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Abstract. Let K, A be respectively a compact and an element of B(H) the algebra of all bounded
linear operators acting on a complex Hilbert space H . In this paper we define the maximal
numerical range of the set A∗K = {A∗B : B ∈ K} relatively to K by

WK(A∗K) = co(
⊔

B∈K

WB(A∗B)).

Where WB(A∗B) is the maximal numerical range of A∗B relatively to B defined by Magajna [6]
and which coincides with the maximal numerical range W0(B) of B defined by Stampfli [7] if A
is the unit element I . Our new definition will generalize the results of Stampfli [7] and Barraa-
Boumazguour [1] over the distance of an element B to Vect(A) . It also will generalize and
improve several inequalities established by Dragomir [4, 5] linking the norm and the numerical
radius of B .

1. Introduction

Let H be a complexe Hilbert space. Let H1 = {x ∈ H : ‖x‖ = 1} and B(H) be
the algebra of all bounded linear operators acting on H . For B ∈ B(H) , Stampfli [7]
defined the maximal numerical range W0(B) of B by

W0(B) = {λ = lim
n
〈Bxn,xn〉 : (xn)n ⊆ H1, lim

n
‖Bxn‖ = ‖B‖},

and the center of mass of B as the unique scalar cB such that

‖B− cBI‖ = inf
λ∈C

‖B−λ I‖.

He established the equivalence of the following assertions

(1) 0 ∈W0(B− cBI) ,

(2) ‖B− cBI‖ � ‖B− cBI−λ I‖ , for all λ ∈ C ,

(3) ‖B− cBI‖2 + |λ |2 � ‖B− cBI−λ I‖2 , for all λ ∈ C .
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He showed the continuity of the map B �−→ cB , B ∈ B(H) . Magajna [6] defined the
maximal numerical range WB(A∗B) of A∗B relatively to B as the following convex
compact

WB(A∗B) = {λ = lim
n
〈A∗Bxn,xn〉 : (xn)n ⊆ H1, lim

n
‖Bxn‖ = ‖B‖}.

Note that if A = I , then WB(A∗B) = W0(B) . Barraa and Boumazgour [1] showed the
equivalence of the following assertions

(1) 0 ∈WB(A∗B) ,

(2) ‖B‖ � ‖B+ λA‖ , for all λ ∈ C ,

(3) ‖B‖2 + |λ |2m2(A) � ‖B+ λA‖2 , for all λ ∈ C , where m(A) = inf
x∈H1

‖Ax‖ .

When m(A) > 0, they showed the existence and the uniqueness of a scalar denoted
cB(A∗B) such that

‖B− cB(A∗B)A‖ = inf
λ∈C

‖B−λA‖.

They called it the center of mass of A∗B relatively to B . They also showed the continu-
ity of the map B �−→ cB(A∗B) , B ∈ B(H) . Bouchen and Chraibi Kaadoud [2] defined
the numerical range of a compact K of B(H) by

W (K) = co(
⊔
B∈K

W (B)).

Here, co(S) denotes the convex hull of a set S in a vector space and W (B) is the
numerical range of B defined by

W (B) = {〈Bx,x〉 : x ∈ H1}.

In this direction, for a compact K and an element A of B(H) , we define the maximal
numerical range WK(A∗K) of the set A∗K = {A∗B : B ∈ K} relatively to K by

WK(A∗K) = co(
⊔
B∈K

WB(A∗B)).

In the second section we show (Theorem 1) that WK(A∗K) is a compact set. For a scalar
z0 , we show (Proposition 1) the equivalence of the following assertions

(1) 0 ∈W(K−z0A)′(A
∗(K− z0A)′) ,

(2) |K− z0A| � |(K− z0A)′ −λA| , for all λ ∈ C ,

(3) |K− z0A|2 + |λ |2m2(A) � |(K− z0A)′ −λA|2 , for all λ ∈ C .

Where, for any compact S of B(H) , S′ = {B∈ S : ‖B‖= |S|} with |S| is the modulus of
S defined by |S| = sup

B∈S
‖B‖ . Note that S′ is also a compact set of B(H) and |S| = |S′| .
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In the case where m(A) > 0, we show the existence of a class, denoted KA , of
compacts K of B(H) such that there exists a unique scalar cK checking one of the three
previous equivalent assertions. A such scalar will be called the center of mass of A∗K
relatively to K , or simply the center of A∗K . We also show the continuity in the sens
of Hausdorff of the mapp K �−→ cK , K ∈ KA .

In the last section we show some inequalities linking |K| and the positive real
w′

K′(A∗K′) defined by

w′
K′(A∗K′) = inf

B∈K′{|z| : z ∈WB(A∗B)}.

The inequalities we get in the multivoque case generalize and improve several inequal-
ities established by Dragomir [4, 5] linking the norm and the numerical radius of B in
the univoque case (i.e., K is reduced to a singleton).

Throughout, K and A will denote respectively a compact and a non zero element
of B(H) .

2. Maximal numerical range of a compact set

DEFINITION 1. The maximal numerical range of A∗K relatively to K , denoted
WK(A∗K) , is defined by

WK(A∗K) = co(
⊔
B∈K

WB(A∗B)),

where

WB(A∗B) = {λ = lim
n
〈A∗Bxn,xn〉 : (xn) ⊆ H1, lim

n
‖Bxn‖ = ‖B‖}.

THEOREM 1. The set WK(A∗K) is compact.

Proof. It suffices to show that
⊔
B∈K

WB(A∗B) is compact. For any z∈
⊔
B∈K

WB(A∗B) ,

we have |z|� ‖A‖|K| . It follows that
⊔
B∈K

WB(A∗B) is bounded. Now we show that it is

closed. Let (λm)m be a sequence of elements of
⊔
B∈K

WB(A∗B) converging to λ . Then

∀p ∈ N
∗, ∃mp ∈ N, ∀m � mp : |λm −λ |< 1

2p
. (2.1)

Since λmp ∈
⊔
B∈K

WB(A∗B) , then λmp ∈WBmp
(A∗Bmp) for some Bmp ∈ K , thus

∃(x(n)
mp )n ⊂ H1 : lim

n
〈A∗Bmpx

(n)
mp ,x

(n)
mp 〉 = λmp and lim

n
‖Bx(n)

mp‖ = ‖Bmp‖.

Then

∀p ∈ N
∗, ∃n′mp

∈ N, ∀n � n′mp
: |〈A∗Bmpx

(n)
mp ,x

(n)
mp 〉−λmp| <

1
2p

, (2.2)
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∀p ∈ N
∗, ∃n′′mp

∈ N, ∀n � n′′mp
: |‖Bmpx

(n)
mp‖−‖Bmp‖| <

1
p
. (2.3)

For all p ∈ N
∗ , put np = max(n′mp

,n′′mp
), xp = x

(np)
mp and Bp = Bmp . We have

(xp)p�1 ⊆ H1 and (Bp)p�1 ⊆ K.

By (2.1), (2.2) and using the triangular inequality, we have

∀p ∈ N
∗ : | 〈A∗Bpxp,xp〉−λ |< 1

p
. (2.4)

By (2.3), we obtain

∀p ∈ N
∗ : |‖ Bpxp ‖ − ‖ Bp ‖|< 1

p
. (2.5)

The sequenses (Bp)p�1 , (‖ Bpxp ‖)p�1 and (‖ Bp ‖)p�1 are bounded. We can assume
they converge. Let B be the limit of (Bp)p�1 , then we have

lim
p
‖Bp‖ = ‖B‖. (2.6)

Thus
|〈A∗Bxp,xp〉− 〈A∗Bpxp,xp〉| � ‖A‖‖B−Bp‖ −−−−→

p→+∞
0.

We can also assume that the sequense (〈A∗Bxp,xp〉)p�1 converge (it is bounded).
By (2.4), lim

p
〈A∗Bpxp,xp〉 = λ . Then

lim
p
〈A∗Bxp,xp〉 = λ . (2.7)

By (2.5) and (2.6), we have

lim
p
‖Bpxp‖ = lim

p
‖Bp‖ = ‖B‖.

Since ‖Bpxp−Bxp‖� ‖Bp−B‖−−−−→
p→+∞

0, then the sequenses (Bpxp)p�1 and (Bxp)p�1

have the same limit. We obtain

lim
p
‖Bxp‖ = ‖B‖. (2.8)

From (2.7) and (2.8), it follows that λ ∈WB(A∗B) ⊆
⊔
B∈K

WB(A∗B) . �

REMARK 1. We find again the compactness of WB(A∗B) by taking K = {B} .

REMARK 2. If K is a non compact set, WK(A∗K) fail to be compact. For exam-
ple, set K = {αI : α ∈ (−1,1)} . It is clear that K is a non compact subset of B(H) .
Take A = I ; WK(A∗K) = (−1,1) is non compact.
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EXAMPLE 1. Let λ0 ∈ C . Define the compact S of C by S = {λ0 + 1, λ0 +
i, λ0 − 1, λ0 − i} and the compact K of B(H) by K = {zA : z ∈ S} . Note that the
smallest disc containing S−λ0 is centered at 0 . By Chraibi [3, Proposition 4],

|S−λ0| � |S−λ0−λ |, for all λ ∈ C.

It follows, since (K−λ0A)′ = K−λ0A , that

|K−λ0A| � |(K−λ0A)′ −λA|, for all λ ∈ C.

On the other hand, W(K−λ0A)′(A
∗(K−λ0A)′) = co({1, i, −1, − i}WA(A∗A)) ; we see

that 0 ∈W(K−λ0A)′(A
∗(K−λ0A)′) .

The previous example suggests the following theorem.

THEOREM 2. Let K ⊆ B(H) a compact. The following are equivalent

(1) 0 ∈WK′(A∗K′) ,

(2) |K| � |K′ −λA|, f or all λ ∈ C ,

(3) |K|2 + |λ |2m2(A) � |K′ −λA|2, f or all λ ∈ C .

Proof. (1) ⇒ (3) . Assume that 0 ∈WK′(A∗K′) . By the Caratheodory theorem, 0
is a combinaison convexe of at most three elements of

⊔
B∈K′

WB(A∗B) . Then there exists

λi ∈WBi(A
∗Bi), αi ∈ R

+ for i ∈ {1,2,3} such that

Bi ∈ K′,
i=3

∑
i=1

αi = 1 and 0 =
i=3

∑
i=1

αiλi.

For i ∈ {1,2,3} , there exists a sequence (xi,n)n of elements of H1 such that

λi = lim
n
〈A∗Bixi,n,xi,n〉 and lim

n
‖Bixi,n‖ = ‖Bi‖.

Let λ ∈ C, n ∈ N and i ∈ {1,2,3}

‖Bi + λA‖2 � ‖(Bi + λA)xi,n‖2

= ‖Bixi,n‖2 + |λ |2‖Axi,n‖2 +2Re(λ〈A∗Bixi,n,xi,n〉)
� ‖Bixi,n‖2 + |λ |2m2(A)+2Re(λ〈A∗Bixi,n,xi,n〉).

Since |K′ + λA|� ‖Bi + λA‖ for i ∈ {1,2,3} , then

|K′ + λA|2 � |λ |2m2(A)+
i=3

∑
i=1

αi‖Bixi,n‖2 +2
i=3

∑
i=1

αiRe(λ 〈A∗Bixi,n,xi,n〉). (2.9)
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But

lim
n

i=3

∑
i=1

αiRe(λ 〈A∗Bixi,n,xi,n〉) =
i=3

∑
i=1

αiRe(λλi) = Re(λ
i=3

∑
i=1

αiλi) = 0,

by passing to the limit in (2.9), we obtain |K|2 + |λ |2m2(A) � |K′ −λA|2 .
(3) ⇒ (2) . is trivial.
(2) ⇒ (1) . Assume that 0 �∈ WK′(A∗K′) . By rotating, we can assume that

Re(WK′(A∗K′)) � t for some t > 0. Then Re(WB(A∗B)) � t , for all B ∈ K′ .

For B ∈ K′ , consider the set GB = {x ∈ H1 : Re(〈A∗Bx,x〉) � t
2
} and put

η = sup{‖Bx‖ : B ∈ K′, x ∈ GB}.

The following of the proof is in two steps.
First step: we show that η < |K′| .
It is clair that η � |K′| . Assume that η = |K′| . then there exists a sequence (Bn)n

of elements of K′ and a sequence (xn)n with xn ∈ GBn for all n ∈ N such that

lim
n
‖Bnxn‖ = |K′|.

Since K′ is compact, there exists a subsequence (Bϕ(n))n which converges to some
B ∈ K′ . In addition we have

xϕ(n) ∈ GBϕ(n) for all n ∈ N and lim
n
‖Bϕ(n)xϕ(n)‖ = |K′|.

But |‖Bxϕ(n)‖− ‖Bϕ(n)xϕ(n)‖| � ‖(B−Bϕ(n))xϕ(n)‖ � ‖B−Bϕ(n)‖ −−−−→
n→+∞

0. We de-

duce that

lim
n
‖Bxϕ(n)‖ = |K′|.

Since xϕ(n)∈GBϕ(n) , then Re(〈A∗Bϕ(n)xϕ(n),xϕ(n)〉)�
t
2

. The sequence (〈A∗Bxϕ(n),xϕ(n)〉)n

is bounded, we can assume it converges. Let λ be its limit, by continuity of the map

z ∈ C �−→ Re(z) we have Re(λ ) � t
2

. We obtain

lim
n
〈A∗Bxϕ(n),xϕ(n)〉 = λ , lim

n
‖Bxϕ(n)‖ = |K′| and Re(λ ) � t

2
.

We deduce that λ ∈WB(A∗B) and Re(λ )� t
2

. This contradicts the fact that Re(WB(A∗B))
� t .

Second step: take μ = inf
( t
‖A‖2 ,

|K′|−η
2‖A‖

)
, we show that |K′ −μA|< |K| . This

completes the proof.
By compactness of the set K′ − μA , there exists Bμ ∈ K′ such that |K′ − μA| =

‖Bμ − μA‖ . Let x ∈ H1 , we study two cases.
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First case: x ∈ GBμ .

‖(Bμ − μA)x‖� ‖Bμx‖+ μ‖Ax‖� η + μ‖A‖

� η +
|K′|−η

2
=

|K′|+ η
2

< |K′|.

Second case: x �∈ GBμ . We have Re(〈A∗Bμx,x〉) >
t
2

. Put

A∗Bμx = (a+ ib)x+ y, with a, b ∈ R and 〈x,y〉 = 0.

Then we obtain Re(〈A∗Bμx,x〉) = a >
t
2

.

‖(Bμ − μA)x‖2 = ‖Bμx‖2 + μ2‖Ax‖2−2μRe(〈A∗Bμx,x〉)
� ‖Bμ‖2 + μ(μ‖A‖2−2a)

< ‖Bμ‖2 + μ(μ‖A‖2−2t)

< |K′|2,

since μ‖A‖2−2t < 0. In total, |K′ − μA|< |K′| . �

PROPOSITION 1. Let K be a compact of B(H) and z0 be a scalar. The following
are equivalent:

(1) 0 ∈W(K−z0A)′(A
∗(K− z0A)′) ,

(2) |K− z0A| � |(K− z0A)′ −λA| , for all λ ∈ C ,

(3) |K− z0A|2 + |λ |2m2(A) � |(K− z0A)′ −λA|2 , for all λ ∈ C .

Proof. It suffices to replace K by K− z0A in Theorem 2. �

DEFINITION 2. Let A ∈ B(H) and m(A) > 0. Let KA be the class of compacts
K of B(H) such that

|K−λKA| � |(K−λKA)′ −λA|, for all λ ∈ C

holds for some scalar λK .

This class is not empty since it contains the compacts K = {B} with B ∈ B(H)
(λK = cB(A∗B) , center of mass of A∗B relatively to B). We give other examples later.

PROPOSITION 2. Assume that m(A) > 0 . Let K ∈ KA , then there exists a unique
scalar cK such that

|K− cKA| � |(K− cKA)′ −λA|, for all λ ∈ C. (2.10)
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Proof. By definition of KA , the scalar cK exists. Assume that c′K is an other
scalar checking the inequality (2.10). Let λ be a scalar, from Proposition 1, we have ,

|K− c′K |2 + |λ |2m2(A) � |(K− c′KA)′ −λA|2,
� |K− c′KA−λA|2.

Take λ = cK − c′K , we have

|K− c′KA|2 + |cK − c′K|2m2(A) � |K− cKA|2
� |(K− cKA)′ −αA|2, for all α ∈ C

� |K− cKA−αA|2, for all α ∈ C.

Take α = cK + c′K , we obtain

|K− c′KA|2 + |cK − c′K|2m2(A) � |K− c′KA|2.

We deduce that |cK − c′K |2m2(A) = 0. Since m(A) �= 0, then c′K = cK . �

DEFINITION 3. Let K, A and cK be as in Proposition 2. The scalar cK is called
center of A∗K .

EXAMPLE 2. In Example 1, K ∈ KA and λ0 is the center of A∗K .

The following proposition and example give a sufficient condition not necessary for a
compact K of B(H) to be in KA .

PROPOSITION 3. Let K be a compact of B(H) . If there exists B∈K and a scalar
λ such that

|K−λA|= ‖B− cB(A∗B)A‖,
then K ∈ KA and cK = cB(A∗B) .

Proof. By hypothesis

‖B− cB(A∗B)A‖ = |K−λA|
� ‖B−λA‖.

From the definition of center of A∗B , we deduce that λ = cB(A∗B) and B−cB(A∗B)A∈
(K− cB(A∗B)A)′ . Therefore

|K− cB(A∗B)A| = ‖B− cB(A∗B)A‖
� ‖B− cB(A∗B)A−λA‖, for all λ ∈ C

� |(K− cB(A∗B)A)′ −λA|, for all λ ∈ C,

which implies that K ∈ KA and that cB(A∗B) is the center of A∗K . �



MAXIMAL NUMERICAL RANGE OF DRAGOMIR’S INEQUALITIES 259

EXAMPLE 3. Consider the compact K = {eiθ A : θ ∈ [0,2π ]} of B(H) . By
Chraibi [3, proposition 4],

1 � sup
θ∈[0,2π ]

|eiθ −λ |, for all λ ∈ C.

We deduce
‖A‖ � sup

θ∈[0,2π ]
‖eiθ A−λA‖, for all λ ∈ C.

Since K′ = K and |K| = ‖A‖ , then

|K| � |K′ −λA|, for all λ ∈ C.

This implies that K ∈ KA and cK = 0. For all B ∈ K , ‖B− cB(A∗B)A‖ = 0 and
|K− cK | = ‖A‖ �= 0.

DEFINITION 4. Given two compacts K and S of B(H) . The Hausdorff distance
is defined by

h(K,S) = max(e(K,S),e(S,K))

where
e(K,S) = sup

B∈K
inf
C∈S

‖B−C‖.

REMARK 3. If T ∈ B(H) , then

e(K,{T}) = sup
B∈K

‖B−T‖ = |K−T | and e({T},K) = inf
B∈K

‖B−T‖.

Therefore, we have h(K,{T}) = |K−T | . Note that h(K,{T}) � |K|+‖T‖ .

PROPOSITION 4. let K , S be two elements of KA , and cK , cS be the centers of
A∗K and A∗S respectively. Then

|cK − cS| � 1
2m2(A)

(
h(K,S)‖A‖+

√
h2(K,S)‖A‖2 +8h(K,S)h(S,{cSA})m2(A)

)
.

Consequently, the map K �→ cK , K ∈ KA is continuous in the sens of Hausdorff.

Proof. Assume that cS = 0. Since cK is the center of A∗K , then

|K− cKA| � |(K− cKA)′ −λA|, for all λ ∈ C.

By Proposition 1, we have

|K− cKA|2 + |λ |2m2(A) � |(K− cKA)′ −λA|2, for all λ ∈ C.
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But (K − cKA)′ ⊆ K− cKA , then |K − cKA−λA| � |(K− cKA)′ −λA| for all λ ∈ C .
Take λ = −cK , we have

|K|2 � |(K− cKA)′ − cKA|2
� m2(A)|cK |2 + |K− cKA|2
= m2(A)|cK |2 +h2(K,{cKA})
� m2(A)|cK |2 +

(
h(K,S)−h(S,{cKA})

)2

= m2(A)|cK |2 +h2(S,{cKA})−2h(K,S)h(S,{cKA})+h2(K,S).

Since cS = 0, by Proposition 1 |S− cKA|2 � |S′ − cKA|2 � m2(A)|cK |2 + |S|2 . Thus

|K|2 � 2m2(A)|cK |2 + |S|2 +h2(K,S)−2h(K,S)h(S,{cKA})
= 2m2(A)|cK |2 +

(
|S|+h(K,S)

)2−2h(K,S)
(
|S|+h(S,{cKA})

)
� 2m2(A)|cK |2 + |K|2−2h(K,S)

(
2|S|+‖A‖|cK|

)
,

whence
m2(A)|cK |2−h(K,S)‖A‖|cK|−2h(K,S)|S|� 0.

Consequently

|cK | � 1
2m2(A)

(
h(K,S)‖A‖+

√
h2(K,S)‖A‖2 +8h(K,S)|S|m2(A)

)
.

For the case cS �= 0, we replace K and S by K − cSA and S− cSA respectively. We
easily check by the assertion (2) of Proposition 1 that the center of A∗(K − cSA) is
cK − cS and the center of A∗(S− cSA) is 0 . We obtain the desired result. �

3. Applications

Let A and B two elements of B(H) . The numerical radius of B is defined by

w(B) = sup{|z| : z ∈W (B)}.
Put

w′
0(B) = inf {|z| : z ∈W0(B)} and w′

B(A∗B) = inf{|z| : z ∈WB(A∗B)}.

Since W0(B) ⊆W (B) and WB(A∗B) ⊆W (A∗B) , we have

w′
0(B) � w(B) and w′

B(A∗B) � w(A∗B).

These inequalities can be strict. Indeed, let B ∈ B(H) such that B �= λ I for all λ ∈ C .
Let z0 be the center of mass of B and put C = B− z0I . Then the center of mass of C
is 0 . We deduce that 0 ∈W0(C) , thus w′

0(C) = 0. Since C �= 0, then w(C) > 0. Let A



MAXIMAL NUMERICAL RANGE OF DRAGOMIR’S INEQUALITIES 261

be a selfadjoint operator with numerical range the segment [1,2] and take B = I . We
have w′

B(A∗B) = 1 and w(A∗B) = 2.
In the following we assume that m(A) > 0. We give a generalization and improve-

ment of each of the following five theorems established by Dragomir [4, 5].

THEOREM 3. [4] If 0 �= λ ∈ C and r > 0 are such that ‖B−λ I‖� r , then

‖B‖ � w(B)+
1
2

r2

|λ |2 .

THEOREM 4. [4] If 0 �= λ ∈C and r > 0 are such that ‖B−λ I‖� r and |λ |� r ,
then √

1− r2

|λ |2 � w(B)
‖B‖ .

THEOREM 5. [5] If A is invertible and r > 0 are such that ‖B−A|� r , then

‖B‖ � ‖A−1‖
(
w(A∗B)+

1
2
r2

)
.

THEOREM 6. [5] If A is invertible and r > 0 are such that

‖B−A|� r and
1√

r2 +1
� ‖A−1‖ � 1

r
,

then

‖B‖2 � w2(A∗B)+2w(A∗B)
‖A−1‖−

√
1− r2‖A−1‖2

‖A−1‖ .

THEOREM 7. [5] If A is invertible and r > 0 are such that

‖B−A|� r and ‖A−1‖ � 1
r
,

then

‖A‖2‖B‖2−w2(A∗B) � 2w(A∗B)
‖A‖
‖A−1‖

(
‖A‖‖A−1‖−

√
1− r2‖A−1‖2

)
.

Let K be a compact of B(H) . Put

w′
K′(A∗K′) = inf

B∈K′{|z| : z ∈WB(A∗B)}.

THEOREM 8. If 0 �= λ ∈ C and r > 0 are such that

|K−λA|� r,

then

|K| � 1
m(A)

(
w′

K′(A∗K′)+
1
2

r2

|λ |
)
.
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Proof. By Theorem 1, WK′(A∗K′) is compact. Let α ∈WK′(A∗K′) such that |α|=
w′

K′(A∗K′) , then α ∈WB(A∗B) for some B ∈ K′ . Thus we can find a sequence (xn)n ⊆
H1 such that

α = lim
n
〈A∗Bxn,xn〉 and lim

n
‖Bxn‖ = ‖B‖.

Since |K−λA|� r , then ‖(B−λA)xn‖2 � r2 , for all n ∈ N . Then

‖Bxn‖2 + |λ |2‖Axn‖2 � 2Re(λ 〈A∗Bxn,xn〉)+ r2,

and we have
‖Bxn‖2 + |λ |2m2(A) � 2|λ ||〈A∗Bxn,xn〉)|+ r2.

By passing to the limit, we obtain

|K|2 + |λ |2m2(A) � 2|λ |w′
K′(A∗K′)+ r2. (3.1)

Thus

|K| � 1
m(A)

(
w′

K′(A∗K′)+
1
2

r2

|λ |
)
. �

REMARK 4. (i) Theorem 8 generalizes and improves Theorem 3. Indeed, if 0 �=
λ ∈ C and r > 0 are such that

‖B−λA‖� r.

Take K = {B} ,

‖B‖ � 1
m(A)

(
w′

B(A∗B)+
1
2

r2

|λ |
)
.

If in addition A = I , then m(A) = 1 and

‖B‖ � w′
0(B)+

1
2

r2

|λ | � w(B)+
1
2

r2

|λ | .

(ii) If A is invertible and x ∈ H1 , then

1 = ‖x‖ = ‖A−1Ax‖ � ‖A−1‖‖Ax‖.
We have

1
‖Ax‖ � ‖A−1‖, for all x ∈ H1.

We deduce
1

m(A)
� ‖A−1‖. (3.2)

If r > 0 and ‖B−A‖� r , then by Theorem 8,

‖B‖ � 1
m(A)

(
w′

B(A∗B)+
1
2
r2

)
� ‖A−1‖

(
w(A∗B)+

1
2
r2

)
.

This improves Theorem 5.
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THEOREM 9. If 0 �= λ ∈ C et r > 0 are such that

|K−λA|� r and |λ |m(A) > r,

then

m(A)

√
1− r2

|λ |2m2(A)
�

w′
K′(A∗K′)
|K| .

Proof. Put ω =
√
|λ |2m2(A)− r2 and δ = |λ |w′

K′(A∗K′). By the inequality (3.1),
we have

|K|2 + ω2 � 2δ . (3.3)

Divide both sides by the positive real ω , we obtain

|K|2
ω

+ ω � 2δ
ω

.

Thus

|K| � δ
ω

.

Whence

m(A)

√
1− r2

|λ |2m2(A)
� w′

K′(A∗K′)
|K| . �

REMARK 5. If ‖B−λA‖� r and m(A)|λ | > r > 0. Take K = {B} , then

m(A)

√
1− r2

|λ |2m2(A)
� w′

B(A∗B)
‖B‖ .

If in addition A = I , then m(A) = 1 and

√
1− r2

|λ |2 � w′
0(B)
‖B‖ � w(B)

‖B‖ .

This generalizes and improves Theorem 4.

THEOREM 10. If 0 �= λ ∈ C et r > 0 are such that

|K−λA|� r and |λ |m(A) � r,

then

|K|2 � |λ |2(w′
K′(A∗K′))2 +2|λ |w′

K′(A∗K′)
(
1−

√
|λ |2m2(A)− r2

)
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Proof. Using the same notations in the proof of Theorem 9 and the inequality
(3.3), we have

|K|2 � 2δ −ω2.

It follows that

|K|2− δ 2 � 2δ − (δ 2 + ω2)

= 2δ −2δω − (δ −ω)2

� 2δ (1−ω).

Whence

|K|2 � |λ |2(w′
K′(A∗K′))2 +2|λ |w′

K′(A∗K′)
(
1−

√
|λ |2m2(A)− r2

)
. �

REMARK 6. Theorem 10 generalizes and improves Theorem 6 with fewer condi-

tions. Indeed, if ‖B−A‖ � r, r > 0 and ‖A−1‖ � 1
r

, then m(A) � r . Apply Theorem

10 for K = {B} and λ = 1, we obtain

‖B‖2 � (w′
B(A∗B))2 +2w′

B(A∗B)
(
1−

√
m2(A)− r2

)
.

A simple calculation gives

1−
√

m2(A)− r2 � ‖A−1‖−√
1− r2‖A−1‖2

‖A−1‖ .

THEOREM 11. If 0 �= λ ∈ C et r > 0 are such that

|K−λA|� r and m(A)|λ | � r,

then

‖A‖2|K|2 � |λ |2(w′
K′(A∗K′))2 +2|λ |w′

K′(A∗K′)‖A‖
(
‖A‖−

√
|λ |2m2(A)− r2

)
.

Proof. Using the same notations in the proof of Theorem 9 and the inequality
(3.3), we have

|K|2 � 2δ −ω2.

It follows that

|K|2− δ 2

‖A‖2 � 2δ −
( δ 2

‖A‖2 + ω2
)

= 2δ −2
δω
‖A‖ −

( δ
‖A‖ −ω

)2

� 2δ
(
1− ω

‖A‖
)
.
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Thus
‖A‖2|K|2 � δ 2 +2δ‖A‖(‖A‖−ω).

Whence

‖A‖2|K|2 � |λ |2(w′
K′(A∗K′))2 +2|λ |w′

K′(A∗K′)‖A‖
(
‖A‖−

√
|λ |2m2(A)− r2

)
. �

10 generalizes and improves Theorem 6

REMARK 7. Theorem 11 generalizes and improves Theorem 7. Indeedt, if ‖B−
A‖� r, r > 0, A is invertible and ‖A−1‖� 1

r
, take K = {B} and λ = 1, then m(A) � r .

Apply Theorem 11, we obtain

‖A‖2‖B‖2 � (w′
B(A∗B))2 +2w′

B(A∗B)‖A‖
(
‖A‖−

√
m2(A)− r2

)
.

Using the inequality (3.2), it is easily to check sthat

‖A‖−
√

m2(A)− r2 � ‖A‖− 1
‖A−1‖

√
1− r2‖A−1‖2.
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