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NONLINEAR RETARDED INTEGRAL INEQUALITIES

ON TIME SCALES AND THEIR APPLICATIONS

HAIDONG LIU AND FANWEI MENG

(Communicated by A. Peterson)

Abstract. In this paper, some new nonlinear retarded integral inequalities on time scales are
established, which provide a handy tool in the study of some retarded integral equations and
dynamic equations on time scales. The results unify and extend some continuous inequalities
and their corresponding discrete analogues. Some applications are also presented to illustrate
the usefulness of some of our results.

1. Introduction

The calculus on time scales, which was initiated by Hilger in 1990 [17] has re-
ceived considerable attention in recent years due to its broad applications in economics,
population’s models, quantum physics and other science fields (see [4, 8, 18] and the
references therein). Many authors have expounded on various aspects of the theory of
dynamic equations and integral equations on time scales (see [1, 5–7, 9–12, 28] and the
references therein), and the interest in the subject remains growing.

Recently, there has been much research activity concerning the integral inequal-
ities on time scales, and a lot of integral inequalities on time scales have been estab-
lished, for example, see [2, 3, 13–15, 18–27, 29–32] and the references cited therein,
which have been designed in order to unify continuous and discrete analysis.

In this paper, we establish some new nonlinear retarded integral inequalities on
time scales. Our results generalize some of the presented inequalities in [14, 20, 24,
29] and can be used as important tools in the qualitative theory of certain retarded
integral equations and dynamic equations on time scales. As an application, we study
the qualitative property of some retarded integral equations on time scales.

2. Preliminaries

Throughout this paper, we always assume that R denotes the set of real numbers,
R+ = [0,+∞) , Z denotes the set of integers, T is an arbitrary time scale (nonempty
closed subset of the real numbers R), t0 ∈ Tκ is a fixed number (Tκ is defined to be
T−{m} if T has a maximum m which is left-scattered, otherwise, Tκ = T), [a,b]Tκ =
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[a,b]∩Tκ , and f Δ
t (t,s) denotes for each fixed s the derivative of f (t,s) with respect

to t .
Next, we present some basic concepts and results concerning time scales which

will be essential to prove our main results. It is assumed that the readers are familiar
with the time scale calculus. For more details, the readers may want to consult [6] and
[7].

LEMMA 1. ([6, Theorem 1.90]) Let f : R→R be continuously differentiable and
suppose g : T → R is delta differentiable. Then f ◦ g : T → R is delta differentiable
and the formula

( f ◦ g)Δ(t) =
{∫ 1

0
f ′

(
g(t)+hμ(t)gΔ(t)

)
dh

}
gΔ(t)

holds.

LEMMA 2. ([6, Theorem 1.98]) Assume that ν : T → R is a strictly increasing
function and T̃ := ν(T) is a time scale. If f : T → R is an rd-continuous function and
ν is differentiable with rd-continuous derivative, then for a,b ∈ T ,

∫ b

a
f (t)νΔ(t)Δt =

∫ ν(b)

ν(a)
( f ◦ν−1)(s)Δ̃s.

LEMMA 3. ([6, Theorem 1.117]) Let a ∈ Tκ and assume f : T×Tκ → R is
continuous at (t, t) , where t ∈ Tκ with t > a. Also assume that for each t ∈ Tκ ,
f Δ
t (t, ·) is rd-continuous on [a,σ(t)] and for each ε > 0 , there exists a neighborhood

U of t , independent of τ ∈ [a,σ(t)] , such that

| f (σ(t),τ)− f (s,τ)− f Δ
t (t,τ)(σ(t)− s)| � ε|σ(t)− s|, for all s ∈U,

then

g(t) :=
∫ t

a
f (t,τ)Δτ, t ∈ Tκ ,

implies

gΔ(t) =
∫ t

a
f Δ
t (t,τ)Δτ + f (σ(t),t), t ∈ Tκ .

LEMMA 4. Let α : Tκ → Tκ be a continuous and strictly increasing function
such that α(t) � t and αΔ is continuous at t ∈ Tκ . Assume that f : T×Tκ → R is
a function such that f is continuous at (t,α(t)) , where t ∈ Tκ with t > t0 , and for
each t ∈ Tκ , f (t,α(·)) , f Δ

t (t,α(·)) are rd-continuous on [t0,σ(t)] . Suppose that for
each t ∈ Tκ , and for any ε > 0 , there exists a neighborhood U of t , independent of
τ ∈ [t0,σ(t)] , such that

| f (σ(t),α(τ))− f (s,α(τ))− f Δ
t (t,α(τ))(σ(t)− s)| � ε|σ(t)− s|, (2.1)
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for all s ∈U , then

g(t) :=
∫ α(t)

α(t0)
f (t,τ)Δτ, t ∈ Tκ , (2.2)

implies

gΔ(t) =
∫ α(t)

α(t0)
f Δ
t (t,τ)Δτ + f (σ(t),α(t))αΔ(t), t ∈ Tκ . (2.3)

Proof. From (2.2), we get for any t ∈ Tκ ,

g(t) =
∫ α(t)

α(t0)
f (t,τ)Δτ =

∫ α(t)

α(t0)
f (t,α(α−1(τ)))Δτ.

By Lemma 2, we obtain

g(t) =
∫ t

t0
f (t,α(τ))αΔ(τ)Δτ, t ∈ Tκ .

Since αΔ is continuous at t ∈Tκ , there exists a positive constant M such that |αΔ(τ)|�
M for any τ ∈ [t0,σ(t)] . Then from (2.1), we get for any ε > 0, there exists a neigh-
borhood U of t , independent of τ ∈ [t0,σ(t)] , such that

| f (σ(t),α(τ))αΔ(τ)− f (s,α(τ))αΔ(τ)− f Δ
t (t,α(τ))αΔ(τ)(σ(t)− s)|

� M| f (σ(t),α(τ))− f (s,α(τ))− f Δ
t (t,α(τ))(σ(t)− s)|

� ε|σ(t)− s|.
Applying Lemma 2 and Lemma 3, we get

gΔ(t) =
∫ t

t0
f Δ
t (t,α(τ))αΔ(τ)Δτ + f (σ(t),α(t))αΔ(t)

=
∫ α(t)

α(t0)
f Δ
t (t,τ)Δτ + f (σ(t),α(t))αΔ(t), t ∈ Tκ . �

In what follows, we always assume that:
(H1) α : Tκ → Tκ is a continuous and strictly increasing function such that α(t) � t

and αΔ is continuous at t ∈ Tκ .
(H2) β : Tκ → Tκ is a continuous and strictly increasing function such that β (t) � t

and β Δ is continuous at t ∈ Tκ .
(H3) k : Tκ → (0,+∞) is a nondecreasing and rd-continuous function, and ω : R+ →

R+ is a nondecreasing and continuous function with ω(u) > 0 for u > 0.
(H4) f : T×Tκ →R+ is a function such that f is continuous at (t,α(t)) , where t ∈Tκ

with t > t0 , f Δ
t (t,s) � 0 for t � s , and for each t ∈ Tκ , f (t,α(·)) , f Δ

t (t,α(·)) are
rd-continuous on [t0,σ(t)] .

(H5) g : T×Tκ →R+ is a function such that g is continuous at (t,β (t)) , where t ∈ Tκ

with t > t0 , gΔ
t (t,s) � 0 for t � s , and for each t ∈ Tκ , g(t,β (·)) , gΔ

t (t,β (·)) are
rd-continuous on [t0,σ(t)] .
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LEMMA 5. Assume that (H1)–(H5) hold. Let u : Tκ → R+ be a rd-continuous
function and p > 0 be a constant. Suppose that for each t ∈ Tκ , and for any ε > 0 ,
there exists a neighborhood U of t , independent of τ ∈ [t0,σ(t)] , such that

| f (σ(t),α(τ))− f (s,α(τ))− f Δ
t (t,α(τ))(σ(t)−s)|� ε|σ(t)−s|, for all s∈U, (2.4)

and

|g(σ(t),β (τ))−g(s,β (τ))−gΔ
t (t,β (τ))(σ(t)−s)|� ε|σ(t)−s|, for all s∈U. (2.5)

Let

G(x) =
∫ x

1

1

ω(s
1
p )

ds, x > 0, with lim
x→+∞

G(x) = +∞. (2.6)

If u satisfies

up(t) � k(t)+
∫ α(t)

α(t0)
f (t,s)ω(u(s))Δs+

∫ β (t)

β (t0)
g(t,s)ω(u(s))Δs, t ∈ Tκ , (2.7)

then

u(t) �
{

G−1
[
G(k(t))+

∫ α(t)

α(t0)
f (t,s)Δs+

∫ β (t)

β (t0)
g(t,s)Δs

]} 1
p

, t ∈ Tκ , (2.8)

where G−1 is the inverse of G.

Proof. Let T ∈ Tκ be fixed, and denote

z(t) = k(T )+
∫ α(t)

α(t0)
f (t,s)ω(u(s))Δs+

∫ β (t)

β (t0)
g(t,s)ω(u(s))Δs, t ∈ [t0,T ]Tκ .

Then from (2.7), we obtain

u(t) � z
1
p (t), t ∈ [t0,T ]Tκ , (2.9)

From the assumptions on ω ,α,β and u , for each t ∈ Tκ , we have there exists a con-
stant M , such that for τ ∈ [t0,σ(t)] , |ω(u(α(τ)))| � M , and |ω(u(β (τ)))| � M . So
from (2.4) and (2.5), for any ε > 0, there exists a neighborhood U of t , independent
of τ ∈ [t0,σ(t)] , such that

| f (σ(t),α(τ))ω(u(α(τ)))− f (s,α(τ))ω(u(α(τ)))
− f Δ

t (t,α(τ))ω(u(α(τ)))(σ(t)− s)|
� M| f (σ(t),α(τ))− f (s,α(τ))− f Δ

t (t,α(τ))(σ(t)− s)|
� ε|σ(t)− s|, for all s ∈U,

and

|g(σ(t),β (τ))ω(u(β (τ)))−g(s,β (τ))ω(u(β (τ)))
−gΔ

t (t,β (τ))ω(u(β (τ)))(σ(t)− s)|
� M|g(σ(t),β (τ))−g(s,β (τ))−gΔ

t (t,β (τ))(σ(t)− s)|
� ε|σ(t)− s|, for all s ∈U.
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Then from Lemma 4, we get

zΔ(t) =
∫ α(t)

α(t0)
f Δ
t (t,s)ω(u(s))Δs+ f (σ(t),α(t))ω(u(α(t)))αΔ(t)

+
∫ β (t)

β (t0)
gΔ
t (t,s)ω(u(s))Δs+g(σ(t),β (t))ω(u(β (t)))β Δ(t). (2.10)

Our assumptions on α,β , f ,g and ω imply that z is nondecreasing on [t0,T ]Tκ . Hence,
for t ∈ [t0,T ]Tκ , from Lemma 4, (2.9) and (2.10), we have

zΔ(t) �
∫ α(t)

α(t0)
f Δ
t (t,s)ω(z

1
p (s))Δs+ f (σ(t),α(t))ω(z

1
p (α(t)))αΔ(t)

+
∫ β (t)

β (t0)
gΔ
t (t,s)ω(z

1
p (s))Δs+g(σ(t),β (t))ω(z

1
p (β (t)))β Δ(t)

� ω(z
1
p (t))

(∫ α(t)

α(t0)
f Δ
t (t,s)Δs+ f (σ(t),α(t))αΔ(t)

+
∫ β (t)

β (t0)
gΔ
t (t,s)Δs+g(σ(t),β (t))β Δ(t)

)

= ω(z
1
p (t))

(∫ α(t)

α(t0)
f (t,s)Δs+

∫ β (t)

β (t0)
g(t,s)Δs

)Δ
,

which yields
zΔ(t)

ω(z
1
p (t))

�
(∫ α(t)

α(t0)
f (t,s)Δs+

∫ β (t)

β (t0)
g(t,s)Δs

)Δ
. (2.11)

Furthermore, for t ∈ [t0,T ]Tκ , if σ(t) > t ,

[G(z(t))]Δ =
G(z(σ(t)))−G(z(t))

σ(t)− t
=

1
σ(t)− t

∫ z(σ(t))

z(t)

1

ω(s
1
p )

ds

� z(σ(t))− z(t)
σ(t)− t

1

ω(z
1
p (t))

=
zΔ(t)

ω(z
1
p (t))

. (2.12)

If σ(t) = t ,

[G(z(t))]Δ = lim
s→t

G(z(t))−G(z(s))
t − s

= lim
s→t

1
t − s

∫ z(t)

z(s)

1

ω(s
1
p )

ds

= lim
s→t

z(t)− z(s)
t− s

1

ω(ξ
1
p )

=
zΔ(t)

ω(z
1
p (t))

, (2.13)

where ξ lies between z(s) and z(t) . So from (2.12) and (2.13) we always have

[G(z(t))]Δ � zΔ(t)

ω(z
1
p (t))

. (2.14)
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Combining (2.11) and (2.14), we deduce

[G(z(t))]Δ �
(∫ α(t)

α(t0)
f (t,s)Δs+

∫ β (t)

β (t0)
g(t,s)Δs

)Δ
. (2.15)

Setting t = τ in (2.15), an integration with respect to τ from t0 to t yields

G(z(t))−G(z(t0)) �
∫ α(t)

α(t0)
f (t,s)Δs+

∫ β (t)

β (t0)
g(t,s)Δs, t ∈ [t0,T ]Tκ ,

where G is defined in (2.6). On the basis of z(t0) = k(T ) , and G is increasing, one has

z(t) � G−1
[
G(k(T ))+

∫ α(t)

α(t0)
f (t,s)Δs+

∫ β (t)

β (t0)
g(t,s)Δs

]
, t ∈ [t0,T ]Tκ .

Letting t = T in the above relation, we obtain

z(T ) � G−1
[
G(k(T ))+

∫ α(T )

α(t0)
f (T,s)Δs+

∫ β (T)

β (t0)
g(T,s)Δs

]
.

Combine the above inequality with (2.9), we obtain

u(T ) �
{

G−1
[
G(k(T ))+

∫ α(T)

α(t0)
f (T,s)Δs+

∫ β (T)

β (t0)
g(T,s)Δs

]} 1
p

. (2.16)

Since T ∈ Tκ is arbitrary, then after substituting T with t in (2.16), we obtain the
desired inequality (2.8). �

3. Main results

THEOREM 1. Assume that (H1)–(H5) hold. Let u : Tκ →R+ be a rd-continuous
function and p > q > 0 be constants. Suppose that for each t ∈ Tκ , and for any ε > 0 ,
there exists a neighborhood U of t , independent of τ ∈ [t0,σ(t)] , such that (2.4) and
(2.5) hold. Let

G(x) =
∫ x

1

1

ω(s
1

p−q )
ds, x > 0, with lim

x→+∞
G(x) = +∞. (3.1)

If u satisfies

up(t)� k
p

p−q (t)+
p

p−q

∫ α(t)

α(t0)
f (t,s)uq(s)ω(u(s))Δs+

p
p−q

∫ β (t)

β (t0)
g(t,s)uq(s)Δs, t ∈Tκ ,

(3.2)
then

u(t) �
{

G−1
[
G

(
k(t)+

∫ β (t)

β (t0)
g(t,s)Δs

)
+

∫ α(t)

α(t0)
f (t,s)Δs

]} 1
p−q

, t ∈ Tκ , (3.3)

where G−1 is the inverse of G.
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Proof. Let T ∈ Tκ be fixed. For t ∈ [t0,T ]Tκ , denote

z(t) = k
p

p−q (T )+
p

p−q

∫ α(t)

α(t0)
f (t,s)uq(s)ω(u(s))Δs+

p
p−q

∫ β (t)

β (t0)
g(t,s)uq(s)Δs.

Then from (3.3), we have

u(t) � z
1
p (t), t ∈ [t0,T ]Tκ . (3.4)

From the assumptions on ω ,α,β and u , for each t ∈ Tκ , we have there exists a con-
stant M , such that for τ ∈ [t0,σ(t)] , |uq(α(τ))ω(u(α(τ)))| � M , and |uq(β (τ))|� M .
So from (2.4) and (2.5), for any ε > 0, there exists a neighborhood U of t , independent
of τ ∈ [t0,σ(t)] , such that

∣∣ f (σ(t),α(τ))uq(α(τ))ω(u(α(τ)))− f (s,α(τ))uq(α(τ))ω(u(α(τ)))

− f Δ
t (t,α(τ))uq(α(τ))ω(u(α(τ)))(σ(t)− s)

∣∣
� M| f (σ(t),α(τ))− f (s,α(τ))− f Δ

t (t,α(τ))(σ(t)− s)|
� ε|σ(t)− s|, for all s ∈U, (3.5)

and

∣∣g(σ(t),β (τ))uq(β (τ))−g(s,β (τ))uq(β (τ))−gΔ
t (t,β (τ))uq(β (τ))(σ(t)− s)

∣∣
� M|g(σ(t),β (τ))−g(s,β (τ))−gΔ

t (t,β (τ))(σ(t)− s)|
� ε|σ(t)− s|, for all s ∈U. (3.6)

By (H1)–(H5) , (3.5) and (3.6), using Lemma 4, we have

zΔ(t) =
p

p−q

{∫ α(t)

α(t0)
f Δ
t (t,s)uq(s)ω(u(s))Δs

+ f (σ(t),α(t))uq(α(t))ω(u(α(t)))αΔ(t)

+
∫ β (t)

β (t0)
gΔ
t (t,s)uq(s)Δs+g(σ(t),β (t))uq(β (t))β Δ(t)

}
.

The assumptions on α,β , f ,g,ω and u imply that z is nondecreasing on Tκ . Hence,
for t ∈ [t0,T ]Tκ , from Lemma 4 and (3.4), we have

zΔ(t) � p
p−q

{∫ α(t)

α(t0)
f Δ
t (t,s)z

q
p (s)ω(z

1
p (s))Δs

+ f (σ(t),α(t))z
q
p (α(t))ω(z

1
p (α(t)))αΔ(t)

+
∫ β (t)

β (t0)
gΔ
t (t,s)z

q
p (s)Δs+g(σ(t),β (t))z

q
p (β (t))β Δ(t)

}
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� p
p−q

z
q
p (t)

{∫ α(t)

α(t0)
f Δ
t (t,s)ω(z

1
p (s))Δs+ f (σ(t),α(t))ω(z

1
p (α(t)))αΔ(t)

+
∫ β (t)

β (t0)
gΔ
t (t,s)Δs+g(σ(t),β (t))β Δ(t)

}

=
p

p−q
z

q
p (t)

(∫ α(t)

α(t0)
f (t,s)ω(z

1
p (s))Δs+

∫ β (t)

β (t0)
g(t,s)Δs

)Δ
,

that is,
zΔ(t)

z
q
p (t)

� p
p−q

(∫ α(t)

α(t0)
f (t,s)ω(z

1
p (s))Δs+

∫ β (t)

β (t0)
g(t,s)Δs

)Δ
. (3.7)

According to Lemma 1, considering zΔ(t) � 0, we have(
p

p−q
z

p−q
p (t)

)Δ
= zΔ(t)

∫ 1

0
[z(t)+hμ(t)zΔ(t)]−

q
p dh

=
zΔ(t)

z
q
p (t)

∫ 1

0
[1+hμ(t)

zΔ(t)
z(t)

]−
q
p dh

� zΔ(t)

z
q
p (t)

. (3.8)

Combining (3.7) and (3.8), we obtain(
z

p−q
p (t)

)Δ
�

(∫ α(t)

α(t0)
f (t,s)ω(z

1
p (s))Δs+

∫ β (t)

β (t0)
g(t,s)Δs

)Δ
. (3.9)

Setting t = τ in (3.9), an integration with respect to τ from t0 to t yields

z
p−q
p (t)− z

p−q
p (t0) �

∫ α(t)

α(t0)
f (t,s)ω(z

1
p (s))Δs+

∫ β (t)

β (t0)
g(t,s)Δs. (3.10)

Since z(t0) = k
p

p−q (T ) , then (3.10) implies

z
p−q

p (t) � k(T )+
∫ α(t)

α(t0)
f (t,s)ω(z

1
p (s))Δs+

∫ β (t)

β (t0)
g(t,s)Δs

= k(T )+
∫ β (t)

β (t0)
g(t,s)Δs+

∫ α(t)

α(t0)
f (t,s)ω(z

1
p (s))Δs, t ∈ [t0,T ]Tκ .

By Lemma 4, and the assumptions on β ,g , we get(
k(T )+

∫ β (t)

β (t0)
g(t,s)Δs

)Δ
=

∫ β (t)

β (t0)
gΔ
t (t,s)Δs+g(σ(t),β (t))β Δ(t) � 0,

and then k(T ) +
∫ β (t)

β (t0)
g(t,s)Δs is nondecreasing and rd-continuous. According to

Lemma 5, we obtain for t ∈ [t0,T ]Tκ ,

z
1
p (t) �

{
G−1

[
G

(
k(T )+

∫ β (t)

β (t0)
g(t,s)Δs

)
+

∫ α(t)

α(t0)
f (t,s)Δs

]} 1
p−q

. (3.11)
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Combining (3.4) and (3.11), we have

u(t) �
{

G−1
[
G

(
k(T )+

∫ β (t)

β (t0)
g(t,s)Δs

)
+

∫ α(t)

α(t0)
f (t,s)Δs

]} 1
p−q

. (3.12)

Let t = T in the above inequality, and since T ∈ Tκ was arbitrarily chosen, after sub-
stituting T with t , we obtain the desired inequality (3.3). �

If we let β (t) = α(t) in Theorem 1, then we have the following corollary.

COROLLARY 1. Let u : Tκ → R+ be a rd-continuous function and p > q > 0 be
constants. Assume that (H1) , (H3)–(H5) , (2.4) and (2.5) hold and G is defined as in
(3.1). If u satisfies

up(t) � k
p

p−q (t)+
p

p−q

∫ α(t)

α(t0)

[
f (t,s)uq(s)ω(u(s))+g(t,s)uq(s)

]
Δs, t ∈ Tκ ,

then

u(t) �
{

G−1

[
G

(
k(t)+

∫ α(t)
α(t0)

g(t,s)Δs
)

+
∫ α(t)

α(t0)
f (t,s)Δs

]} 1
p−q

, t ∈ Tκ .

If we let p > 1, q = p−1, ω(u) = u in Theorem 1, in this case, we have G(x) =
lnx , then we obtain the following corollary.

COROLLARY 2. Let u : Tκ → R+ be a rd-continuous function and p > 1 be a
constant. Assume that (H1)–(H5) , (2.4) and (2.5) hold. If u satisfies

up(t) � kp(t)+ p
∫ α(t)

α(t0)
f (t,s)up(s)Δs+ p

∫ β (t)

β (t0)
g(t,s)up−1(s)Δs, t ∈ Tκ ,

then

u(t) �
(
k(t)+

∫ β (t)
β (t0)

g(t,s)Δs
)

exp
(∫ α(t)

α(t0)
f (t,s)Δs

)
, t ∈ Tκ .

THEOREM 2. Assume that (H1)–(H5) hold and G is defined as in (3.1). Let
u : Tκ → R+ be a rd-continuous function and p > q � 0 be constants. Suppose that
for each t ∈ Tκ , and for any ε > 0 , there exists a neighborhood U of t , independent
of τ ∈ [t0,σ(t)] , such that (2.4) and (2.5) hold. If u satisfies

up(t) � k
p

p−q (t)+
p

p−q

∫ α(t)

α(t0)
f (t,s)uq(s)ω(u(s))Δs

+
p

p−q

∫ β (t)

β (t0)
g(t,s)uq(s)ω(u(s))Δs, t ∈ Tκ , (3.13)

then

u(t) �
{

G−1
[
G

(
k(t)

)
+

∫ α(t)

α(t0)
f (t,s)Δs+

∫ β (t)

β (t0)
g(t,s)Δs

]} 1
p−q

, t ∈ Tκ . (3.14)
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Proof. Let T ∈ Tκ be fixed. For t ∈ [t0,T ]Tκ , denote

z(t)= k
p

p−q (T )+
p

p−q

∫ α(t)

α(t0)
f (t,s)uq(s)ω(u(s))Δs+

p
p−q

∫ β (t)

β (t0)
g(t,s)uq(s)ω(u(s))Δs.

Then from (3.13), we have

u(t) � z
1
p (t), t ∈ [t0,T ]Tκ . (3.15)

Similar to the proof of Theorem 1, from (2.4) and (2.5) we get∣∣ f (σ(t),α(τ))uq(α(τ))ω(u(α(τ)))− f (s,α(τ))uq(α(τ))ω(u(α(τ)))

− f Δ
t (t,α(τ))uq(α(τ))ω(u(α(τ)))(σ(t)− s)

∣∣ � ε|σ(t)− s|, for all s ∈U,
(3.16)

and

|g(σ(t),β (τ))uq(β (τ))ω(u(β (τ)))−g(s,β (τ))uq(β (τ))ω(u(β (τ)))

−gΔ
t (t,β (τ))uq(β (τ))ω(u(β (τ)))(σ(t)− s)| � ε|σ(t)− s|, for all s ∈U.

(3.17)

By (H1)–(H5) , (3.16) and (3.17), using Lemma 4, we obtain

zΔ(t) =
p

p−q

{∫ α(t)

α(t0)
f Δ
t (t,s)uq(s)ω(u(s))Δs+ f (σ(t),α(t))uq(α(t))ω(u(α(t)))αΔ(t)

+
∫ β (t)

β (t0)
gΔ
t (t,s)uq(s)ω(u(s))Δs+g(σ(t),β (t))uq(β (t))ω(u(β (t)))β Δ(t)

}
.

(3.18)

The assumptions on α,β , f ,g,ω and u imply that z is nondecreasing on Tκ . Hence,
for t ∈ [t0,T ]Tκ , from Lemma 4, (3.15) and (3.18), we have

zΔ(t) � p
p−q

{∫ α(t)

α(t0)
f Δ
t (t,s)z

q
p (s)ω(z

1
p (s))Δs

+ f (σ(t),α(t))z
q
p (α(t))ω(z

1
p (α(t)))αΔ(t)

+
∫ β (t)

β (t0)
gΔ
t (t,s)z

q
p (s)ω(z

1
p (s))Δs+g(σ(t),β (t))z

q
p (β (t))ω(z

1
p (β (t)))β Δ(t)

}

� p
p−q

z
q
p (t)

{∫ α(t)

α(t0)
f Δ
t (t,s)ω(z

1
p (s))Δs+ f (σ(t),α(t))ω(z

1
p (α(t)))αΔ(t)

+
∫ β (t)

β (t0)
gΔ
t (t,s)ω(z

1
p (s))Δs+g(σ(t),β (t))ω(z

1
p (β (t)))β Δ(t)

}

=
p

p−q
z

q
p (t)

(∫ α(t)

α(t0)
f (t,s)ω(z

1
p (s))Δs+

∫ β (t)

β (t0)
g(t,s)ω(z

1
p (s))Δs

)Δ
,
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that is,

zΔ(t)

z
q
p (t)

� p
p−q

(∫ α(t)

α(t0)
f (t,s)ω(z

1
p (s))Δs+

∫ β (t)

β (t0)
g(t,s)ω(z

1
p (s))Δs

)Δ
. (3.19)

Combining (3.8) and (3.19), we get

(
z

p−q
p (t)

)Δ
�

(∫ α(t)

α(t0)
f (t,s)ω(z

1
p (s))Δs+

∫ β (t)

β (t0)
g(t,s)ω(z

1
p (s))Δs

)Δ
. (3.20)

Setting t = τ in (3.20), an integration with respect to τ from t0 to t yields

z
p−q
p (t)− z

p−q
p (t0) �

∫ α(t)

α(t0)
f (t,s)ω(z

1
p (s))Δs+

∫ β (t)

β (t0)
g(t,s)ω(z

1
p (s))Δs. (3.21)

Since z(t0) = k
p

p−q (T ) , then (3.21) implies

z
p−q
p (t) � k(T )+

∫ α(t)
α(t0)

f (t,s)ω(z
1
p (s))Δs+

∫ β (t)
β (t0)

g(t,s)ω(z
1
p (s))Δs.

According to Lemma 5, we get for t ∈ [t0,T ]Tκ ,

z
1
p (t) �

{
G−1

[
G

(
k(T )

)
+

∫ α(t)

α(t0)
f (t,s)Δs+

∫ β (t)

β (t0)
g(t,s)Δs

]} 1
p−q

. (3.22)

Combining (3.15) and (3.22), we have

u(t) �
{

G−1
[
G

(
k(T )

)
+

∫ α(t)

α(t0)
f (t,s)Δs+

∫ β (t)

β (t0)
g(t,s)Δs

]} 1
p−q

. (3.23)

Let t = T in the above inequality, and since T ∈ Tκ was arbitrarily chosen, after sub-
stituting T with t , we obtain the desired inequality (3.14). �

If we let β (t) = α(t) in Theorem 2, then we have the following corollary.

COROLLARY 3. Let u : Tκ → R+ be a rd-continuous function and p > q > 0 be
constants. Assume that (H1) , (H3)–(H5) , (2.4) and (2.5) hold and G is defined as in
(3.1). If u satisfies

up(t) � k
p

p−q (t)+
p

p−q

∫ α(t)

α(t0)

[
f (t,s)+g(t,s)

]
uq(s)ω(u(s))Δs, t ∈ Tκ .

then

u(t) �
{

G−1
[
G

(
k(t)

)
+

∫ α(t)

α(t0)

[
f (t,s)+g(t,s)

]
Δs

]} 1
p−q

, t ∈ Tκ .
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THEOREM 3. Assume that (H1),(H3) ,(H4) hold, G is defined as in (3.1), and
h : Tκ →R+ is continuous. Let u : Tκ →R+ be a continuous function and p > q � 0 be
constants. Suppose that for each t ∈Tκ , and for any ε > 0 , there exists a neighborhood
U of t , independent of τ ∈ [t0,σ(t)] , such that (2.4) holds. If u satisfies

up(t) � k
p

p−q (t)+
p

p−q

∫ α(t)

α(t0)

[
f (t,s)uq(s)ω(u(s))+

∫ s

α(t0)
h(τ)uq(τ)Δτ

]
Δs, t ∈ Tκ ,

(3.24)
then

u(t) �
{

G−1
[
G

(
k(t)+

∫ α(t)

α(t0)

[∫ s

α(t0)
h(τ)Δτ + f (t,s)

]
Δs

)]} 1
p−q

, t ∈ Tκ . (3.25)

Proof. Let T ∈ Tκ be fixed. For t ∈ [t0,T ]Tκ , denote

z(t) = k
p

p−q (T )+
p

p−q

∫ α(t)

α(t0)

[
f (t,s)uq(s)ω(u(s))+

∫ s

α(t0)
h(τ)uq(τ)Δτ

]
Δs.

Then from (3.24), we have

u(t) � z
1
p (t), t ∈ [t0,T ]Tκ . (3.26)

Similar to the proof of Theorem 1, from (2.4) we get∣∣ f (σ(t),α(τ))uq(α(τ))ω(u(α(τ)))− f (s,α(τ))uq(α(τ))ω(u(α(τ)))

− f Δ
t (t,α(τ))uq(α(τ))ω(u(α(τ)))(σ(t)− s)

∣∣ � ε|σ(t)− s|, for all s ∈U. (3.27)

Applying Lemma 4, we obtain

zΔ(t) =
p

p−q

{∫ α(t)

α(t0)
f Δ
t (t,s)uq(s)ω(u(s))Δs

+ f (σ(t),α(t))uq(α(t))ω(u(α(t)))αΔ(t)+ αΔ(t)
∫ α(t)

α(t0)
h(τ)uq(τ)Δτ

}
.

(3.28)

The assumptions on α, f ,h,ω and u imply that z is nondecreasing on Tκ . Hence, for
t ∈ [t0,T ]Tκ , from Lemma 4, (3.26) and (3.28), we have

zΔ(t) � p
p−q

{∫ α(t)

α(t0)
f Δ
t (t,s)z

q
p (s)ω(z

1
p (s))Δs

+ f (σ(t),α(t))z
q
p (α(t))ω(z

1
p (α(t)))αΔ(t)+ αΔ(t)

∫ α(t)

α(t0)
h(τ)z

q
p (τ)Δτ

}

� p
p−q

z
q
p (t)

{∫ α(t)

α(t0)
f Δ
t (t,s)ω(z

1
p (s))

+ f (σ(t),α(t))ω(z
1
p (α(t)))αΔ(t)+ αΔ(t)

∫ α(t)

α(t0)
h(τ)Δτ

}

=
p

p−q
z

q
p (t)

(∫ α(t)

α(t0)

[
f (t,s)ω(z

1
p (s))+

∫ s

α(t0)
h(τ)Δτ

]
Δs

)Δ
,
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that is,

zΔ(t)

z
q
p (t)

� p
p−q

(∫ α(t)

α(t0)

[
f (t,s)ω(z

1
p (s))+

∫ s

α(t0)
h(τ)Δτ

]
Δs

)Δ
. (3.29)

Combining (3.8) and (3.29), we obtain

(
z

p−q
p (t)

)Δ
�

(∫ α(t)

α(t0)

[
f (t,s)ω(z

1
p (s))+

∫ s

α(t0)
h(τ)Δτ

]
Δs

)Δ
. (3.30)

Setting t = τ in (3.30), an integration with respect to τ from t0 to t yields

z
p−q
p (t)− z

p−q
p (t0) �

∫ α(t)

α(t0)

[
f (t,s)ω(z

1
p (s))+

∫ s

α(t0)
h(τ)ΔτΔτ

]
Δs. (3.31)

Since z(t0) = k
p

p−q (T ) , then (3.31) implies

z
p−q
p (t) � k(T )+

∫ α(t)

α(t0)

[
f (t,s)ω(z

1
p (s))+

∫ s

α(t0)
h(τ)Δτ

]
Δs

= k(T )+
∫ α(t)

α(t0)

∫ s

α(t0)
h(τ)ΔτΔs+

∫ α(t)

α(t0)
f (t,s)ω(z

1
p (s))Δs.

By Lemma 4, and the assumptions on α and h , we get(
k(T )+

∫ α(t)

α(t0)

∫ s

α(t0)
h(τ)ΔτΔs

)Δ
= αΔ(t)

∫ α(t)

α(t0)
h(τ)Δτ � 0,

and then k(T )+
∫ α(t)

α(t0)
∫ s

α(t0) h(τ)ΔτΔs is nondecreasing and rd-continuous. According

to Lemma 5, we get for t ∈ [t0,T ]Tκ ,

z
1
p (t) �

{
G−1

[
G

(
k(T )+

∫ α(t)

α(t0)

∫ s

α(t0)
h(τ)ΔτΔs

)
+

∫ α(t)

α(t0)
f (t,s)Δs

]} 1
p−q

. (3.32)

Combining (3.26) and (3.32), we have

u(t) �
{

G−1
[
G

(
k(T )+

∫ α(t)

α(t0)

∫ s

α(t0)
h(τ)ΔτΔs

)
+

∫ α(t)

α(t0)
f (t,s)Δs

]} 1
p−q

. (3.33)

Let t = T in the above inequality, and since T ∈ Tκ was arbitrarily chosen, after sub-
stituting T with t , we obtain the desired inequality (3.25). �

REMARK 1. If we take T =R , t0 = 0, k(t)≡ c , β (t)= t , f (t,s) = f (s) , g(t,s) =
g(s) , then Theorem 2 reduces to [29, Theorem 2.2]. If we take T = R , t0 = 0, k(t)≡ c ,
β (t) = t , f (t,s) = f (s) , g(t,s) = g(s) , p = 2, q = 1, then Theorem 2 reduces to [20,
Theorem 2]. If we take T = Z , t0 = 0, k(t) ≡ c , α(t) = β (t) = t , f (t,s) = f (s) ,
g(t,s) = g(s) , p = 2, q = 1, then Theorem 1 reduces to [24, Theorem 6 (b6)]. If we
take k(t) ≡ c , f (t,s) = f (s) , g(t,s) = g(s) , then Theorem 1 reduces to [14, Theorem
3.2].
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4. Applications

In this section, we will apply the results established above to derive explicit bounds
for solutions of certain retarded integral equations on time scales.

Consider the following retarded integral equation on time scales:

up(t) = a(t)+
∫ α(t)

α(t0)
Φ(t,s,u(s))Δs, t ∈ Tκ , (4.1)

where a : Tκ →R is rd-continuous, α is defined as in Theorem 1, Φ : Tκ ×Tκ ×R→R
is continuous, and p is a constant with p > 1.

THEOREM 4. Suppose that

|Φ(t,s,u)| � f (t,s)|u|p +g(t,s)|u|p−1, t,s ∈ Tκ , u ∈ R, (4.2)

where f , g satisfy (H4) and (H5) . If u is a solution of Eq.(4.1), then

u(t) �
(
|a(t)| 1

p +
1
p

∫ α(t)

α(t0)
g(t,s)Δs

)
exp

( 1
p

∫ α(t)

α(t0)
f (t,s)Δs

)
, t ∈ Tκ . (4.3)

Proof. Using (4.1) and (4.2), we have

|up(t)| � |a(t)|+
∫ α(t)

α(t0)
|Φ(t,s,u(s))|Δs

� |a(t)|+
∫ α(t)

α(t0)

[
f (t,s)|u(s)|p +g(t,s)|u(s)|p−1

]
Δs, t ∈ Tκ .

By Corollary 2, we obtain the desired inequality (4.3). �
Next, we consider the following retarded integral equation on time scales:

up(t) = a(t)+
∫ α(t)

α(t0)
F

(
t,s,u(s),

∫ s

α(t0)
Ψ(τ,u(τ))Δτ

)
Δs, t ∈ Tκ , (4.4)

where a : Tκ → R is rd-continuous, α is defined as in Theorem 1, F : Tκ ×Tκ ×R×
R → R and Ψ : Tκ ×R → R are continuous, and p is a constant with p > 1.

THEOREM 5. Suppose that

|F(t,s,u,v)| � f (t,s)|u|p + |v|, t,s ∈ Tκ ,u,v ∈ R, (4.5)

|Ψ(t,u)| � h(t)|u|p−1, t,s ∈ Tκ ,u ∈ R, (4.6)

where f , and h are defined as in Theorem 3. If u is a solution of Eq.(4.4), then

u(t) �
(
|a(t)| 1

p +
1
p

∫ α(t)

α(t0)

∫ s

α(t0)
h(τ)ΔτΔs

)
exp

(1
p

∫ α(t)

α(t0)
f (t,s)Δs

)
, t ∈ Tκ . (4.7)
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Proof. By (4.4)− (4.6), we get

|up(t)| � |a(t)|+
∫ α(t)

α(t0)
|F

(
t,s,u(s),

∫ s

α(t0)
Ψ(τ,u(τ))Δτ

)
|Δs

� |a(t)|+
∫ α(t)

α(t0)

[
f (t,s)|u(s)|p +

∫ s

α(t0)
h(τ)|u(τ)|p−1Δτ

]
Δs, t ∈ Tκ .

Using Theorem 3, we obtain the desired inequality (4.7). �
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