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ANOTHER LOOK AT VORONOVSKAJA TYPE FORMULAS

FADEL NASAIREH AND IOAN RAŞA

(Communicated by J. Pečarić)

Abstract. Voronovskaja type formulas are usually established for sequences of positive linear
operators, i.e, operators Pn with Pn f � 0 whenever the function f is positive. The aim of this
paper is twofold. First, we obtain some general formulas concerning compositions of opera-
tors on Banach spaces, without any assumption of positivity. Next, we establish Voronovskaja
type formulas for operators which are manifestly nonpositive. Combining these two approaches
we recover some known results and obtain new applications. The final section is devoted to
inequalities accompanying our formulas.

1. Introduction

Voronovskaja type formulas are important tools in Approximation Theory. Rates
of convergence and saturation properties for sequences of positive linear operators can
be established by using such formulas. The prototypical Voronovskaja formula is re-
lated with the classical Bernstein operators Bn : C[0,1] →C[0,1],

Bn f (t) =
n

∑
k=0

(
n
k

)
tk (1− t)n−k f

(
k
n

)
, f ∈C[0,1], t ∈ [0,1],

and reads as follows:

lim
n→∞

n
(
Bn f (t)− f (t)

)
=

t(1− t)
2

f (2) (t) , f ∈C2 [0,1] , (1.1)

uniformly on [0,1] . Moreover (see, e.g. [1]),

lim
n→∞

n
[
n
(
Bn f (t)− f (t)

)
− t(1− t)

2
f (2) (t)

]

=
t(1− t)

24

(
3t (1− t) f (4) (t)+4(1−2t) f (3) (t)

)
, f ∈C4 [0,1] , (1.2)

uniformly on [0,1] .
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Consider also the Beta operators of Lupaş and Mühlbach, Bn : C [0,1] →C [0,1] ,
defined by (see, e.g. [12], [13], [14], [4])

Bn f (x) =

⎧⎪⎨
⎪⎩

f (0), x = 0,

1
B(nx,n−nx)

∫ 1

0
tnx−1(1− t)n−1−nx f (t)dt, 0 < x < 1,

f (1), x = 1,

where B is Euler’s Beta function.

In this case, see [9],

lim
n→∞

n
(
Bn f (t)− f (t)

)
=

t(1− t)
2

f (2)(t), f ∈C2[0,1], (1.3)

lim
n→∞

n
[
n
(

Bn f (t)− f (t)
)
− t(1− t)

2
f (2)(t)

]

=
t(1− t)

24

(
3t(1− t) f (4)(t)+8(1−2t) f (3)(t)−12 f (2)(t)

)
, f ∈C4 [0,1] , (1.4)

uniformly on [0,1] .
It is easy to compute the images of monomials under Bn ; see (3.1) below. Con-

venient expressions for the images of monomials under B
−1
n are also known, see [3].

Due to these circumstances, the operators Bn are used in order to represent other clas-
sical operators by means of composition and decomposition; see [3], [10], [11] and the
references given there.

In Section 2 we determine the Voronovskaja formula for the sequence (PnQn)n�1
in terms of the corresponding formulas for the (quite general) sequences (Pn)n�1 and
(Qn)n�1 . Some examples illustrate this general result.

At the beginning of Section 3 we present a new formula describing the action of

B
−1
n on polynomials.

Combining this formula with the results of Section 2, we give new proofs and

extend some Voronovskaja type results for B
−1
n obtained in [3] and [10].

Section 4 is devoted to the operator Fn := B
−1
n ◦Bn . It was investigated in [3], [8],

[10], [11] in relation with the problem of decomposing Bn into simpler blocks. With the
methods already used in Section 3, we extend and give new proofs to the Voronovskaja
type formulas for Fn and F−1

n obtained in [3].

Voronovskaja type formulas are usually accompanied by inequalities. For exam-
ple, (1.1) is accompanied by the inequality Bn f � f , n � 1, f ∈C [0,1] convex.

In Section 5 we present a similar inequality for the operator B
−1
n .

Throughout the paper we consider the spaces Ck [0,1] , k � 0, endowed with the
topology of uniform convergence.
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2. A general result

Let X be a Banach space and W ⊂ Z ⊂ Y linear subspaces of X . Let A,B : Y →
X ; U,V : Z → X ; S,T : W → X be linear operators.

Consider also two sequences of linear operators Pn : X → X , Qn : Y → X , n � 1,
and suppose that each Pn is bounded.

THEOREM 2.1. (i) Suppose that

lim
n→∞

Pnx = x, x ∈ X , (2.1)

lim
n→∞

n(Pny− y) = Ay ; lim
n→∞

n(Qny− y) = By, y ∈Y. (2.2)

Then
lim
n→∞

n(PnQny− y) = Ay+By, y ∈ Y. (2.3)

(ii) In addition to (2.1) and (2.2), suppose that

Bz ∈ Y, z ∈ Z, (2.4)

lim
n→∞

n
[
n(Pnz− z)−Az

]
= Uz; lim

n→∞
n
[
n(Qnz− z)−Bz

]
= Vz, z ∈ Z. (2.5)

Then
lim
n→∞

n
[
n(PnQnz− z)−Az−Bz

]
= Uz+Vz+ABz, z ∈ Z. (2.6)

(iii) Let (2.1), (2.2), (2.4), (2.5) be satisfied. Moreover, suppose that for each w ∈ W
we have Vw ∈Y, Bw ∈ Z , and

lim
n→∞

n
{

n
[
n(Pnw−w)−Aw

]
−Uw

}
= Sw,

lim
n→∞

n
{

n
[
n(Qnw−w)−Bw

]
−Vw

}
= Tw.

Then, for all w ∈W ,

lim
n→∞

n
{
n
[
n(PnQnw−w)−Aw−Bw

]
−Uw−Vw−ABw

}
= Sw+Tw+AVw+UBw.

Proof. (i) By using (2.1) and the Banach-Steinhaus Theorem we infer that the
sequence (‖Pn‖)n�1 is bounded, i.e., there exists M > 0 such that ‖Pn‖ � M, n � 1.
Let y ∈ Y . Then

n(PnQny− y) = n(Pny− y)+PnBy+Pn

[
n(Qny− y)−By

]
.

According to (2.2) and (2.1), the first two summands tend to Ay , respectively By , while
∥∥∥Pn

[
n(Qny− y)−By

]∥∥∥ � M
∥∥∥n(Qny− y)−By

∥∥∥→ 0.
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This proves (2.3).
(ii) Let z ∈ Z . Then

n
[
n(PnQnz− z)−Az−Bz

]

= n
[
n(Pnz− z)−Az

]
+PnVz+n(PnBz−Bz)+Pn

{
n
[
n(Qnz− z)−Bz

]
−Vz

}
.

According to (2.5), (2.1), (2.4) and (2.2), the first three summands tend, respectively, to
Uz, Vz, ABz .

Moreover,∥∥∥Pn

{
n
[
n(Qnz− z)−Bz

]
−Vz

}∥∥∥ � M
∥∥∥n

[
n(Qnz− z)−Bz

]
−Vz

∥∥∥ → 0.

This proves (2.6).
(iii) The proof of (iii) is similar and we omit the details. �

EXAMPLE 2.2. With notation from Section 1, let Pn := Bn and Qn := Bn . Then,
according to (1.1)–(1.4), we have

A f (t) = B f (t) =
t(1− t)

2
f (2)(t), f ∈C2 [0,1] , t ∈ [0,1],

U f (t) =
t(1− t)

24

(
3t(1− t) f (4)(t)+4(1−2t) f (3)(t)

)
,

V f (t) =
t(1− t)

24

(
3t(1− t) f (4)(t)+8(1−2t) f (3)(t)−12 f (2)(t)

)
, f ∈C4 [0,1] ,

t ∈ [0,1].

Let Un := PnQn = BnBn ; it is called the genuine Bernstein-Durrmeyer operator,
see, e.g., [5] , [6] and the references therein. By using Theorem 2.1 we get

lim
n→∞

n
(
Un f (t)− f (t)

)
= t(1− t) f (2)(t), f ∈C2 [0,1] , t ∈ [0,1] ,

lim
n→∞

n
[
n
(
Un f (t)− f (t)

)
− t(1− t) f (2)(t)

]

=
t(1− t)

2

(
t(1− t) f (4)(t)+2(1−2t) f (3)(t)−2 f (2)(t)

)
, f ∈C4 [0,1] , t ∈ [0,1].

EXAMPLE 2.3. Let now Pn := Bn and Qn := Bn . Then Sn := PnQn = BnBn is a
special Stancu operator; see, e.g., [7] and the references given there.

As in the previous example, we get

lim
n→∞

n
(
Sn f (t)− f (t)

)
= t(1− t) f (2)(t), f ∈C2 [0,1] , t ∈ [0,1].

lim
n→∞

n
[
n
(
Sn f (t)− f (t)

)
− t(1− t) f (2)(t)

]

=
t(1− t)

2

(
t(1− t) f (4)(t)+2(1−2t) f (3)(t)−2 f (2)(t)

)
, f ∈C4 [0,1] , t ∈ [0,1] .
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EXAMPLE 2.4. Let Pn := Bn, Qn := Bn+1 . The operator Dn := PnQn = BnBn+1

was considered in [5] and [7] . By using Theorem 2.1 we infer

lim
n→∞

n
(
Dn f (t)− f (t)

)
= t(1− t) f (2)(t), f ∈C2 [0,1] , t ∈ [0,1],

lim
n→∞

n
[
n
(
Dn f (t)− f (t)

)
− t(1− t) f (2)(t)

]

=
t(1− t)

6

(
3t(1− t) f (4)(t)+5(1−2t) f (3)(t)−3 f (2)(t)

)
, f ∈C4 [0,1] , t ∈ [0,1] .

3. The operator B
−1
n

Let ∏n be the space of all polynomial functions of degree at most n , defined
on R , and ∏ =

⋃
n�0

∏n . For k � 0 consider the monomial ek(t) = tk . Moreover, let

(a)k := a(a+1) . . .(a+ k−1) for a ∈ R, k � 1, and (a)0 := 1. It is easy to check that

Bnek(t) =
(nt)k

(n)k
, n � 1, k � 0. (3.1)

Let [a0,a1, . . . ,ak; f ] be the divided difference of the function f on the knots a0,a1, . . . ,ak .
The Lagrange interpolation polynomial associated with f and the knots a0, . . . ,am

has the Newton form

Lm f (t;a0, . . . ,am) =
m

∑
k=0

[a0, . . . ,ak; f ] (t−a0) . . . (t−ak−1).

If p ∈ ∏m, then p(t) = Lmp(t;a0, . . . ,am) . In particular,

p(t) = Lmp
(
t;0,−1

n
, . . . ,−m

n

)
,

which leads to

p(t) =
m

∑
k=0

(n)k

nk

[
0,−1

n
, . . . ,− k

n
; p

]
(nt)k

(n)k
, p ∈ Πm, n � 1. (3.2)

From (3.1) and (3.2) we deduce

p(t) =
m

∑
k=0

(n)k
nk

[
0,−1

n
, . . . ,− k

n
; p

]
Bnek(t), p ∈ Πm, n � 1. (3.3)

By a slight abuse of notation, let us consider the operators B
−1
n : ∏ → ∏, n � 1.

Then (3.3) can be written as

B
−1
n p(t) =

m

∑
k=0

(n)k
nk

[
0,−1

n
, . . . ,− k

n
; p

]
tk, p ∈ Πm, n � 1. (3.4)
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THEOREM 3.1. Let m � 0 and pn ∈ Πm, n � 1 . Suppose that the sequence (pn)
is uniformly convergent on [0,1] to p ∈ Πm . Then

lim
n→∞

n
(
B

−1
n pn(t)− pn(t)

)
= − t(1− t)

2
p(2)(t), t ∈ [0,1]. (3.5)

Proof. It is easy to verify that[
0,−1

n
, . . . ,− k

n
;e j

]
= Ck, jn

k− j

for some real numbers Ck, j , with Cj, j = 1. Then, according to (3.4),

lim
n→∞

n
(
B

−1
n e j(t)− e j(t)

)
= lim

n→∞
n
( j

∑
k=0

(n)k
n j Ck, jt

k − t j
)

= lim
n→∞

j−1

∑
k=0

(n)k

n j−1Ck, jt
k + t j lim

n→∞
n
((n) j

n j −1
)

= Cj−1, jt
j−1 +

j( j−1)
2

t j .

Denote

Bej := Cj−1, je j−1 +
j( j−1)

2
e j, j � 0. (3.6)

Then B can be extended as a linear operator B : ∏ → ∏, and

lim
n→∞

n(B−1
n q−q) = Bq, q ∈∏ . (3.7)

In Theorem 2.1 (i) let Pn := Bn and Qn := B
−1
n . Then, according to (1.3),

Aq(t) =
t(1− t)

2
q(2)(t).

From (2.3) we deduce that Aq+Bq = 0, q ∈ ∏ , so that (3.7) yields

lim
n→∞

n
(
B

−1
n q(t)−q(t)

)
= − t(1− t)

2
q(2)(t), q ∈ ∏ . (3.8)

Now let pn =
m

∑
j=0

an je j ∈ Πm be uniformly convergent on [0,1] to

p =
m

∑
j=0

a je j ∈ Πm . Then an j → a j and (3.8) leads to

lim
n→∞

n
(
B

−1
n pn(t)− pn(t)

)
= lim

n→∞

m

∑
j=0

an jn
(
B

−1
n e j(t)− e j(t)

)

= − t(1− t)
2

( m

∑
j=0

a je j

)(2)
(t) = − t(1− t)

2
p(2)(t).

This proves (3.5). �
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REMARK 3.2. After establishing (3.6), another continuation of the above proof

can be based on the fact that Cj−1, j = − j( j−1)
2

.

REMARK 3.3. (3.8) was obtained in [10] by using the eigenstructure of Bn de-
scribed in [3] and [4] .

With notation from [2] and [3] , let p(n)
k be the eigenpolynomials of Bn : Πn →

Πn, 0 � k � n . Then p(n)
k ∈ Πk . According to [2, Th. 4.1] , for each k there exists the

limit p∗k := lim
n→∞

p(n)
k . From Theorem 3.1 we infer

COROLLARY 3.4. For each k � 0 ,

lim
n→∞

n
(
B

−1
n p(n)

k (t)− p(n)
k (t)

)
= − t(1− t)

2
(p∗k)

(2)(t),

uniformly on [0,1] .

This result can be also found, with a different proof, in [3, p. 21].

THEOREM 3.5. Under the same hypotheses of Theorem 3.1 we have

lim
n→∞

n
[
n
(

B
−1
n pn(t)− pn(t)

)
+

t(1− t)
2

p(2)
n (t)

]

=
t(1− t)

24

(
3t(1− t)p(4)(t)+4(1−2t)p(3)(t)

)
, t ∈ [0,1], (3.9)

uniformly on [0,1] .

Proof. Let Ai,k(x) be defined by

(n)kx
k − (nx)k =

k

∑
i=0

Ai,k(x)ni.

As in the proof of Theorem 3.1, by a direct calculation we can prove that for each j � 0,

lim
n→∞

n
[
n
(

B
−1
n e j(t)− e j(t)

)
+

t(1− t)
2

(e j)(2)(t)
]

= Cj−1, jA j−2, j−1(t)+Aj−2, j(t) =: Vej(t).

Then V can be extended as a linear operator V : ∏ → ∏ , and

lim
n→∞

n
[
n
(
B

−1
n q(t)−q(t)

)
+

t(1− t)
2

q(2)(t)
]

= Vq, q ∈ ∏ . (3.10)
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In Theorem 2.1 (ii) let Pn := Bn and Qn := B
−1
n . Then, according to (1.3) and (1.4),

Aq(t) =
t(1− t)

2
q(2)(t) and

Uq(t) =
t(1− t)

24

(
3t(1− t)q(4)(t)+8(1−2t)q(3)(t)−12q(2)(t)

)
.

Moreover, (3.8) shows that Bq(t) = − t(1− t)
2

q(2)(t) . From (2.6) we deduce that

Uq+Vq+ABq = 0, which yields

Vq(t) =
t(1− t)

24

(
3t(1− t)q(4)(t)+4(1−2t)q(3)(t)

)
.

Combined with (3.10), this leads to

lim
n→∞

n
[
n
(

B
−1
n q(t)−q(t)

)
+

t(1− t)
2

q(2)(t)
]

=
t(1− t)

24

(
3t(1− t)q(4)(t)+4(1−2t)q(3)(t)

)
, q ∈ ∏ . (3.11)

In order to conclude the proof we have only to apply the argument which was used in
the final part of the proof of Theorem 3.1. �

REMARK 3.6. Another proof of (3.11) can be found in [10] .

4. The operator FFFFnnnn

Let Fn :C[0,1]→ ∏n, Fn := B
−1
n ◦Bn . This operator was investigated in [3], [10],

[11]. Now we are in a position to generalize a result from [3, p. 17].

THEOREM 4.1. Under the same hypotheses of Theorem 3.1 we have

lim
n→∞

n2
(
Fnpn(t)− pn(t)

)
=

t(1− t)
2

p(2)(t)− t(1− t)(1−2t)
6

p(3)(t), (4.1)

uniformly on [0,1] .

Proof. If pn ∈ Πm, n � 1, and lim
n→∞

pn = p , then Bnpn ∈ Πm and lim
n→∞

Bnpn = p .

Consequently, Theorem 3.5 shows that

lim
n→∞

n
[
n
(

B
−1
n Bnpn(t)−Bnpn(t)

)
+

t(1− t)
2

(Bnpn)(2)(t)
]

=
t(1− t)

24

(
3t(1− t)p(4)(t)+4(1−2t)p(3)(t)

)
.
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This can be rewritten as

lim
n→∞

{
n2

(
Fnpn(t)− pn(t)

)
−n

[
n
(
Bnpn(t)− pn(t)

)
− t(1− t)

2
p(2)

n (t)
]

(4.2)

+
t(1− t)

2
n
(
Bnpn(t)− pn(t)

)(2)}

=
t(1− t)

24

(
3t(1− t)p(4)(t)+4(1−2t)p(3)(t)

)
.

Combining (1.1) and (1.2) with the coordinate-wise convergence of (pn) and (Bnpn)
we get

lim
n→∞

n
[
n
(
Bnpn(t)− pn(t)

)
− t(1− t)

2
p(2)

n (t)
]

=
t(1− t)

24

(
3t(1− t)p(4)(t)+4(1−2t)p(3)(t)

)
, (4.3)

lim
n→∞

n
(
Bnpn(t)− pn(t)

)(2)
=

t(1− t)
2

p(2)(t). (4.4)

Now (4.1) is a consequence of (4.2), (4.3) and (4.4). �

REMARK 4.2. With notation as in Corollary 3.4, (4.1) yields

lim
n→∞

n2
(
Fnp(n)

k (t)− p(n)
k (t)

)
=

t(1− t)
2

(p∗k)
(2)(t)− t(1− t)(1−2t)

6
(p∗k)

(3)(t).

This improves a result from [3 , p. 21].

REMARK 4.3. With the above methods it can be proved that
if pn ∈ Πm, pn → p ∈ Πm, then

lim
n→∞

n
[
n
(
B−1

n pn(t)− pn(t)
)

+
t(1− t)

2
p(2)

n (t)
]

=
t(1− t)

24

(
3t(1− t)p(4)(t)+8(1−2t)p(3)(t)−12p(2)(t)

)
,

and

lim
n→∞

n2
(
F−1

n pn(t)− pn(t)
)

=
t(1− t)(1−2t)

6
p(3)(t)− t(1− t)

2
p(2)(t).

5. Inequalities for B
−1
n

The operator B
−1
n is not positive. Indeed, see [3] , B

−1
n e2 =

n+1
n

e2 − 1
n
e1 , and

B
−1
n e2(t) < 0 for all t ∈ (0, 1

n+1) .

However, B
−1
n possesses the following property.
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PROPOSITION 5.1. Let p ∈ ∏m with p( j)(−1) � 0 , j = 0,1, . . . ,m.
Then (

B
−1
n p

)( j)
(t) � 0, n � m, t ∈ [0,1] , j = 0,1, . . . ,m. (5.1)

Proof. We have p(t) =
m

∑
j=0

p( j)(−1)
j! (t +1) j, which implies

p( j)(t) � 0, t � −1, j = 0,1, . . .m. (5.2)

According to the mean value theorem for divided differences, there exists tn j ∈
[
− j

n ,0
]

such that [
0,−1

n
, . . . ,− j

n
; p

]
=

p( j)(tn j)
j!

.

Since −1 � −m
n � − j

n � tn j, (5.2) shows that p( j)(tn j) � 0, and consequently[
0,− 1

n , . . . ,− j
n ; p

]
� 0, j = 0,1, . . . ,n. Now, according to (3.4),

B
−1
n p(t) =

m

∑
j=0

c jnt
j

with c jn := (n) j

n j

[
0,− 1

n , . . . ,− j
n ; p

]
� 0, and this immediately implies (5.1). �

The inequality (5.3) below is a companion (and a consequence ) of (3.8).

THEOREM 5.2. Let 0 < a < 1
2 and p ∈ ∏ with p(2)(t) > 0 for all t ∈ [a,1−a].

Then there exists n0 � 1 such that

B
−1
n p(t) � p(t), n � n0, t ∈ [a,1−a]. (5.3)

Proof. Let l(t) :=
t(1− t)

2
p(2)(t) . Then

M := min
{

l(t) | t ∈ [a,1−a]
}

> 0.

On the other hand, (3.8) shows that there exists n0 � 1 such that

−M � n
(
B

−1
n p(t)− p(t)

)
+ l(t) � M, n � n0, t ∈ [0,1] .

This implies

n
(
B

−1
n p(t)− p(t)

)
� M− l(t) � 0, n � 0, t ∈ [a,1−a] ,

which leads to (5.3) and concludes the proof. �
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REMARK 5.3. There is experimental evidence (see [3]) that in many cases the
approximation provided by Fn is better than that furnished by Bn . Theorem 5.2 may
be useful in order to explain heuristically this phenomenon. Namely, take a convex
function f ∈C [0,1] ; then Bn f is convex and Bn f � f , i.e., Bn f is above f . Theorem

5.2 shows that, roughly speaking, B
−1
n Bn f is under Bn f , and so Fn f is closer to f

than Bn f is.
Problems of this kind are still under research.
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