

ds

φi+1(ψ−1(Ψ−1
p (W−1

1 (s))))
, u > 0, i = 1,2, · · · , l (3.42)
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ρi(M,N) := Φ−1
i−1

(
Φi−1(ρi−1(M,N))+

M−1

∑
s=0

N−1

∑
n=0

g̃i(M,N,s, t)
)
, i = 2,3, · · · , l. (3.43)

Note that

Φi(u)=
∫ u

0

w1(ψ−1(Ψ−1
p (W−1

1 (s))))ds

wi+1(ψ−1(Ψ−1
p (W−1

1 (s))))
,

=
∫ W−1

1 (u)

1

ds

wi+1(ψ−1(Ψ−1
p (s)))

= Wi+1(W−1
1 (u)), i = 1,2, · · · , l. (3.44)

Thus, from (3.37), (3.41) and (3.44), we have

v(m,n) � z2(m,n) = W−1
1 (θ (m,n))

� W−1
1

(
Φ−1

l

(
Φl(ρl(M,N))+

m−1

∑
s=0

n−1

∑
n=0

g̃l+1(M,N,s,t)
))

= W−1
l+1

(
Wl+1

(
W−1

1 (ρl(M,N))
)

+
m−1

∑
s=0

n−1

∑
n=0

g̃l+1(M,N,s,t)
)
, (3.45)

for all (m,n) ∈ Λ(M,N) . We can prove that the term of W−1
1 (ρl(M,N)) in (3.45) is just

the same as El+1(M,N) defined in (3.23). Let ρ̃i(M,N) :=W−1
1 (ρi(M,N)) . By (3.38),

we have

ρ̃1(M,N) = W−1
1 (ρ1(M,N))

= W−1
1

(
W1(Cl+1(M,N))+

M−1

∑
s=0

N−1

∑
t=0

g̃1(M,N,s, t)
)

= E2(M,N).

Then by the mathematical induction for i , using (3.43) and (3.44), we get

ρ̃i(M,N) = W−1
1

(
Φ−1

i−1

(
Φi−1(ρi−1(M,N))+

M−1

∑
s=0

N−1

∑
t=0

g̃i(M,N,s,t)
))

= W−1
i

[
Wi(W−1

1 (ρi−1(M,N)))+
M−1

∑
s=0

N−1

∑
t=0

g̃i(M,N,s,t)
]

= W−1
i

[
Wi(ρ̃i−1(M,N))+

M−1

∑
s=0

N−1

∑
t=0

g̃i(M,N,s,t)
]

= Ei+1(M,N), i = 2,3 · · · , l.
This prove that W−1

1 (ρl(M,N)) in (3.45) is just the same as El+1(M,N) defined in
(3.23). Hence (3.45) can be equivalently written as

v(m,n) � W−1
l+1

(
Wl+1(El+1(M,N))+

m−1

∑
s=0

n−1

∑
t=0

g̃l+1(M,N,s,t)
)
,∀(m,n) ∈ Λ(M,N).

(3.46)
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The estimation (3.22) of unknown function v in the inequality (3.19) is proved by
induction. By (3.11), (3.22) and (3.46), we have

u(m,n) � ψ−1(z(m,n)) � ψ−1
(

Ψ−1
p

(
v(m,n)

))

� ψ−1
(

Ψ−1
p

(
W−1

k

(
Wk(Ek(M,N))+

m−1

∑
s=0

n−1

∑
t=0

g̃k(M,N,s,t)
)))

, (3.47)

for all (m,n) ∈ Λ(M,N) . Let m = M,n = N , from (3.47), we have

u(M,N) � ψ−1
(

Ψ−1
p

(
W−1

k

(
Wk(Ek(M,N))+

M−1

∑
s=0

N−1

∑
t=0

g̃k(M,N,s, t)
)))

.

This proves (3.7), since M and N are chosen arbitrarily.
Case two: if ψ−1(z(m,t)) < 1. Using the monotonicity of ψ−1 and z , we can

deduce (ψ−1(z(m,n)))p < (ψ−1(z(m,n)))q , from (3.12), we have

Δ1z(m,n) � (ψ−1(z(m,n)))q
( k

∑
i=1

n−1

∑
t=0

m−1

∑
j=0

t−1

∑
l=0

f̃i(m,t, j, l)

+
k

∑
i=1

n−1

∑
t=0

m−1

∑
j=0

t−1

∑
l=0

h̃i(m,t, j, l)wi(ψ−1(z( j, l)))
)
. (3.48)

Using the similar proof process, we get

u(m,n) � ψ−1
(

Ψ−1
q

(
W̃−1

k

(
W̃k(Ek(m,n))+

m−1

∑
s=0

n−1

∑
t=0

g̃k(m,n,s,t)
)))

. �

REMARK 1. When fi = 0, i = 1,2, · · · ,k , q = 0, Theorem 2.1 reduces to Theo-
rem 2.1 in [24].

REMARK 2. When fi = 0, i = 1,2, · · · ,k , q = 0, ϕ1(u)= uq , ϕ2(u)= ur , ϕ3(u)=
uh , ϕ4(u) = u j , Theorem 2.1 reduces to Theorem 5 in [13].

4. Corollary

COROLLARY 1. Suppose that (H2,H3,H5) hold and p = q = 1, ψ(u(m,n)) =
u(m,n) is a nonnegative function on Λ satisfying

u(m,n) � c(m,n)+
k

∑
i=1

(m−1

∑
s=0

n−1

∑
t=0

s−1

∑
j=0

t−1

∑
l=0

fi(s,t, j, l)u(s,t)

+
m−1

∑
s=0

n−1

∑
t=0

s−1

∑
j=0

t−1

∑
l=0

hi(s,t, j, l)u(s,t)ϕi(u( j, l))
)
.
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Then

u(m,n) � exp
[
Ŵ−1

k

(
Ŵk(Êk(m,n))+

m−1

∑
s=0

n−1

∑
t=0

g̃k(m,n,s,t)
)]

,

for (m,n) ∈ Λ(M1,N1) , where

Ŵi(u) :=
∫ u

1

ds
wi(exp(s))

, i = 1,2, · · · ,k, u > 0.

Ê1(m,n) := ln(c(m,n))+
k

∑
i=1

m−1

∑
s=0

n−1

∑
t=0

s−1

∑
j=0

t−1

∑
l=0

f̃i(s,t, j, l),

Êi(m,n) := Ŵ−1
i−1

(
Ŵi−1(Êi−1(m,n))+

m−1

∑
s=0

n−1

∑
t=0

g̃i−1(m,n,s,t)
)
, i = 2,3, . . . ,k,

and (M1,N1) ∈ Λ is arbitrarily given on the boundary of the lattice.

COROLLARY 2. Suppose that (H2 –H5) hold and fi = 0, 0 < p < 1, ψ(u(m,n))
= u(m,n) is a nonnegative function on Λ satisfying

u(m,n) � c(m,n)+
k

∑
i=1

m−1

∑
s=0

n−1

∑
t=0

s−1

∑
j=0

t−1

∑
l=0

hi(s,t, j, l)up(s,t)ϕi(u( j, l)).

Then

u(m,n) �
[
W

−1
k

(
Wk(Ek(m,n))+

m−1

∑
s=0

n−1

∑
t=0

g̃k(m,n,s,t)
)] 1

1−p ,

for (m,n) ∈ Λ(M1,N1) , where

Wi(u) :=
∫ u

1

ds

wi(s
1

1−p )
, i = 1,2, · · · ,k, u > 0.

E1(m,n) := c(m,n)
1

1−p

Ei(m,n) := W
−1
i−1

(
Wi−1(Ei−1(m,n))+

m−1

∑
s=0

n−1

∑
t=0

g̃i−1(m,n,s,t)
)
, i = 2,3, . . . ,k,

and (M1,N1) ∈ Λ is arbitrarily given on the boundary of the lattice.

5. Applications

In this section, we apply our result to study the boundedness, uniqueness of the
solutions of boundary value problems to certain difference equations. We consider the
partial difference equation with the initial boundary value conditions.

Δ2Δ1ψ(z(m,n)) = F(m,n,ϕ1(z(m,n)), · · · ,ϕk(z(m,n))), (5.1)
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ψ(z(m,0)) = a1(m),ψ(z(0,n)) = a2(n),a1(0) = a2(0) = 0, (5.2)

for all (m,n) ∈ Λ , where Λ = I × J is defined as in the section 2, ψ is a continuous
and strictly increasing odd function on R , satisfying ψ(0) = 0 and ψ(u) > 0 for u >
0, F : Λ×R

k → R , a1 : I → R and a2 : J → R , ϕi : R+ → R+ are nondecreasing
continuous functions and the ratio ϕi+1/ϕi are also nondecreasing, ϕi(u) > 0 for u > 0
i = 1,2, · · · ,k .

In the following corollary, we firstly apply our result to discuss boundedness on
the solution of problem (5.1).

COROLLARY 3. Assume that F : Λ×R
k → R is a continuous function satisfying

|F(m,n,ϕ1(u), · · · ,ϕk(u))| �
k

∑
i=1

[
fi(M,N,m,n)|u|p+gi(M,N,m,n)|u|qϕi(|u|)

]
, (5.3)

|a1(m)+a2(n)| � a(m,n), (5.4)

for all (m,n) ∈ Λ , where p > q > 0 is a constant, fi(M,N,m,n),gi(M,N,m,n) , i =
1,2, · · · ,k, are continuous nonnegative functions and nondecreasing in M and N for
each fixed m and n , a(m,n) : Λ → R+ is nondecreasing in each variable. If z(m,n) is
any solution of (5.1) with the condition (5.2) , then, case one: if ψ−1(z̃(m,t)) > 1,

|z(m,n)| � ψ−1
{

Ψ−1
p

[
G−1

k

(
Gk(Hk(m,n))+

m−1

∑
s=0

n−1

∑
t=0

gk(M,N,s,t)
)]}

, (5.5)

for all (m,n) ∈ Λ(M,N) , where Ψp(u) is defined by (3.2) , and

Gi(u) :=
∫ u

1

ds

ϕi(ψ−1(Ψ−1
p (s)))

, u > 0,

H1(m,n) := Ψp(a(m,n)),

Hi(m,n) := G−1
i−1[Gi−1(Hi−1(m,n))+

m−1

∑
s=0

n−1

∑
t=0

gi−1(M,N,s,t)],

Ψ−1
p and G−1

k denote the inverse function of Ψp and G .
Case two: if ψ−1(z̃(m,t)) < 1,

|z(m,n)| � ψ−1
{

Ψ−1
q

[
G̃−1

k

(
G̃k(H̃k(m,n))+

m−1

∑
s=0

n−1

∑
t=0

gk(M,N,s,t)
)]}

, (5.6)

for all (m,n) ∈ Λ(M,N) , where Ψq(u) is defined by (3.3) , and

G̃i(u) :=
∫ u

1

ds

ϕi(ψ−1(Ψ−1
q (s)))

, u > 0,

H̃1(m,n) := Ψq(a(m,n)),

H̃i(m,n) := G̃−1
i−1[G̃i−1(H̃i−1(m,n))+

m−1

∑
s=0

n−1

∑
t=0

gi−1(M,N,s,t)],

Ψ−1
q and G̃−1

k denote the inverse function of Ψq and G̃ .
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Proof. The solution z(m,n) of (5.1) satisfies the following equivalent difference
equation:

ψ(z(m,n)) = a1(m)+a2(n)+
m−1

∑
s=0

n−1

∑
t=0

F(s,t,ϕ1(z(s, t)), · · · ,ϕk(z(s,t))). (5.7)

By (5.3) , (5.4) and (5.7) , we obtain

|ψ(z(m,n))| = |a1(m)+a2(n)|+
m−1

∑
s=0

n−1

∑
t=0

|F(s,t,ϕ1(z(s,t)), · · · ,ϕk(z(s,t)))|

� a(m,n)+
k

∑
i=1

m−1

∑
s=0

n−1

∑
t=0

fi(M,N,s,t)|z(s,t)p|

+
k

∑
i=1

m−1

∑
s=0

n−1

∑
t=0

|z(s,t)|qgi(M,N,s,t)
]
ϕi(|z(s,t)|). (5.8)

Since |ψ(z(m,n))|= ψ(|z(m,n)|) , (5.8) has the same form of (1.1). Let z̃(m,n) denote
the function on the right-hand side of (5.8), then |z(m,n)| � ψ−1(z̃(m,n)) . Applying
Theorem 3.1 to inequality (5.8), we obtain the estimation of z(m,n) as given in (5.5)
and (5.6) .

If there exists a constant M > 0,

Hi(m,n) < M,
m−1

∑
s=0

n−1

∑
t=0

gi(M,N,s,t) < M, i = 1,2, · · · ,k, (5.9)

for all (m,n)∈ Λ(M,N) , then every solution z(m,n) of (5.1) is bounded on Λ(M,N) . �

Next, we discuss the uniqueness of the solutions of (5.1) .

COROLLARY 4. Assume additionally that

|F(m,n,ϕ1(u1), · · · ,ϕk(u1))−F(m,n,ϕ1(u2), · · · ,ϕk(u2))|

�
k

∑
i=1

hi(M,N,m,n)|ψ(u1)−ψ(u2)|qϕi(|ψ(u1)−ψ(u2)|) (5.10)

for u1,u2 ∈ R and (m,n) ∈ Λ , where Λ is defined in the section 2, hi : Λ → R+ are
nonnegative functions, i = 1,2, · · · ,k, ϕi : R+ →R+ are continuous nondecreasingwith
the nondecreasing ratio ϕi+1/ϕi such that ϕi(u) > 0 for all u > 0, and

∫ 1
0

ds
ϕi(s)

= ∞ , for

i = 1,2, · · · ,k , and ψ : R → R is a strictly increasing odd function satisfying ψ(u) > 0,
for all u > 0. Then, (5.1) has at most one solution on Λ .

Proof. Let z(m,n) and z̃(m,n) are two solutions of (5.1) . By (5.7) and (5.10) ,
we have

|ψ(z(m,n))−ψ(z̃(m,n))|

�
k

∑
i=1

m−1

∑
s=0

n−1

∑
t=0

hi(M,N,s,t)|ψ(z(s,t))−ψ(z̃(s,t))|qϕi(|ψ(z(s, t))−ψ(z̃(s,t))|) (5.11)
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for all (m,n) ∈ Λ , (5.11) is the special form of (1.1) , where fi = 0, i = 1,2, · · · ,k ,
a(m,n) = 0, hi(M,N,s,t) , i = 1,2, · · · ,k, are continuous nonnegative functions and
nondecreasing in M and N for each fixed s and t . Applying Theorem 3.1, we ob-
tain an estimation of the difference |ψ(z(m,n))−ψ(z̃(m,n))| in the form (5.5) , where
H1(m,n) = 0, because Ψp(0) = 0. Furthermore, by the definition of Gi , we conclude
that

lim
u→0

Gi(u) = −∞, lim
u→∞

G−1
i (u) = 0, i = 1,2, · · · ,k.

It follows that

Gi(Hi(m,n))+
m−1

∑
s=0

n−1

∑
t=0

hi(M,N,s,t) = −∞,

G−1
i [Gi(H̃i(m,n))+

m−1

∑
s=0

n−1

∑
t=0

hi(M,N,s,t)] = 0, i = 1,2, · · · ,k.

From (5.5) , we deduce that |ψ(z(m,n))−ψ(z̃(m,n))| � 0, implying that z(m,n) =
z̃(m,n) , for all (m,n) ∈ Λ . �
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