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EXPLICIT BOUNDS OF UNKNOWN FUNCTION

OF SOME NEW WEAKLY SINGULAR RETARDED

INTEGRAL INEQUALITIES WITH APPLICATIONS

RICAI LUO, WU-SHENG WANG AND ZONGYI HOU

(Communicated by Q.-H. Ma)

Abstract. Some new retarded weakly singular integral inequalities of Gronwall-Bellman type
are established, which generalized some known weakly singular inequalities and can be used in
the analysis of various problems in the theory of certain classes of singular differential equations,
singular integral equations and singular evolution equations. Using the modification of Medveď’s
method, the explicit estimations of unknown function in the inequalities are obtained. Finally,
we give a examples to illustrate applications of our results.

1. Introduction

Gronwall [1] and Bellman [2] established the integral inequality

u(t) � c+
∫ t

a
f (s)u(s)ds, t ∈ [a,b],

for some constant c � 0, obtained the estimation of unknown function

u(t) � cexp

(∫ t

a
f (s)ds

)
, t ∈ [a,b]. (1)

In 2016, Abdeldaim[3] discussed the following nonlinear integral inequality

u(t) � u0 +
∫ α(t)

0
f (s)

[
u2−p(s)+

∫ s

0
g(τ)uq(τ)dτ

]p
ds, p ∈ [0,1), (2)

u(t) � n(t)+
∫ α(t)

0
f (s)

[
u(s)+

∫ s

0
g(τ)u(τ)dτ

]p
ds, p ∈ [0,1). (3)

Being an important tool in the study of qualitative properties of solutions of differential
equations and integral equations, various generalizations of Gronwall-Bellman integral

Mathematics subject classification (2010): 26D10, 26D15, 26D20, 45A99.
Keywords and phrases: Integral inequality, delay, weakly singular, explicit bounds, singular integral

equation.
This research was supported by National Natural Science Foundation of China (Project No. 11561019), Guangxi

Natural Science Foundation (Project No. 2016GXNSFAA380090, 2016GXNSFAA380125).
The corresponding author: Wu-Sheng Wang.

c© � � , Zagreb
Paper JMI-12-18

235

http://dx.doi.org/10.7153/jmi-2018-12-18


236 R. LUO, W.-S. WANG AND Z. HOU

inequality and their applications have attracted great interests of many mathematicians
(such as [3–12]). Usually, this type integral inequalities have regular or continuous
integral kernels, but some problems of theory and practicality require us to solve inte-
gral inequalities with singular kernels. For example, to prove a global existence and an
exponential decay result for a parabolic Cauchy problem; Henry [13] investigated the
following linear singular integral inequality

u(t) � a+b
∫ t

0
(t − s)β−1u(s)ds.

Sano and Kunimatsu[14] generalized Henry’s type inequality to

0 � u(t) � c1 + c2t
α−1 + c3

∫ t

0
u(s)ds+ c4

∫ t

0
(t− s)β−1u(s)ds,

and gave a sufficient condition for stabilization of semilinear parabolic distributed sys-
tems. Ye at el. [15] discussed the linear singular integral inequality

u(t) � a(t)+b(t)
∫ t

0
(t − s)β−1u(s)ds,

and used it to study the dependence of the solution on the order and the initial con-
dition to a certain fractional differential equation with Riemann-Liouville fractional
derivatives. All this type inequalities are proved by an iteration argument and the esti-
mation formulas are expressed by a complicated power series which are sometimes not
very convenient for applications. To avoid the weakness, Medveď [16] presented a new
method to solve integral inequalities of Henry-Gronwall type, then he got the explicit
bounds with a quite simple formula, similar to the classic Gronwall-Bellman inequali-
ties. Furthermore, he also obtained global solutions of the semilinear evolutions in [17].
In 2008, Ma and Pečarić [18] used the modification of Medveď’s method to study a new
weakly singular integral inequality

up(t) � a(t)+b(t)
∫ t

0
(tβ − sβ )γ−1sξ−1 f (s)uq(s)ds, t ∈ [0,+∞). (4)

Besides the results mentioned above, various investigators have discovered many useful
and new weakly singular integral inequalities, mainly inspired by their applications in
various branches of fractional differential equations; see [19-28] and the references
cited therein.

However, only a few papers studied the delay weakly singular integral inequalities,
as far as we know. In order to achieve a diversity of desired goals, in this paper, based
on the works of [3, 16, 18], we discuss a class of retarded integral inequalities with
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weak singularity

u(t) � a(t)+b(t)
∫ α(t)

0
(αβ (t)− sβ )γ−1sξ−1A1(s)u(s)ds

+b(t)
∫ α(t)

0
(αβ (t)− sβ )γ−1sξ−1A2(s)

∫ s

0
A3(τ)u(τ)dτds, t ∈ R+, (5)

up(t) � d(t)+b(t)
∫ α(t)

0
(αβ (t)−sβ )γ−1sξ−1 f (s)

[
um(s)+

∫ s

0
g(τ)un(τ)dτ

]q
ds, t ∈ R+,

(6)

which generalize the inequality (2) in [3] to the weakly singular integral inequality, and
(4) in [18] to the retarded inequality. We use the modification of Medveď’s method to
obtain the explicit estimations of unknown function in the inequality (6). Finally, we
give an example to illustrate applications of our results.

2. Main result

LEMMA 1. (Hölders inequality [16]) Suppose that f (x) and g(x) are nonnega-
tive and continuous functions on [c,d] . Let p > 1 , 1

q + 1
p = 1 . Then

∫ d

c
f (s)g(s)ds �

(∫ d

c
f p(s)ds

)1/p(∫ d

c
gq(s)ds

)1/q
. (7)

Let α(t) be continuous, differentiable and increasing functions on [t0,+∞) with α(t)�
t , α(t0) = t0 , then

∫ α(t)

α(t0)
f (s)g(s)ds �

(∫ α(t)

α(t0)
f p(s)ds

)1/p(∫ α(t)

α(t0)
gq(s)ds

)1/q
. (8)

Proof. We prove the inequality (8). Using the inequality (7), we obtain

∫ α(t)

α(t0)
f (s)g(s)ds =

∫ t

t0
f (α(s))g(α(s))α ′(s)ds

=
∫ t

t0
f (α(s))(α ′(s))1/pg(α(s))(α ′(s))1/qds

�
(∫ t

t0
f p(α(s))α ′(s)ds

)1/p(∫ t

t0
gq(α(s))α ′(s)ds

)1/q

=
(∫ α(t)

α(t0)
f p(s)ds

)1/p(∫ α(t)

α(t0)
gq(s)ds

)1/q
. � (9)

LEMMA 2. (Discrete Jensen inequality [29]) Let A1,A2, · · · ,An be nonnegative
real numbers, l > 1 is a real number, and n is a natural number. Then

(A1 +A2 + · · ·+An)l � nl−1(Al
1 +Al

2 + · · ·+Al
n). (10)
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LEMMA 3. (see [30, 18]) Let a � 0 , p � q � 0 and p �= 0 , then

a
q
p � q

p
K

q−p
p a+

p−q
p

K
q
p (11)

for any K > 0 .

LEMMA 4. (see [20, 18]) Let β , γ , ξ and p be positive constants. Then

∫ t

0
(tβ − sβ )p(γ−1)sp(ξ−1)ds =

tθ

β
B
[ p(ξ −1)+1

β
, p(γ −1)+1

]
, t ∈ [0,+∞). (12)

Let α(t) be continuous, differentiable and increasing functions on [t0,+∞) with α(t)�
t , α(t0) = t0 , then

∫ α(t)

α(t0)
(αβ (t)−sβ )p(γ−1)sp(ξ−1)ds � αθ (t)

β
B
[ p(ξ −1)+1

β
, p(γ−1)+1

]
, t ∈ [0,+∞),

(13)
where B[x,y] =

∫ 1
0 sx−1(1− s)y−1ds (x > 0 , y > 0) is the well-known B-function and

θ = p[β (γ −1)+ ξ −1]+1 .

LEMMA 5. (see [20, 18]) Suppose that the positive constants β , γ , ξ , p1 and
p2 satisfy conditions:

(1) if β ∈ (0,1],γ ∈ (1/2,1) and ξ � 3/2− γ , p1 = 1/γ ;
(2) if β ∈ (0,1],γ ∈ (0,1/2] and ξ > (1−2γ2)/(1− γ2) , p2 = (1+4γ)/(1+3γ) ,

then

B
[ pi(ξ −1)+1

β
, pi(γ −1)+1

]
∈ [0,+∞), (14)

and θi = pi[β (γ −1)+ ξ −1]+1 � 0 are valid for i = 1,2 .

LEMMA 6. Let u(t) , a(t) , b(t) and h(t) be nonnegative continuous functions on
R+ , and let α(t) be continuous, differentiable and increasing functions on R+ with
α(t) � t , α(0) = 0 . If u(t) satisfies the following inequality

u(t) � a(t)+b(t)
∫ α(t)

0
h(s)u(s)ds, t ∈ R+. (15)

Then

u(t) � a(t)+
b(t)

e(α(t))

∫ α(t)

0
h(s)a(s)e(s)ds, t ∈ R+, (16)

where

e(t) = exp
(
−

∫ t

0
h(s)b(s)ds

)
. (17)
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Proof. Define a function v(t) on R+ by

v(t) = e(α(t))
∫ α(t)

0
h(s)u(s)ds, (18)

we have v(0) = 0. Differentiating v(t) with respect to t and using (15) and (17), we
have

v′(t) = α ′(t)h(α(t))u(α(t))e(α(t))−α ′(t)h(α(t))b(α(t))e(α(t))
∫ α(t)

0
h(s)u(s)ds

� α ′(t)h(α(t))a(α(t))e(α(t))+ α ′(t)h(α(t))e(α(t))b(α(t))
∫ α(t)

0
h(s)u(s)ds

−α ′(t)h(α(t))b(α(t))e(α(t))
∫ α(t)

0
h(s)u(s)ds

� α ′(t)h(α(t))a(α(t))e(α(t)). (19)

Integrating both sides of the inequality (19) from 0 to t , since v(0) = 0 we get

v(t) �
∫ t

0
α ′(s)h(α(s))a(α(s))e(α(s))ds =

∫ α(t)

0
h(s)a(s)e(s)ds. (20)

From (18) and (20), we obtain

∫ α(t)

0
h(s)u(s)ds � 1

e(α(t))

∫ α(t)

0
h(s)a(s)e(s)ds. (21)

Substituting the inequality (21) into (15) we get the required estimation (16). The proof
is completed. �

THEOREM 1. Let a(t) , b(t) , A1(t) , A2(t) and A3(t) be nonnegative continuous
functions on R+ , and both a(t) and b(t) are nondecreasing functions, and let α(t) be
continuous, differentiable and increasing functions on R+ with α(t) � t , α(0) = 0 .
Let β , γ , ξ be positive constants. Suppose that u(t) satisfies the inequality (5).

(1) If β ∈ (0,1] , γ ∈ (1/2,1) and ξ � 3/2− γ ; then for any K > 0 , we have

u(t) �
(
ã1(t)+

b̃1(t)
ẽ1(α(t))

∫ α(t)

0
h̃1(s)ã1(s)ẽ1(s)ds

)1−γ
, t ∈ R+, (22)
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where

ã1(t) =
(
3M1αθ1(t)

) γ
1−γ a

1
1−γ (t), (23)

b̃1(t) =
(
3M1αθ1(t)

) γ
1−γ b

1
1−γ (t), (24)

h̃1(t) = A
1

1−γ
1 (t)+

(
A2(t)

∫ t

0
A3(τ)dτ

) 1
1−γ

, (25)

ẽ1(t) = exp
(
−

∫ t

0
h̃1(s)b̃1(s)ds

)
, (26)

M1 =
1
β

B
[γ + ξ −1

β γ
,
2γ −1

γ

]
, (27)

θ1 =
1
γ
[β (γ −1)+ ξ −1]+1. (28)

(2) If β ∈ (0,1] , γ ∈ (0,1/2] and ξ > (1−2γ2)/(1− γ2) , then for any K > 0 , we
have

w(t) �
(
ã2(t)+

b̃2(t)
ẽ2(α(t))

∫ α(t)

0
h̃2(s)ã2(s)ẽ2(s)ds

) γ
1+4γ

, t ∈ R+, (29)

where

ã2(t) =
(
3M2αθ2(t)

) 1+3γ
γ a

1+4γ
γ (t), (30)

b̃2(t) =
(
3M2αθ2(t)

) 1+3γ
γ b

1+4γ
γ (t), (31)

h̃2(t) = A
1+4γ

γ
1 (s)+

(
A2(s)

∫ s

0
A3(τ)dτ

) 1+4γ
γ

, (32)

ẽ2(t) = exp
(
−

∫ t

0
h̃2(s)b̃2(s)ds

)
, (33)

M2 =
1
β

B
[ξ (1+4γ)− γ

β (1+3γ)
,

4γ2

1+3γ

]
, (34)

θ2 =
1+4γ
1+3γ

[β (γ −1)+ ξ −1]+1. (35)

Proof. If β ∈ (0,1] , γ ∈ (1/2,1) and ξ � 3/2− γ , let p1 = 1/γ , q1 = 1/(1− γ) ;
if β ∈ (0,1] , γ ∈ (0,1/2] and ξ > (1− 2γ2)/(1− γ2) , let p2 = (1 + 4γ)/(1+ 3γ) ,
q2 = (1+4γ)/γ , then 1/pi+1/qi = 1 for i = 1,2. Using Hölder’s inequality in Lemma
1 to (5), we have

u(t) � a(t)+b(t)
[∫ α(t)

0
(αβ (t)− sβ )pi(γ−1)spi(ξ−1)ds

]1/pi
[∫ α(t)

0
Aqi

1 (s)uqi(s)ds
]1/qi

+b(t)
[∫ α(t)

0
(αβ (t)− sβ )pi(γ−1)spi(ξ−1)ds

]1/pi

×
[∫ α(t)

0

(
A2(s)

∫ s

0
A3(τ)u(τ)dτ

)qi
ds

]1/qi
. (36)
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Define a function z(t) by the right hand side of the inequality (36), i. e.

z(t) = a(t)+b(t)
[∫ α(t)

0
(αβ (t)− sβ )pi(γ−1)spi(ξ−1)ds

]1/pi
[∫ α(t)

0
Aqi

1 (s)uqi(s)ds
]1/qi

+b(t)
[∫ α(t)

0
(αβ (t)− sβ )pi(γ−1)spi(ξ−1)ds

]1/pi

×
[∫ α(t)

0

(
A2(s)

∫ s

0
A3(τ)u(τ)dτ

)qi
ds

]1/qi
. (37)

Then, z(t) is a nondecreasing function, and u(t) � z(t) , we have

z(t) � a(t)+b(t)
[∫ α(t)

0
(αβ (t)− sβ )pi(γ−1)spi(ξ−1)ds

]1/pi
[∫ α(t)

0
Aqi

1 (s)zqi(s)ds
]1/qi

+b(t)
[∫ α(t)

0
(αβ (t)− sβ )pi(γ−1)spi(ξ−1)ds

]1/pi

×
[∫ α(t)

0

(
A2(s)

∫ s

0
A3(τ)dτ

)qi
zqi(s)ds

]1/qi
. (38)

Using discrete Jensen inequality (10) in Lemma 2 with n = 3, l = qi , we obtain

zqi(t) � 3qi−1aqi(t)+3qi−1bqi(t)
[∫ α(t)

0
(αβ (t)− sβ )pi(γ−1)spi(ξ−1)ds

]qi/pi

×
∫ α(t)

0
Aqi

1 (s)zqi(s)ds

+3qi−1bqi(t)
[∫ α(t)

0
(αβ (t)− sβ )pi(γ−1)spi(ξ−1)ds

]qi/pi

×
∫ α(t)

0

(
A2(s)

∫ s

0
A3(τ)dτ

)qi
zqi(s)ds. (39)

Using Lemmas 4 and 5, the inequality (39) can be rewritten as

zqi(t) � 3qi−1aqi(t)+3qi−1bqi(t)
(
Miαθi(t)

)qi/pi

×
∫ α(t)

0

[
Aqi

1 (s)+
(
A2(s)

∫ s

0
A3(τ)dτ

)qi
]
zqi(s)ds, (40)

for t ∈ R+ , where

Mi =
1
β

B
[ pi(ξ −1)+1

β
, pi(γ −1)+1

]
, (41)

θi = pi[β (γ −1)+ ξ −1]+1 � 0, (42)

for i = 1,2. Applying Lemma 6 to (40), we obtain

uqi(t) � zqi(t) � ãi(t)+
b̃i(t)

ẽi(α(t))

∫ α(t)

0
h̃i(s)ãi(s)ẽi(s)ds, t ∈ R+, (43)
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where

ãi(t) = 3qi−1aqi(t), (44)

b̃i(t) = 3qi−1bqi(t)
(
Miαθi(t)

)qi/pi , (45)

h̃i(t) = Aqi
1 (s)+

(
A2(s)

∫ s

0
A3(τ)dτ

)qi
, (46)

ẽi(t) = exp
(
−

∫ t

0
h̃i(s)b̃i(s)ds

)
. (47)

Substituting p1 = 1/γ , q1 = 1/(1− γ) and p2 = (1+ 4γ)/(1+ 3γ) , q2 = (1+ 4γ)/γ
to (43) respectively, we can get the desired estimations (22) and (29). The proof is
completed. �

THEOREM 2. Let u(t) , d(t) , b(t) and f (t) be nonnegative continuous functions
on R+ , and b(t) is a nondecreasing function, and let α(t) be continuous, differentiable
and increasing functions on [t0,+∞) with α(t) � t , α(0) = 0 . Let p , q , m, n, β , γ ,
ξ be positive constants with p � m, p � n, m, n, q ∈ [0,1) . If u(t) satisfies the
inequality (6).

(1) If β ∈ (0,1] , γ ∈ (1/2,1) and ξ � 3/2− γ ; then for any K > 0 , we have

u(t) �
[
d(t)+

(
ã1(t)+

b̃1(t)
ẽ1(α(t))

∫ α(t)

0
h̃1(s)ã1(s)ẽ1(s)ds

)1−γ
]1/p

, t ∈ R+, (48)

where b̃1(t) , h̃1(t) , ẽ1(t) are the same as in Theorem 1.

ã1(t) =
(
3M1αθ1(t)

) γ
1−γ a

1
1−γ (t), (49)

a(t) = b(t)
∫ α(t)

0
(αβ (t)− sβ )γ−1sξ−1A(s)ds, (50)

A(t) = f (t)
[
(1−q)Kq +qKq−1

(m
p

K
m−p

p d(t)+
p−m

p
K

m
p

)]

+qKq−1 f (t)
∫ t

0
g(τ)

[ n
p
K

n−p
p d(τ)+

p−n
p

K
n
p

]
dτ,

A1(t) =
mq
p

K
m
p +q−2 f (t),A2(t) = qKq−1 f (t),A3(t) =

n
p
K

n−p
p g(t). (51)

(2) If β ∈ (0,1] , γ ∈ (0,1/2] and ξ > (1−2γ2)/(1− γ2) , then for any K > 0 , we
have

u(t) �
[
d(t)+

(
ã2(t)+

b̃2(t)
ẽ2(α(t))

∫ α(t)

0
h̃2(s)ã2(s)ẽ2(s)ds

) γ
1+4γ

]1/p
, t ∈ R+, (52)

where ã2(t) , b̃2(t) , h̃2(t) , ẽ2(t) are the same as in Theorem 1,

Proof. By Lemma 3, for any K > 0 we have
[
um(s)+

∫ s

0
g(τ)un(τ)dτ

]q
� qKq−1

[
um(s)+

∫ s

0
g(τ)un(τ)dτ

]
+(1−q)Kq, (53)
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Substituting (53) to (6), we have

up(t) � d(t)+b(t)
∫ α(t)

0
(αβ (t)− sβ )γ−1sξ−1 f (s)

×
[
qKq−1

(
um(s)+

∫ s

0
g(τ)un(τ)dτ

)
+(1−q)Kq

]
ds, (54)

Define a function w(t) by

w(t) = b(t)
∫ α(t)

0
(αβ (t)− sβ )γ−1sξ−1(1−q)Kq f (s)ds

+b(t)
∫ α(t)

0
(αβ (t)− sβ )γ−1sξ−1qKq−1 f (s)um(s)ds

+b(t)
∫ α(t)

0
(αβ (t)−sβ )γ−1sξ−1qKq−1 f (s)

∫ s

0
g(τ)un(τ)dτds, t ∈ R+. (55)

We have

up(t) � d(t)+w(t), or, u(t) �
(
d(t)+w(t)

)1/p
, t ∈ [t0,+∞). (56)

By Lemma 3 and (56), for the above K > 0, we obtain

um(t) �
(
d(t)+w(t)

)m/p � m
p

K
m−p

p (d(t)+w(t))+
p−m

p
K

m
p , t ∈ R+, (57)

un(t) �
(
d(t)+w(t)

)n/p � n
p
K

n−p
p (d(t)+w(t))+

p−n
p

K
n
p , t ∈ R+. (58)
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Substituting the inequality (57) and (58) into (55) we have

w(t) � b(t)
∫ α(t)

0
(αβ (t)− sβ )γ−1sξ−1(1−q)Kq f (s)ds

+b(t)
∫ α(t)

0
(αβ (t)− sβ )γ−1sξ−1qKq−1 f (s)

×
[m

p
K

m−p
p (d(s)+w(s))+

p−m
p

K
m
p

]
ds

+b(t)
∫ α(t)

0
(αβ (t)− sβ )γ−1sξ−1qKq−1 f (s)

∫ s

0
g(τ)

×
[n
p
K

n−p
p (d(τ)+w(τ))+

p−n
p

K
n
p

]
dτds

� b(t)
∫ α(t)

0
(αβ (t)− sβ )γ−1sξ−1 f (s)

×
[
(1−q)Kq +qKq−1

(m
p

K
m−p

p d(s)+
p−m

p
K

m
p

)]
ds

+b(t)
∫ α(t)

0
(αβ (t)−sβ )γ−1sξ−1qKq−1 f (s)

∫ s

0
g(τ)

[ n
p
K

n−p
p d(τ)+

p−n
p

K
n
p

]
dτds

+b(t)
∫ α(t)

0
(αβ (t)− sβ )γ−1sξ−1 mq

p
K

m
p +q−2 f (s)w(s)ds

+b(t)
∫ α(t)

0
(αβ (t)− sβ )γ−1sξ−1qKq−1 f (s)

∫ s

0

n
p
K

n−p
p g(τ)w(τ)dτds

� b(t)
∫ α(t)

0
(αβ (t)− sβ )γ−1sξ−1A(s)ds+b(t)

∫ α(t)

0
(tβ − sβ )γ−1sξ−1A1(s)w(s)ds

+b(t)
∫ α(t)

0
(αβ (t)− sβ )γ−1sξ−1A2(s)

∫ s

0
A3(τ)w(τ)dτds, t ∈ R+

= a(t)+b(t)
∫ α(t)

0
(αβ (t)− sβ )γ−1sξ−1A1(s)w(s)ds

+b(t)
∫ α(t)

0
(αβ (t)− sβ )γ−1sξ−1A2(s)

∫ s

0
A3(τ)w(τ)dτds, t ∈ R+. (59)
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where

a(t) = b(t)
∫ α(t)

0
(αβ (t)− sβ )γ−1sξ−1A(s)ds, (60)

A(t) = f (t)
[
(1−q)Kq +qKq−1

(m
p

K
m−p

p d(t)+
p−m

p
K

m
p

)]

+qKq−1 f (t)
∫ t

0
g(τ)

[ n
p
K

n−p
p d(τ)+

p−n
p

K
n
p

]
dτ,

A1(t) =
mq
p

K
m
p +q−2 f (t),

A2(t) = qKq−1 f (t),

A3(t) =
n
p
K

n−p
p g(t).

Since (59) have the same form of (5) and the functions of (59) satisfy the conditions of
Theorem 1, applying Theorem 1 to (59), considering the relation (54), we can get the
desired estimations (48) and (52). The proof is completed. �

3. Application

Consider the following Volterra type retarded weakly singular integral equations

yp(t)−λ t−β δ
∫ α(t)

0

(αβ (t)− sβ )γ−1

Γ(γ)
sβ (1+δ )−1

[
y(s)+

∫ s

0
g(τ)y(τ)dτ

]q
ds = h(t)

(61)
which arises very often in various problems, especial describing physical processes
with aftereffects. Ma and Pečarić [18] discussed the case α(t) = t , g(t) ≡ 0 in (61).

THEOREM 3. Let y(t) , g(t) and h(t) be continuous functions on [0,+∞) , and let
α(t) be continuous, differentiable and increasing functions on [0,+∞) with α(t) � t ,
α(0) = 0 . Let p , q , β , γ , δ be positive constants with p � q. If y(t) satisfies the
equation (61).

(i) If β ∈ (0,1] , γ ∈ (1/2,1) and β (1 + δ ) � 3/2− γ ; then for any K > 0 , we
have

|y(t)| �
[
|h(t)|+

(
ã1(t)+

b̃1(t)
ẽ1(α(t))

∫ α(t)

0
h̃1(s)ã1(s)ẽ1(s)ds

)1−γ
]1/p

, t ∈ R+, (62)

where

ã1(t) =
(
3M1αθ1(t)

) γ
1−γ

( |λ |
Γ(γ)

t−β ξ
) 1

1−γ
∫ α(t)

0
A

1
1−γ
1 (s)ds,

b̃1(t) =
(
3M1αθ1(t)

) γ
1−γ

( |λ |
Γ(γ)

t−β ξ
) 1

1−γ
,

h̃1(t) = A
1

1−γ
2 (t)+

(
A3(t)

∫ t

0
A4(τ)dτ

) 1
1−γ

,
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ẽ1(t) = exp
(
−

∫ t

0
h̃1(s)b̃1(s)ds

)
,

M1 =
1
β

B
[γ + ξ −1

β γ
,
2γ −1

γ

]
,

θ1 =
1
γ
[β (γ −1)+ ξ −1]+1,

A1(t) = (1−q)Kq +qKq−1
( 1

p
K

1−p
p |h(t)|+ p−1

p
K

1
p

)

+qKq−1
∫ t

0
|g(τ)|

[ 1
p
K

1−p
p |h(τ)|+ p−1

p
K

1
p

]
dτ,

A2(t) =
q
p
K

1
p+q−2,A3(t) = qKq−1,A4(t) =

1
p
K

1−p
p |g(t)|.

(2) If β ∈ (0,1] , γ ∈ (0,1/2] and ξ > (1−2γ2)/(1− γ2) , then for any K > 0 , we
have

w(t) �
[
|h(t)|+

(
ã2(t)+

b̃2(t)
ẽ2(α(t))

∫ α(t)

0
h̃2(s)ã2(s)ẽ2(s)ds

) γ
1+4γ

]1/p
, t ∈ R+, (63)

where

ã2(t) =
(
3M2αθ2(t)

) 1+3γ
γ

( |λ |
Γ(γ)

t−β ξ
) 1+4γ

γ
∫ α(t)

0
A

1+4γ
γ

1 (s)ds,

b̃2(t) =
(
3M2αθ2(t)

) 1+3γ
γ

( |λ |
Γ(γ)

t−β ξ
) 1+4γ

γ
,

h̃2(t) = A
1+4γ

γ
2 (s)+

(
A3(s)

∫ s

0
A4(τ)dτ

) 1+4γ
γ

,

ẽ2(t) = exp
(
−

∫ t

0
h̃2(s)b̃2(s)ds

)
,

M2 =
1
β

B
[ξ (1+4γ)− γ

β (1+3γ)
,

4γ2

1+3γ

]
,

θ2 =
1+4γ
1+3γ

[β (γ −1)+ ξ −1]+1.

Proof. From (61), we have

|y(t)|p � |h(t)|+ |λ |
Γ(γ)

t−β ξ
∫ α(t)

0
(αβ (t)− sβ )γ−1sβ (1+ξ )−1

×
[
|y(s)|+

∫ s

0
|g(τ)||y(τ)|dτ

]q
ds. (64)

Appling the Theorem 1 (with m = n = 1, a(t) = |h(t)| , b(t) = |λ |t−β δ/Γ(γ) , ξ =
β (1+ δ )) to (64), we obtain the desired estimations (48) and (52). �
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