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TYPE SERIES AND THE RIEMANN ZETA FUNCTION
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(Communicated by J. Pečarić)

Abstract. Our aim in this paper is to derive several new inequalities for the Mathieu type se-
ries and the Riemann zeta function. In particular, we prove Turán type inequalities and some
monotonicity and log-convexity results for these special functions. New Laplace type integral
representations for the Mathieu type series and the Riemann zeta function are also presented.

1. Introduction

The following infinite series:

S(r) =
∞

∑
n=1

2n
(n2 + r2)2 (r ∈ R

+) (1.1)

is popularly known as the Mathieu series. It was introduced and studied by Émile
Leonard Mathieu (1835–1890) in his 1890 book [10] devoted to the elasticity of solid
bodies. Bounds for this series are needed for the solution of boundary value problems
for the bi-harmonic equations in a two-dimensional rectangular domain (see, for exam-
ple, [17, p. 258, Eq. (54)]). A remarkably useful integral representation for S(r) is
given by Emersleben [8] in the following form:

S(r) =
1
r

∫ ∞

0

xsin(rx)
ex −1

dx. (1.2)

The so-called generalized Mathieu series with a fractional power reads as follows
(see [3]):

Sμ(r) =
∞

∑
n=1

2n
(n2 + r2)μ+1 (μ > 0; r > 0) (1.3)

Such series as Sμ(r) given by (1.3) have been widely considered in the mathematical
literature (see, for details, [3], [19] and [22]). In particular, Cerone and Lenard [3]
derived also the following integral expression for the generalized Mathieu series Sμ(r) :

Sμ(r) = Cμ(r)
∫ ∞

0

xμ+ 1
2

ex −1
Jμ− 1

2
(rx) dx (μ > 0), (1.4)
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where

Cμ(r) =
√

π
(2r)μ− 1

2 Γ(μ +1)

and Jν(z) denotes the ordinary Bessel function of order ν (see, for details, [23]).
The study of Mathieu’s series S(r) and its associated inequalities has a rich litera-

ture. We choose to recall here an interesting result of Alzer et al. [1], who showed that
the best constants κ1 and κ2 in the following two-sided inequality:

1
κ1 + r2 < S(r) <

1
κ2 + r2 (r �= 0) (1.5)

are given by

κ1 =
1

2ζ (3)
and κ2 =

1
6
,

where ζ (s) denotes the Riemann zeta function defined by

ζ (s) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞
∑

n=1

1
ns =

1
1−2−s

∞
∑

n=1

1
(2n−1)s

(
ℜ(s) > 1

)

1
1−21−s

∞
∑

n=1

(−1)n−1

ns

(
ℜ(s) > 0; s �= 1

) (1.6)

and by its meromorphic continuation to the whole complex s-plane except for a sim-
ple pole at s = 1 with the residue 1 (see, for details, [18]). Many interesting refinements
and
extensions of the Mathieu type series and their associated inequalities can be found
in (for example) [19], [21] and [22] (see also several other investigations and develop-
ments on the subject of the Mathieu type series, which are reported in [4], [7], [15],
[16] and [20]).

The present sequel to some of the aforementioned investigations is organized as
follows. In Section 2, we state some useful lemmas which will be needed in the proofs
of our results. In Section 3, we prove several (presumably new) inequalities for the
Mathieu and related series. In particular, we present a Turán type inequality for this
special function. Moreover, we derive some monotonicity and convexity results for the
function μ �→ Sμ(r). As a consequence, we establish a number of functional inequali-
ties. At the end of Section 3, we derive the Laplace integral representation of such types
of Mathieu series. Finally, in Section 4, we apply some of our main results of Section
3 with a view to deriving several new inequalities for the Riemann zeta function ζ (s)
defined by (1.6).

Each of the following definitions will be used in our investigation.

DEFINITION 1. A function f : (0,∞) → R is said to be completely monotonic if
f has derivatives of all orders and satisfies the following inequalities:

(−1)n f (n)(x) � 0 (∀ x � 0 and ∀ n ∈ N = {1,2.3. · · ·}).
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DEFINITION 2. A function g : [a,b]⊆R→R is said to be log-convex if its natural
logarithm logg is convex, that is, if

g
(
αx+(1−α)y

)
� [g(x)]α [g(y)]1−α (∀ x,y ∈ [a,b] and ∀ α ∈ [0,1]).

2. Preliminary lemmas

In this section, we recall each of the following lemmas, which are needed in the
proofs of our results.

LEMMA 1. (see [9, p. 313, Eq. (10)]) Let μ > 2. Then the following integral
formula: ∫ ∞

0

tμ−1

(et −1)2 dt = Γ(μ) [ζ (μ −1)− ζ (μ)] (2.1)

holds true.

LEMMA 2. (see [11]) Let the function f : (0,∞) −→ (0,1) be continuous. If f is
completely monotonic , then

f (x) f (y) � f (x+ y) (∀ x,y � 0). (2.2)

LEMMA 3. (see [2]) Let μ > 0 and r > 0. Then the following integral formula:

∫ ∞

0
Sμ(r) dr =

√
π Γ
(
μ + 1

2

)
Γ(μ +1)

ζ (2μ) (μ > 0; r > 0) (2.3)

holds true for the generalized Mathieu series Sμ(r) .

3. Inequalities and integral representations for the Mathieu type series

Our first main result is asserted by the following theorem.

THEOREM 1. Let μ > 3
2 . Then the following inequality:

Sμ(r) �
(

2μ −1
2μr3

)
Sμ−1(r)−

(
(2μ −1)

√
π

22(μ−1) r3

)
Γ(2μ)ζ (2μ −1)

Γ(μ +1)Γ
(
μ + 1

2

) (3.1)

is valid for all r > 0.

Proof. Let us consider the function Jμ(x) : R −→ (−∞,1] defined by

Jμ(x) =
(

2
x

)μ
Γ(μ +1)Jμ(x) (μ > −1).



166 H. M. SRIVASTAVA, K. MEHREZ AND Ž. TOMOVSKI

Thus, by applying (1.4), we can write the generalized Mathieu series Sμ(r) in the
following form:

Sμ(r) = cμ,1

∫ ∞

0

x2μ

ex −1
Jμ− 1

2
(rx) dx (μ � 1), (3.2)

where

cμ,1 =
√

π
22μ−1 Γ

(
μ + 1

2

)
Γ(μ +1)

.

Now, upon using the following derivative formula [23, p. 18]:

J ′
μ(x) = − x

2(μ +1)
Jμ+1(x),

if we evaluate the right-hand side of (3.2) by integration by parts, we get

Sμ(r) = − (2μ −1)cμ,1

r2

∫ ∞

0

x2μ−1

ex −1
J ′

μ− 3
2
(rx) dx

=
(2μ−1)cμ,1

r2

(∫ ∞

0

(2μ−1)x2μ−2

r(ex−1)
Jμ− 3

2
(rx) dx−

∫ ∞

0

x2μ−1ex

r(ex−1)2 Jμ− 3
2
(rx) dx

)

=
(2μ −1)2 cμ,1

cμ−1,1 r3 Sμ−1(r)

− (2μ −1)cμ,1

r3

(∫ ∞

0

x2μ−1

ex −1
Jμ− 3

2
(rx) dx+

∫ ∞

0

x2μ−1

(ex −1)2 Jμ− 3
2
(rx) dx

)

� (2μ −1)2 cμ,1

cμ−1,1 r3 Sμ−1(r)− (2μ −1)cμ,1

r3

(∫ ∞

0

x2μ−1

ex −1
dx+

∫ ∞

0

x2μ−1

(ex −1)2 dx

)

=
(2μ−1)2cμ,1

cμ−1,1r3 Sμ−1(r)− (2μ−1)cμ,1

r3

[
Γ(2μ)ζ (2μ)+Γ(2μ)[ζ (2μ−1)−ζ (2μ)]

]

=
(2μ −1)2 cμ,1

cμ−1,1 r3 Sμ−1(r)− (2μ −1)cμ,1

r3 Γ(2μ)ζ (2μ −1). (3.3)

In this last equation (3.3), we use the following bound given by by Minakshisundaram
and Szász [14]:

|Jμ(x)| � 1

(
μ > −1

2
; x ∈ R

)
together with Lemma 1. The desired inequality (3.1) is thus established. �

In Theorem 2 below, we establish a Turán type inequality for the generalizedMath-
ieu serie Sμ(r).

THEOREM 2. Let μ > 0. Then the following Turán type inequality:

Sμ+2(r)Sμ(r)− [Sμ+1(r)]2 � 0 (3.4)

holds true for all r ∈ (0,∞).
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Proof. By applying the Cauchy product, we find that

Sμ+2(r)Sμ(r)− [Sμ+1(r)]2

=
∞

∑
n=1

n

∑
k=1

4k(n− k)
(k2 + r2)μ+1[(n− k)2 + r2]μ+3 −

∞

∑
n=1

n

∑
k=1

4k(n− k)
(k2 + r2)μ+2[(n− k)2 + r2]μ+2

=
∞

∑
n=1

n

∑
k=1

4nk(n− k)(2k−n)
(k2 + r2)μ+2[(n− k)2 + r2]μ+3

=
∞

∑
n=1

n

∑
k=0

4n(2k−n)Tn,k, (3.5)

where

Tn,k =
k(n− k)

[(n− k)2 + r2]μ+3(k2 + r2)μ+2 .

Case 1. Let n be an even positive integer. Then

n

∑
k=0

Tn,k(2k−n) =

n
2−1

∑
k=0

Tn,k(2k−n)+
n

∑
k= n

2 +1

Tn,k(2k−n)

=
[ n−1

2 ]
∑
k=0

(Tn,k −Tn,n−k)(2k−n), (3.6)

where, as usual, [κ ] denotes the greatest integer part of κ ∈ R .
Case 2. Let n be an odd positive integer. Then, just as in Case 1, we get

n

∑
k=0

Tn,k(2k−n) =
[ n−1

2 ]
∑
k=0

(Tn,k −Tn,n−k)(2k−n).

Thus, by combining Case 1 and Case 2, we have

Sμ+2(r)Sμ(r)− [Sμ+1(r)]2 =
∞

∑
n=1

[ n−1
2 ]

∑
k=0

(Tn,k −Tn,n−k)(2k−n), (3.7)

which, upon simplifying, yields

Tn,k −Tn,n−k =
n2k (n− k)(2k−n)

[(n− k)2 + r2]μ+3(k2 + r2)μ+3 . (3.8)

Finally, in view of (3.7) and (3.8), we deduce the Turán type inequality (3.4). �

THEOREM 3. Each of the following assertions holds true:
1. The function μ �→ Sμ(r) is completely monotonic and log-convex on (0,∞) for

each r > 0.

2. The function μ �→ Sμ+1(r)
Sμ(r)

is increasing on (0,∞).
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3. For all r > 0, the following inequalities are valid:

Sμ+ν(r)S(r) � Sμ(r)Sν(r) (μ ,ν > 0), (3.9)

(
Sν(r)

2ζ (2ν +1)

) 1
ν+1

�
(

Sμ(r)
2ζ (2μ +1)

) 1
μ+1

(μ � ν > 0) (3.10)

and (
Sμ(r)

2ζ (2μ +1)

) 1
μ+1

+
ζ (2μ +3)Sμ(r)

ζ (2μ +1)Sμ+1(r)
� 2 (μ > 0). (3.11)

Proof. 1. For all m ∈ N and μ > 0, we have

(−1)m ∂mSμ(r)
∂ μm =

∞

∑
n=1

2n[log(n2 + r2)]m

(n2 + r2)μ+1 � 0.

Thus, clearly, the function μ �→ Sμ(r) is completely monotonic and log-convex on
(0,∞) , since every completely monotonic function is log-convex (see [24, p. 167]).

2. In view of Part 1 of Theorem 3, the function μ �→ logSμ(r) is convex. Hence it
follows that the function:

μ �→ logSμ+1(r)− logSμ(r)

is increasing on (0,∞) .

3. Since the function μ �→ Sμ(r)
S(r)

is completely monotonic on (0,∞) and maps

(0,∞) to (0,1) , according to Lemma 2, we conclude the asserted inequality (3.9).
We next prove the inequality (3.10). Suppose that μ � ν > 0 and define the

function H : (0,∞) −→ R with the following relation:

H(r) =
(

ν +1
μ +1

)
logSμ(r)− logSν(r).

On the other hand, by using the fact that

S′μ(r) = −2r(μ +1)Sμ+1(r),

we have

H ′(r) = 2(ν +1)r
(

Sν+1(r)
Sν(r)

− Sμ+1(r)
Sμ(r)

)
� 0.

So, by Part 2 of Theorem 3, we conclude that the function H(r) is decreasing on (0,∞) .
Consequently, we have

H(r) � H(0) (r > 0).
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Now, upon replacing μ by μ + 1 and ν by μ in the inequality (3.11), if we use the
inequality (3.10) and the Arithmetic-Geometric Mean Inequality, we find that

1
2

[(
Sμ(r)

ζ (2μ +1)

) 1
μ+1

+
ζ (2μ +3)Sμ(r)

ζ (2μ +1)Sμ+1(r)

]

�

√√√√( Sμ(r)
ζ (2μ +1)

) 1
μ+1

· ζ (2μ +3)Sμ(r)
ζ (2μ +1)Sμ+1(r)

� 1,

which evidently completes the proof of Theorem 3. �

REMARK 1. There are other proofs of the Turán type inequality (3.4). For exam-
ple, since the function ν �→ Sμ(r) is log-convex on (0,∞) for r > 0, it follows, for all
μ1,μ2 � 1, α ∈ [0,1] and r > 0, that

Sαμ1+(1−α)μ2
(r) �

[
Sμ1(r)

]α [
Sμ2(r)

]1−α
.

Upon setting

μ1 = μ , μ2 = μ +2 and α =
1
2
,

the above inequality reduces to the Turán inequality (3.4).

REMARK 2. Yet another proof of the Turán inequality (3.4) can be given as fol-

lows. By using the fact that the function μ �→ Sμ+1(r)
Sμ(r)

is increasing on (0,∞) , we

have
Sμ+2(r)
Sμ+1(r)

� Sμ+1(r)
Sμ(r)

,

which leads us readily to the required result.

THEOREM 4. For μ > 3
2 , let cμ be given by

cμ =
√

π
2μ− 1

2 Γ(μ +1)
.

Also let
Kμ(t) = tμ+ 1

2 gμ(t)

in terms of the Schlömilch series gμ(t) defined by [5]

gμ(t) =
∞

∑
n=1

Jμ+ 1
2
(nt)

nμ− 1
2
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for the Bessel function Jν(z) . Then the Mathieu series Sμ(r) has the following integral
representation:

Sμ(r) = cμ

∫ ∞

0
e−rt Kμ(t) dt. (3.12)

Furthermore , it is asserted that

ζ (2μ +1) =
cμ

2

∫ ∞

0
Kμ(t) dt (3.13)

and
S(r) =

∫ ∞

0
e−rt K (t) dt, (3.14)

where
K (t) = h(t)− t h′(t)

and the Schlömilch series h(t) is defined by [5]

h(t) =
∞

∑
n=1

sinnt
n2

in terms of the Bessel function Jν(z) .

Proof. By using the following known result [6, p. 397, Eq. (42)]:

1

(a2 + s2)μ+ 1
2

=
√

π
(2a)μ Γ

(
μ + 1

2

) ∫ ∞

0
tμ e−st Jμ(at) dt

(
μ > −1

2

)
, (3.15)

we get

2n
(n2 + r2)μ+1 =

√
π

(2n)μ− 1
2 Γ(μ +1)

∫ ∞

0
tμ+ 1

2 e−rt Jμ+ 1
2
(nt) dt, (3.16)

which, upon interchanging the order of integration and summation, yields (3.12). Next,
if we let r → 0 in (3.12), we obtain (3.13). Finally, if we set μ = 1 in (3.12) and use
the fact that

J 3
2
(x) =

√
2
π

(
sinx

x
3
2

− cosx

x
1
2

)
,

we obtain

S(r) =
∫ ∞

0
e−rt

(
∞

∑
n=1

sinnt
n2 − t

∞

∑
n=1

cosnt
n

)
dt

=
∫ ∞

0
e−rt [h(t)− t h′(t)] dt

=
∫ ∞

0
e−rt K (t) dt.

The proof of Theorem 4 is thus completed. �
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EXAMPLE. From the integral representation (3.14), we can write S(r) in the fol-
lowing form:

S(r) =
∫ ∞

0
e−rt [Cl2(t)− t Cl′2(t)

]
dt, (3.17)

where Cl2(x) is the Clausen function defined by (see, for example, [5])

Cl2(x) =
∞

∑
n=1

sinkx
k2 = −

∫ x

0
log

[
2sin

(
1
2

η
)]

dη (x ∈ R). (3.18)

Upon letting r → 0+ in (3.17), we get the following integral formula for the Apéry
constant ζ (3) :

ζ (3) =
1
2

∫ ∞

0
K (t) dt =

1
2

∫ ∞

0

[
Cl2(t)− t Cl′2(t)

]
dt. (3.19)

PROPOSITION. Let μ > 7
6 . Then the following inequality holds true:

Sμ(r) �
(

cL
√

π
2μ− 1

2 rμ+ 7
6

)
Γ
(
μ + 7

6

)
ζ
(
μ − 1

6

)
Γ(μ +1)

(r > 0), (3.20)

where
cL = sup

x>0
{x 1

3 J0(x)} = 0.78574687 · · ·. (3.21)

Proof. We recall the Landau estimate (see [12]):

|Jμ(x)| � cLx
− 1

3 ,

which holds true uniformly in μ and where cL is given by the equation (3.21). If we
now make use of the integral representation (3.12), we are led easily to the inequality
(3.20). �

4. New inequalities for the Riemann zeta function

In this section, we first present a new Turán type inequality for the Riemann zeta
function ζ (s) defined by (1.6).

THEOREM 5. Let μ > 1. Then the following Turán type inequality:

ζ (μ)ζ (μ +2)− [ζ (μ +1)]2 � 0. (4.1)

holds true.

Proof. By letting r → 0 in (3.4), we get

ζ (2μ +1)ζ (2μ +3)− [ζ (2μ +2)]2 � 0,

which, upon replacing μ by 1
2 (μ −1) , yields the inequality (4.1) asserted by Theorem

5. �
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REMARK 3. By using a generalization of the familiar Schwarz inequality, Lafor-
gia and Natalini [13] proved the following Turán type inequality for the Riemann zeta
function:

ζ (μ)ζ (μ +2) � μ
μ +1

[ζ (μ +1)]2 (μ > 1). (4.2)

We note that the inequality (4.1), which is asserted by Theorem 5, is sharper than the
inequality (4.2).

In Theorem 6 below, we establish a simple upper bound for the Riemann zeta
function. Our main tool will be the formula (2.3) in Lemma 3.

THEOREM 6. Let μ � 1. Then each of the following inequalities holds true:

ζ (2μ) �
√

3π
2

Γ(μ +1)
Γ
(
μ + 1

2

) (4.3)

and

[ζ (2μ +1)]
3
2

[ζ (2μ)]2 ζ (2μ +3)
� (μ +1)

([
Γ
(
μ + 1

2

)]
[Γ(μ +1)]

)2

. (4.4)

Proof. Alzer et al. [1] proved that

S(r) <
1

r2 + 1
6

(r > 0), (4.5)

which is the second part of the inequality in (1.5). Since the function μ �→ Sμ(r) is
decreasing on [1,∞) , we get

Sμ(r) <
1

r2 + 1
6

(r > 0; μ � 1). (4.6)

Integrating both sides of this last equation (4.6) over the interval (0,∞) , we obtain

∫ ∞

0
Sμ(r) dr � π

√
3
2
.

Thus, clearly, Lemma 3 completes the proof of the first inequality (4.3) asserted by
Theorem 6.

We next prove the second inequality (4.4) asserted by Theorem 6. We recall that
Tomovski and Mehrez [22] derived the following inequality:

2ζ (2μ +1)exp

(
−(μ +1)

ζ (2μ +3)
ζ (2μ +1)

r2
)

� Sμ(r) (r > 0). (4.7)

Therefore, upon integrating both sides of (4.7) over the interval (0,∞) , if we apply
Lemma 3, we see that the inequality (4.4) holds true. This evidently completes the
proof of Theorem 6. �
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[19] H. M. SRIVASTAVA AND Ž. TOMOVSKI, Some problems and solutions involving Mathieu series and
its generalizations, JIPAM J. Inequal. Pure Appl. Math. 5 (2) (2004), Article ID 45, 1–13 (electronic).
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