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MAXIMAL NUMERICAL RANGE OF A COMPACT SET AND
APPLICATIONS TO SOME DRAGOMIR’S INEQUALITIES

ABDERRAHIM BAGHDAD AND MOHAMED CHRAIBI KAADOUD

(Communicated by J. Pecari¢)

Abstract. Let K, A be respectively a compact and an element of B(H) the algebra of all bounded
linear operators acting on a complex Hilbert space H. In this paper we define the maximal
numerical range of the set A"K = {A*B: B € K} relatively to K by

Wi (A*K) = co(|_| Ws(A*B)).
BekK

Where Wg(A*B) is the maximal numerical range of A*B relatively to B defined by Magajna [6]
and which coincides with the maximal numerical range Wy(B) of B defined by Stampfli [7] if A
is the unit element /. Our new definition will generalize the results of Stampfli [7] and Barraa-
Boumazguour [1] over the distance of an element B to Vect(A). It also will generalize and
improve several inequalities established by Dragomir [4, 5] linking the norm and the numerical
radius of B.

1. Introduction

Let H be a complexe Hilbert space. Let H; = {x € H: ||x|| = 1} and B(H) be
the algebra of all bounded linear operators acting on H. For B € B(H), Stampfli [7]
defined the maximal numerical range Wy(B) of B by

Wo(B) = {A = lim(Bx,,xu) : (va)a € Hi, lim B, | = [|B]},
and the center of mass of B as the unique scalar cp such that
|8 —cal| = inf 1B~ A1].
He established the equivalence of the following assertions
(1) 0 e Wy(B—cpl),
(2) [[B—cpl|| < ||B—cpl —Al||, forall A € C,

(3) ||B—cl|* +|A|> < ||B—cpl — AI|*, forall A € C.
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He showed the continuity of the map B+~ cp, B € B(H). Magajna [6] defined the
maximal numerical range Wg(A*B) of A*B relatively to B as the following convex
compact

Wp(A*B) = {A =1im (A" Bxy,x,) : (xn)n, € Hy, lim||Bx,|| = ||B||}

Note that if A =1, then Wz(A*B) = Wy(B). Barraa and Boumazgour [1] showed the
equivalence of the following assertions

(1) 0eWg(A™B),

(2) ||B|| < ||B+AA],forall A € C,

(3) ||B||>+ |A[*m*(A) < ||B+AA|]%, forall A € C, where m(A) = inf [|Ax||.

XEH)

When m(A) > 0, they showed the existence and the uniqueness of a scalar denoted

cp(A™B) such that
|B—cp(A*B)A|| = inf ||B— AA|.
reC

They called it the center of mass of A*B relatively to B. They also showed the continu-
ity of the map B +—— cp(A*B), B € B(H). Bouchen and Chraibi Kaadoud [2] defined
the numerical range of a compact K of B(H) by

W(K)=co(| | W(B)).

BekK

Here, co(S) denotes the convex hull of a set S in a vector space and W(B) is the
numerical range of B defined by

W(B) = {(Bx,x) :x € H }.

In this direction, for a compact K and an element A of B(H), we define the maximal
numerical range Wx(A*K) of the set A"K = {A"B: B € K} relatively to K by

Wk (A*K) = co(| | Wa(A*B)).
BekK

In the second section we show (Theorem 1) that Wx (A*K) is a compact set. For a scalar
20, we show (Proposition 1) the equivalence of the following assertions

(1) 0€Wk_ay (A" (K —20A)"),
(2) |K —20A| < |(K—20A) — AA|, forall A € C,
(3) |K—z20A> +|APm?(A) < |(K —z0A) — AA|?, forall A € C.

Where, for any compact S of B(H), S'={B € S:||B|| =S|} with |S]| is the modulus of
S defined by |S| = sup||B||. Note that S is also a compact set of B(H) and |S| = |S'].
Bes
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In the case where m(A) > 0, we show the existence of a class, denoted %, of
compacts K of B(H) such that there exists a unique scalar cx checking one of the three
previous equivalent assertions. A such scalar will be called the center of mass of A*K
relatively to K, or simply the center of A*K. We also show the continuity in the sens
of Hausdorff of the mapp K — cx, K € %4

In the last section we show some inequalities linking |K| and the positive real
Wi (A*K') defined by

Wi (A*K') = inf {|z] : z € Wg(A*B)}.
BeK’

The inequalities we get in the multivoque case generalize and improve several inequal-
ities established by Dragomir [4, 5] linking the norm and the numerical radius of B in
the univoque case (i.e., K is reduced to a singleton).

Throughout, K and A will denote respectively a compact and a non zero element
of B(H).

2. Maximal numerical range of a compact set

DEFINITION 1. The maximal numerical range of A*K relatively to K, denoted
Wk (A*K), is defined by

Wk (A*K) = co(| | Ws(A*B)),
BekK

where

Wg(A*B) = {A = im{A"Bx,;,x,) : (x,) C Hy, lim||Bx,|| = ||B||}.
THEOREM 1. The set Wg(A*K) is compact.

Proof. Ttsuffices to show that | | Wz(A*B) is compact. Forany z€ | | Wz(A*B),
Bek Bek
we have |z| < ||A|| [K|. It follows that | | Wz(A*B) is bounded. Now we show that it is
Bek
closed. Let (A,;)m be a sequence of elements of |_| Wg(A*B) converging to A. Then
BeK

1
VpeN*, 3m, e N, Vm >m, : |l,n—7t|<2—. (2.1)
P

Since A, € |_| Wg(A*B), then A, € Wa,, (A*By,,) for some B, € K, thus
Bek
(i )n © Hy 2 i{A" By, i) x40)) = Ao, and Tim [ Bxii || = [|By, .

Then

1
Vp e N*, Hn;np eN, Vn> nﬁnp : \(A*Bm,,x,(,f,?,x,(,f,?) — Xy | < T (2.2)



254 A. BAGHDAD AND M. CHRAIBI KAADOUD

* n 1
Wp e N, 3n €N, Yn>nlh ||, || — 1B, ll| < > (2.3)

For all p € N*, put n, = max(nﬁnp,nﬁ,’qp), Xp :x,(,f,f’) and B, = By, . We have

(xp)p=1 C Hy and (By)p>1 C K.
By (2.1), (2.2) and using the triangular inequality, we have
1
Vp € N": [(A"Bpxp,xp) — A |< p 2.4
By (2.3), we obtain
" 1
Vp e N": || Bpxp || — || Bp [[I< . 2.5)

The sequenses (Bp)p>1, (|| BpXp ||)p=1 and (|| B, ||)p>1 are bounded. We can assume
they converge. Let B be the limit of (B,),>1, then we have

tim 1B, | = | B]. 26

Thus
[(A"Bxp,xp) = (A"Bpp,xp)| < [A]1B = Byl ——— 0.

We can also assume that the sequense ((A*Bx,,xp)),>1 converge (it is bounded).
By (2.4), lim(A*B,x,,x,) = A. Then
P

lim(A*Bx,,x,) = A. 2.7)
P

By (2.5) and (2.6), we have
lim||Bpx,|| =lim||B,| = ||B].
n By = 1im B, = 18]
Since ||Bpx, —Bxp|| < ||B,—B]| —+>07 then the sequenses (Bpx,),>1 and (Bx,)p>1
p—too
have the same limit. We obtain
tim 3| = . 2.38)
From (2.7) and (2.8), it follows that A € Wg(A*B) C | | Ws(A*B). O
Bek

REMARK 1. We find again the compactness of Wp(A*B) by taking K = {B}.

REMARK 2. If K is a non compact set, Wx(A*K) fail to be compact. For exam-
ple, set K ={od : ov € (—1,1)}. It is clear that K is a non compact subset of B(H).
Take A =1; Wg(A*K) = (—1,1) is non compact.
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EXAMPLE 1. Let Ay € C. Define the compact S of C by S={A+1, Ao+
i, Ao—1, A9 —i} and the compact K of B(H) by K = {zA : z € S}. Note that the
smallest disc containing S — A is centered at 0. By Chraibi [3, Proposition 4],

IS— o] < |[S—Ap—A|, forall 2 €C.
It follows, since (K — ApA)' = K — AoA, that
|K —20A| < |(K—2A0A)" — 24|, forall A €C.

On the other hand, Wik _z,ay (A*(K —20A)") = co({1, i, —1, —i}W,(A*A)); we see
that 0 € Wk j,ay(A*(K — 20A)).

The previous example suggests the following theorem.

THEOREM 2. Let K C B(H) a compact. The following are equivalent
(1) 0€ Wy (A'K'),
(2) |K|<|K' —AA|, forall A €C,
(3) |K|*+|APm*(A) < |K' — AA|, forall A €C.
Proof. (1) = (3). Assume that 0 € Wx:(A*K’). By the Caratheodory theorem, 0

is a combinaison convexe of at most three elements of |_| Wpg(A*B). Then there exists

BeK'
i € Wg,(A*B;), a; € RT for i € {1,2,3} such that

i=3 i=3
B,‘EK/, 20{,‘21 and OZE(X,'A,'.
i=1 =1

For i € {1,2,3}, there exists a sequence (x;,), of elements of H; such that

2,,‘ = li£n<A*B,-x,-7,,,xi7n> and 1i£n||B,-x,-7,,|| = ||B,||

Let AeC,neNandic{l1,2,3}
1B+ AA[]* > || (Bi + AA)xia|*
= || Bixinl|* + |4 [*[|Axin]|* + 2Re(A (A Bixi n, Xin))
> ||Bixinll® + |A|2m?(A) + 2Re(A{A* Bixi i, Xin) ).

Since |K'+ AA| > ||B; + AA|| for i € {1,2,3}, then

i=3 i=3 _
K"+ 2A7 = |APm? (A) + Y o Bixinl|* +2 0iRe(A(A*Bixip,Xin)).  (2.9)
i=1 i=1
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But
=3 — i=3 _ _i=3
hmE OC,'Re(A, (A*B,-x,),,,xi,n)) = 2 aiRe(/UL,-) = Re(l 2 oz,-?L,-) = O,
n =

i= i=1 i=1

by passing to the limit in (2.9), we obtain |K|*> 4 [A|*m*(A) < |K' — AA|%.

(3) = (2). is trivial.

(2) = (1). Assume that 0 ¢ Wy (A*K’). By rotating, we can assume that
Re(Wy:(A*K")) >t for some ¢ > 0. Then Re(Wp(A*B)) >1t, forall B€ K'.

t
For B € K', consider the set Gg = {x € Hy : Re((A*Bx,x)) < 5} and put

n =sup{||Bx||: B€ K', x € Gp}.

The following of the proof is in two steps.

First step: we show that 1 < |K'|.

It is clair that 1 < |K’|. Assume that 1 = |K’|. then there exists a sequence (B, ),
of elements of K’ and a sequence (x,), with x, € Gp, forall n € N such that

li}?lanan = |K|.

Since K’ is compact, there exists a subsequence (Bg(n))n Which converges to some
B € K'. In addition we have

Xo(n) € GB(p(n) foralln € N and llin HBqJ(n)x(p(n)H = ‘K"

But [[[Bxg ()| = 1BomXoumlll < [[(B = Bom)xoml < 1B =By —— 0. We de-
duce that
lim || Bxg () || = [K'].

. * 4 *
Since X () €GB, » then Re((A"B () Xp(n): Xg(n))) < X The sequence ((A*BXg () Xgp(n)) )

is bounded, we can assume it converges. Let A be its limit, by continuity of the map
t
7€ C+—— Re(z) we have Re(1) < 7 We obtain

lim(A*qu,(,,),xq,(n)) = A,7 hmHqu,(,,)H = ‘K/‘ and Re(l) <

NSNS

t
We deduce that A € Wg(A*B) and Re(A) < 3 This contradicts the fact that Re(Wz(A*B))
>t.
t [K|-n
IA]>" 2[|A]

Second step: take [ = inf( ) , we show that |K’ — uA| < |K|. This

completes the proof.
By compactness of the set K — 1A, there exists B, € K’ such that |[K' — pA| =
|By — HA[|. Let x € Hy, we study two cases.
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First case: x € GBu .

| (By — 1) < 1By + pllAx] < 0 + A
K- _ K| +n
2 2

t
Second case: x ¢ Gp, . We have Re((A"Byx,x)) > 3 Put

A*Bux = (a+ib)x+y, with a, b€R and (x,y) =0.

t
Then we obtain Re((A*Byx,x)) =a > 7

(B — uA)x* = |[Bux|]® + u?[|Ax|* — 2uRe((A" Byx, x))
<|1Bul® +u(ullAl? - 2a)
< |1Bull* + p(pllAl* —20)
<IK'P%,

since u|/A||*> —27 < 0. Intotal, |K' — pA| < |K'|. O

PROPOSITION 1. Let K be a compact of B(H) and zy be a scalar. The following
are equivalent:

(]) 0e W(K—ZOA)’(A*(K_ ZOA)/),

(2) |K —z20A| < |(K —z20A)" — AA|, forall A € C,

(3) |K — 20A|> + |A|Pm*(A) < |(K — 20A) — AA|?, forall A € C.
Proof. It suffices to replace K by K —z0A in Theorem 2. [J

DEFINITION 2. Let A € B(H) and m(A) > 0. Let . be the class of compacts
K of B(H) such that

|K — AkA| < |(K — AgA)' — AA|, forall A €C
holds for some scalar A .

This class is not empty since it contains the compacts K = {B} with B € B(H)
(Ax = cg(A"B), center of mass of A*B relatively to B). We give other examples later.

PROPOSITION 2. Assume that m(A) > 0. Let K € %y, then there exists a unique
scalar ckg such that

|K — ckA| < |(K —cxA) — AA|, forall A€ C. (2.10)
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Proof. By definition of 74, the scalar cx exists. Assume that c’K is an other
scalar checking the inequality (2.10). Let A be a scalar, from Proposition 1, we have ,

K — i+ |APm*(A) < |(K — ckA) — AA[?,
< |K — ceA — A
Take A = cg — ¢k, we have
K — kA + |cx — ci[*m*(A) < |K — cxA|?

<
< (K —cxkA)' — aAl?, forall aeC
< |K —ckA—aAl?, forall aeC.
Take & = cg + i, we obtain

|K — C/KA\2 +|ck — C/K\zmz(A) <K - c}(A\z.

We deduce that |cx — ck|?m?(A) = 0. Since m(A) # 0, then ¢y = cx. [

DEFINITION 3. Let K, A and cg be as in Proposition 2. The scalar ck is called
center of A*K .

EXAMPLE 2. In Example 1, K € 2%, and Ay is the center of A*K.

The following proposition and example give a sufficient condition not necessary for a
compact K of B(H) to be in .74 .

PROPOSITION 3. Let K be a compact of B(H). If there exists B € K and a scalar
A such that
|K—AA[ = |[B—cs(A"B)A],

then K € ) and cx = cp(A™B).

Proof. By hypothesis

1B~ ca(A"B)A| = |K — AA]
> ||B—A4].

From the definition of center of A*B, we deduce that A = cg(A*B) and B—cp(A*B)A €
(K — cp(A*B)A)’. Therefore

|K —cB(A"B)A| = ||B—cp(A*B)A||
|B—cp(A*B)A — AA||, forall 2 €C

<
<|(K — cs(A*B)A) — AA|, forall A €C,

which implies that K € . and that cg(A*B) is the center of A*K. [
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EXAMPLE 3. Consider the compact K = {¢®A : 6 € [0,2x]} of B(H). By
Chraibi [3, proposition 4],

1< sup [¢—A|, forall A eC.
0€[0,27]

We deduce

A < sup |[e®A—AA]|, forall A €C.
0¢[0,27]

Since K’ =K and |K| = ||A]|, then
|K| < |K'—2A|, forall A €C.

This implies that K € 4 and cxk = 0. For all B € K, ||B—cg(A*B)A|| =0 and
K —cx| = [|Al #0.

DEFINITION 4. Given two compacts K and S of B(H). The Hausdorff distance
is defined by

h(K,S) = max(e(K,S),e(S,K))

where
e(K,S)=supinf ||B—C||.
Bek CES

REMARK 3. If T € B(H), then
e(K{T}) = sup|[B—T|| = [K ~T| and e({T},K) = inf [B—T].
Bek Bek
Therefore, we have h(K,{T}) = |K —T|. Note that 1(K,{T}) < |K|+||T||.

PROPOSITION 4. let K, S be two elements of %4, and ck, cs be the centers of
A*K and A*S respectively. Then

ok =51 < gy (MK S)IAN 12 (K.S) 4P+ BH(K (S {esa} () ).

A)
Consequently, the map K — cg, K € £y is continuous in the sens of Hausdorff.
Proof. Assume that cg = 0. Since ck is the center of A*K, then
|K —ckA| < |(K —cxA) — AA|, forall A €C.
By Proposition 1, we have

K — cgA)? + |A)Pm?(A) < |(K — cgA) — AAJ?, forall A €C.
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But (K —cxA) C K —ckA, then |K —cxkA — AA| > |(K —cxkA) — AA| forall A € C.
Take A = —ck, we have

—CKA)/—CKA|2
2(A)|ck|* +|K — ckA?

(4)
2(A)lex* +h* (K, {cxA})
(4)
(4)

K] >

WV

(K

m2

Alex+ ((K,) ~ h(s. fexa}))
=m?(A)|cx|? + h*(S, {ckA}) — 2h(K,S)h(S,{ckA}) + h*(K,S).
Since ¢s = 0, by Proposition 1 |S —cxA|> > |S' — cxA|* = m*(A)|cx|* +|S)?. Thus
K> > 2m* (A)|ex [P +|S]* + 12 (K, S) — 2h(K, S)h(S. {ckA})
= 2m?(@)lexl + (151 + h(K.5)) "~ 20(K.5) (|8 +h(S. {exa)))
> 20 (4)lexl + K = 2h(K, $) (218] + 1A ex]),

whence
m*(A)|ck | — h(K,S)||All|ck| — 2h(K,S)|S| <0

Consequently

k] € gy (HE-9)IAL+ (K. AT+ 8(K.5) Sl (4) ).

For the case c¢s # 0, we replace K and S by K —cgA and S — cgA respectively. We
easily check by the assertion (2) of Proposition 1 that the center of A*(K — csA) is
¢k — ¢s and the center of A*(S — cgA) is 0. We obtain the desired result. [J

3. Applications
Let A and B two elements of B(H). The numerical radius of B is defined by
w(B) =sup{|z|: ze W(B)}.
Put
wo(B) =inf {|z] : z€ Wo(B)} and wi(A*B) =inf{|z|: z € Ws(A*B)}.
Since Wy(B) C€ W(B) and Wz(A*B) C W(A*B), we have
w((B) < w(B) and wi(A*B) < w(A*B).

These inequalities can be strict. Indeed, let B € B(H) such that B # AI forall A € C.
Let zp be the center of mass of B and put C = B —zol. Then the center of mass of C
is 0. We deduce that 0 € Wy(C), thus w((C) = 0. Since C # 0, then w(C) > 0. Let A



MAXIMAL NUMERICAL RANGE OF DRAGOMIR’S INEQUALITIES 261

be a selfadjoint operator with numerical range the segment [1,2] and take B =1. We
have wj(A*B) =1 and w(A*B) = 2.

In the following we assume that m(A) > 0. We give a generalization and improve-
ment of each of the following five theorems established by Dragomir [4, 5].

THEOREM 3. [4] If0# A € C and r > 0 are such that ||B— AI|| < r, then

2

< .
I8 < w(B) + 3 71

N —

THEOREM 4. [4] If0# A € C and r >0 are suchthat |B—Al|| < rand |A| > r,
then

r? w(B)
11— — < —=.
A2~ |8l

THEOREM 5. [5] If A is invertible and r > 0 are such that ||B—A| < r, then
1
18I < A~ | (w(aB) +57*).

THEOREM 6. [5] If A is invertible and r > 0 are such that

1 1
B—A| < d <A< =,
| |<r an N A=l p
then .
182 < w24 B) + 2wia ) A= All_”ﬂ”A_”.

THEOREM 7. [5] If A is invertible and r > O are such that
1
IB—A|<r and HA71|| < -,
r

then

o A : -
AP B = w*(aB) < 2w(4"B) 7 S (Al 47! = 1= 2la1)2 ).

Let K be a compact of B(H). Put

Wi (A*K') = inf {|z| : z € Wg(A*B)}.
BeK’

THEOREM 8. If0# A € C and r > 0 are such that
|K—AA| <1,

then )
1 r

K| < —— (W (AK) + —).
M(A)< K A

N —
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Proof. By Theorem 1, Wy (A*K") is compact. Let o € Wgs(A*K”) such that |ot| =
Wi (A*K'), then o € Wg(A*B) for some B € K’. Thus we can find a sequence (x,), C
H, such that

o= lim(A"Bx,.x,) and lim||Bx,]| = 8]

Since |K — AA| < r, then ||(B— AA)x,||*> < %, forall n € N. Then
(|1 Bxn||? + |2 |?]|Ax, ||> < 2Re(A (A*Bx,, x,)) + 12,

and we have
1Bxal|> + [APm*(A) < 2|A[|[(A"Bxy, x0)) | 417

By passing to the limit, we obtain

K |?+ A Pm?(A) < 2|A | W (A*K") + 72 (3.1)
Thus )
1 1r
K| < w’,(A*K’)+——>. 0
(A)< K 21l

REMARK 4. (i) Theorem 8 generalizes and improves Theorem 3. Indeed, if 0 #
A € C and r > 0 are such that
|B—AA| <

Take K = {B},

1 Lo 172
|B]| < m—A)<WB(A B>+§m>'

If in addition A =1, then m(A) = 1 and

2 2

I

;
IB]| < wo(B) +

|
VAN
N —

w(B) +

N | —
=

(i1) If A is invertible and x € Hy, then

1= |lxll = A~ Ax]| < JJA7H[[|Ax].

We have |
<|JA7Y|, forall x € Hy.
[[Ax]]
We deduce 1
— <A 3.2

If 7> 0 and ||B—A|| < r, then by Theorem 8,

1 1 1
B <—<’A*B —2>< A7 ( A'B —2>-
18] A wp(A"B) + 51" ) < [|AT[|(w(A™B) + 57

This improves Theorem 5.
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THEOREM 9. If 0#£ A € C et r > 0 are such that
|K—2A| < r and |A|lm(A) >r,
then

P Wi (A"K')

"N @) S TR

263

Proof. Put ® =/|A[?m2(A) —r? and & = |A|w}/(A*K"). By the inequality (3.1),

we have
K|)? + 0® < 26.

Divide both sides by the positive real ®, we obtain

IK|? 28
+0o< —.
[0)
Thus
1)
K| P
Whence
wK, (A*K") .
MI2 2(A K|

REMARK 5. If ||[B— AA| < r and m(A)|A| > r > 0. Take K = {B}, then

wB (A*B
IW 2(A \BII

If in addition A =1, then m(A) = 1 and

I Q
HBII Bl

This generalizes and improves Theorem 4.

THEOREM 10. If 0# A € C et r > 0 are such that
|K—AA| <r and |Am(A) >r,

then
K[ < AP (W (AK'))? + 2| A | Wi (A'K') (1 —\/ A PmA(4) = r? )

(3.3)
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Proof. Using the same notations in the proof of Theorem 9 and the inequality
(3.3), we have
K> <26 — 0.

It follows that

IK|> — 82 <28 — (8% + 0?)
=28-280w— (6 —0)*
<28(1 - o).

Whence

K> < APWer (A*K))2 4+ 2|A W (A*K) (1 — /A 2Pm2(A) =2 ). O
K’ K

REMARK 6. Theorem 10 generalizes and improves Theorem 6 with fewer condi-
1
tions. Indeed, if |[B—A[ <7, >0 and [|[A7"] < e then m(A) > r. Apply Theorem
10 for K = {B} and A = 1, we obtain

1B < (wp(A"B))? + 20/p(4"B) (1= w2 (4) =12 ).

A simple calculation gives

e AT AT
11— mz(A)—r2<” .
1A=

THEOREM 11. If0# A € Cet r > 0 are such that

|K—AA| <r and m(A)|A]| >,
then

AIPIKI? < AP (Wi (A°K")? + 2|4 | wie (AK") A (HAII —\/|APm*(A) = )

Proof. Using the same notations in the proof of Theorem 9 and the inequality
(3.3), we have
K|? <26 — 0.

It follows that

\K|2_6—2<25—(6—2+m2>

]2 = Al
ow 0 2
=26-2— —(——w
Al <HAII )
)
<26(1——).
(=)
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Thus
IA[P[K? < 8% +28|A[| (Al — ).
Whence
JAIRIK T < [P (W (4K + 20 A i (A KD JA] (JA]l = /12 Pm2(a) =2 ). D

10 generalizes and improves Theorem 6

REMARK 7. Theorem 11 generalizes and improves Theorem 7. Indeedt, if ||B—
1
A|| <1, r>0, Ais invertible and |A™!|| < -, take K = {B} and A =1, then m(A) >r.
r
Apply Theorem 11, we obtain

JAIRBI2 < (5 (4°B) + 2wip(A BJAI (I1A]] = \/m2(a) = 2 ).

Using the inequality (3.2), it is easily to check sthat

1
IA]| =y /m*(A) = r> < [|A]l = AT L—r2A-1].
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