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Abstract. In this paper, we show the matrix version of Richard inequality by virture of Cauchy-
Schwartz type inequalities via the matrix geometric mean. As an application, we show a matrix
Buzano inequality.

1. Introduction

In [1], Buzano showed the following extention of the Cauchy-Schwarz inequality
in a complex inner product space (H;〈·, ·〉) :

|〈a,x〉〈x,b〉| � 1
2
(‖ a ‖‖ b ‖ +|〈a,b〉|) ‖ x ‖2 (1.1)

for all a,b,x ∈ H . If a = b , then (1.1) just becomes the Cauchy-Schwarz inequality

|〈a,x〉|2 �‖ a ‖2‖ x ‖2 . (1.2)

Dragomir [2] pointed out that in the proof of Buzano inequality (1.1), the following
inequality due to Richard [7] is an essential part:∣∣∣∣

〈a,x〉〈x,b〉
‖ x ‖2 − 〈a,b〉

2

∣∣∣∣ � ‖ a ‖‖ b ‖
2

(1.3)

for all a,b,x∈H . In fact, it follows from the triangle inequality that (1.3) implies (1.1).
Thus, we call (1.3) the Richard inequality.

Let Mm×n = Mm×n(C) be the space of m×n complex matrices and Mn = Mn×n ,
and denote the matrix absolute value of any A ∈ Mn by |A| = (A∗A)1/2 . For A ∈ Mn ,
we write A � 0 if A is positive semidefinite and A > 0 if A is positive definite; that is,
x∗Ax > 0 for all nonzero column vectors x ∈ Cn . For two Hermitian matrices A and B
in Mn , we write A � B if A−B � 0 and A > B if A−B > 0.

In the previous paper [5], we presented Cauchy-Schwarz type inequalities for ma-
trices of the same size in terms of the matrix geometric mean and the polar decom-
position. As a continuation, in this paper, we show the matrix version of the Richard
inequality (1.3) by virture of Cauchy-Schwartz type inequalities via the matrix geo-
metric mean. As an application, we show a matrix version of the Buzano inequality
(1.1).

Mathematics subject classification (2010): Primary 15A45, secondary 47A64.
Keywords and phrases: Buzano inequality, matrix geometric mean, Richard inequality, Cauchy-

Schwarz inequality.

c© � � , Zagreb
Paper JMI-12-08

107

http://dx.doi.org/10.7153/jmi-2018-12-08


108 M. FUJIMOTO AND Y. SEO

2. Results

First of all, we recall the matrix geometric mean: Let A and B be two positive
semidefinite matrices in Mn . Then the matrix geometric mean A # B is defined by

A # B = A1/2
(
A−1/2BA−1/2

)1/2
A1/2 (2.1)

if A is positive definite, also see [6]. By monotonicity, we can uniquely extend the
definition of A # B for all positive semidefinite matrices A and B by setting

A # B = lim
ε↓0

(A+ εI) # (B+ εI).

For the sake of convenience, we cite a useful lemma which we will use frequently in
the below.

LEMMA 2.1. Let A,B,C and D be positive semidefinite matrices.

(1) Consistency with scalars: If A and B commute, then A # B = A1/2B1/2 ;

(2) Monotonicity: A � C and B � D =⇒ A # B � C # D;

(3) Transformer equality: T ∗AT # T ∗BT = T ∗(A # B)T for nonsingular T ;

(4) Symmetry: A # B = B # A;

(5) Arithmetic-Geometric mean inequality: A # B � A+B
2 .

In [5], we presented matrix Cauchy-Scwarz inequalities that derived by the matrix
geometric mean, also see [3]:

LEMMA 2.2. (Matrix Cauchy-Schwarz inequality) Let X ,Y ∈ Mk×n and Y ∗X =
U |Y ∗X | be a polar decomposition of Y ∗X , where U is unitary in Mn . Then

|Y ∗X | � X∗X # U∗Y ∗YU (2.2)

and
|X∗Y | � UX∗XU∗ # Y ∗Y. (2.3)

Under the assumption that ker X ⊂ ker YU (resp. ker Y ⊂ ker XU∗ ) , the equality in
(2.2) (resp. (2.3)) holds if and only if there exists W ∈ Mn such that YU = XW (resp.
XU∗ = YW ).

Note that the matrix Cauchy-Schwarz inequality (2.2) is a natural extension of the
Cauchy-Schwarz inequality (1.2). In fact, let x and y be column vectors in Cn . Since
〈x,y〉 = eiθ |〈x,y〉| for some real number θ ∈ R , it follows from Lemma 2.2 that

|〈x,y〉| � 〈x,x〉#e−iθ 〈y,y〉eiθ

= 〈x,x〉 1
2 〈y,y〉 1

2 .

Inspired by the idea in [4], we show the following generalization of the matrix Cauchy-
Schwarz inequality (2.2):
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THEOREM 2.3. Let X ,Y ∈ Mk×n , P be an orthogonal projection in Mk , and
Y ∗(2P− I)X = U |Y ∗(2P− I)X | a polar decomposition of Y ∗(2P− I)X , where U is
unitary in Mn . Then

∣∣∣∣Y ∗PX − 1
2
Y ∗X

∣∣∣∣ � 1
2
(X∗X#U∗Y ∗YU) (2.4)

and ∣∣∣∣X∗PY − 1
2
X∗Y

∣∣∣∣ � 1
2
(UX∗XU∗#Y ∗Y ). (2.5)

Under the assumption that ker X ⊂ kerYU (resp. kerY ⊂ ker XU∗ ) , the equality holds
in (2.4) (resp. (2.5)) if and only if there exists W ∈ Mn such that YU = (2P− I)XW
(resp. XU∗ = (2P− I)YW ).

Proof. Since P is an orthogonal projection, 2P− I is self-adjoint unitary and by
using the Matrix Cauchy-Schwarz inequality (2.2), it follows that

2

∣∣∣∣Y ∗PX − 1
2
Y ∗X

∣∣∣∣ = |Y ∗(2P− I)X |
� X∗(2P− I)∗(2P− I)X#U∗Y ∗YU

= X∗X#U∗Y ∗YU.

Since ker (2P− I)X = ker X ⊂ ker YU , the equality in (2.4) immediately follows from
the equality condition in Lemma 2.2. �

REMARK 2.4. If we put x = b in the Richard inequality (1.3), then we have the
Cauchy-Schwarz inequality (1.2). Similarly, if P = I in Theorem 2.3, then (2.4) just
becomes the matrix Cauchy-Schwarz inequality (2.2).

To prove the following corollary, we need the following Thompson inequality [8]
(p. 289 Theorem8.22): For any square matrices A and B in Mn , there exist unitary
matrices U and V in Mn such that |A+B|� U∗|A|U +V ∗|B|V .

COROLLARY 2.5. Let X ,Y ∈ Mk×n , P be an orthogonal projection in Mk , and
U ∈ Mn a unitary matrix in a polar decomposition of Y ∗(2P− I)X . Then there exist
unitary V,W ∈ Mn such that

V ∗|Y ∗PX |V � 1
2
(X∗X#U∗Y ∗YU +W∗|Y ∗X |W ).

Proof. By Thompson inequality, there exist unitary matrices V and W such that

V ∗|Y ∗PX |V − 1
2
W ∗|Y ∗X |W �

∣∣∣∣Y ∗PX − 1
2
Y ∗X

∣∣∣∣ .
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By Theorem 2.3, we have∣∣∣∣Y ∗PX − 1
2
Y ∗X

∣∣∣∣ � 1
2
(X∗X#U∗Y ∗YU),

and hence combining two inequality above, we have this corollary. �
For Z ∈ Mk×n , we denote a generalized inverse of Z by Z− , i.e., Z− satisfies

ZZ−Z = Z , and Z(Z∗Z)−Z∗ is the orthogonal projection onto the column space of Z .
Hence we have the following results by Theorem 2.3.

The following corollary is the matrix version of the Richard inequality (1.3):

COROLLARY 2.6. (Matrix Richard inequality) Let X ,Y,Z ∈ Mk×n and U ∈ Mn

a unitary matrix in a polar decomposition of Y ∗(2Z(Z∗Z)−Z∗X −X) . Then∣∣∣∣Y ∗Z(Z∗Z)−Z∗X − 1
2
Y ∗X

∣∣∣∣ � 1
2
(X∗X#U∗Y ∗YU). (2.6)

Under the assumption that ker X ⊂ ker YU , the equality holds in (2.6) if and only if
there exists W ∈ Mn such that YU = (2Z(Z∗Z)−Z∗ − I)XW .

Proof. If we put P = Z(Z∗Z)−Z∗ in Theorem 2.3, then we have this corollary. �
In addition, we show the matrix version of the Buzano inequality (1.1) too:

COROLLARY 2.7. (Matrix Buzano inequality) Let X ,Y,Z ∈ Mk×n and U ∈ Mn

be a unitary matrix in a polar decomposition of Y ∗(2Z(Z∗Z)−Z∗X −X) . Then there
exist unitary matrices V and W in Mn such that

V ∗|Y ∗Z(Z∗Z)−Z∗X |V � 1
2
(X∗X#U∗Y ∗YU +W∗|Y ∗X |W ).

Proof. If we put P = Z(Z∗Z)−Z∗ in Corollary 2.5, then we have this corollary. �

REMARK 2.8. If n = 1 in Corollary 2.6 (resp. Corollary 2.7), then it just becomes
the Richard inequality (1.3) (resp. the Buzano inequality (1.1)).

Lastly we present the following corollary related to the matrix Richard inequality:

COROLLARY 2.9. Let X ,Y,Z ∈ Mk×n and U ∈ Mn (resp. V ∈ Mn ) be a unitary
matrix in a polar decomposition of Y ∗ (Z(Z∗Z)−Z∗X −X) in (1) (resp. Y ∗Z(Z∗Z)−Z∗X
in (2)). Then

(1) |Y ∗Z(Z∗Z)−Z∗X −Y ∗X | � (X∗X −X∗Z(Z∗Z)−Z∗X)#U∗Y ∗YU ;

(2) |Y ∗Z(Z∗Z)−Z∗X | � X∗Z(Z∗Z)−Z∗X#V ∗Y ∗YV.

Proof. By the matrix Cauchy-Schwarz inequality in Lemma 2.2, we have this
corollary. �
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