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REFINEMENTS AND GENERALIZATIONS OF MAJORIZATION,

FAVARD AND BERWALD–TYPE INEQUALITIES VIA FINK IDENTITY

SADIA KHALID, JOSIP PEČARIĆ AND IVAN PERIĆ

(Communicated by J. Matkowski)

Abstract. In this paper we present refinements of the majorization-type inequalities via an in-
equality obtained from a Fink’s identity as well as the refinements of the Favard-Berwald type
inequalities by using monotonic sequence and positive weights.

1. Introduction and preliminaries

In [1], Berwald proved the following important generalization of Favard’s inequal-
ity (see also [4, pp. 413–414]):

THEOREM 1. Let φ be a non-negative, continuous concave function, not identi-
cally zero on [a,b] , and ζ be continuous and strictly monotonic function defined on
[0,x0] , where x0 is sufficiently large. If z is the unique positive root of the equation

1
z

∫ z

0
ζ (x) dx =

1
b−a

∫ b

a
ζ (φ (z)) dz,

then for every function f : [0,x0]→ R which is convex with respect to ζ i.e., f ◦ζ−1 is
convex, we have

∫ 1

0
f (s z) ds =

1
z

∫ z

0
f (x) dx � 1

b−a

∫ b

a
f (φ (z)) dz.

Favard’s inequality (see [2]) follows from Theorem 1 using ζ = id . The most
important consequence (of the Berwald’s inequality) is the following corollary which
is a reversed Hölder-type inequality.

COROLLARY 1. Let φ be a non-negative concave function defined on [a,b] ⊂ R .
If s > q > 0 , then

(
q+1
b−a

∫ b

a
φq(x)dx

) 1
q

�
(

s+1
b−a

∫ b

a
φ s(x)dx

) 1
s

. (1)
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Notice that (1) is a sharp inequality. Equality is obtained for φ(x) = x−a .
In [9], Maligranda, Pečarić and Persson presented the weighted Favard’s and Ber-

wald’s inequality, of the form given in Theorem 1.
The following theorem, proven in [6], is a discrete weighted version of the integral

Berwald’s inequality given in Theorem 1.

THEOREM 2. Let p , x and y be positive m-tuples. Suppose ψ ,ϕ : [0,∞) → R

are such that ψ is a continuous and strictly increasing function and ϕ is a convex
function with respect to ψ . Let z1 be such that

m

∑
i=1

pi ψ (xi) =
m

∑
i=1

pi ψ (z1 yi) .

Let x/y be a decreasing m-tuple. If x is an increasing m-tuple, then

m

∑
i=1

pi ϕ (xi) �
m

∑
i=1

pi ϕ (z1 yi) . (2)

If y is a decreasing m-tuple, then the reversed inequality holds in (2).
Let x/y be an increasing m-tuple. If y is an increasing m-tuple, then the reversed

inequality holds in (2). If x is a decreasing m-tuple, then inequality (2) holds.

For a non-negative m-tuple p and a non-negative, increasing, concave m-tuple x
it was proven in [10] (using different method) that if 0 < s � r , then

M[r]
m (x;p) � M[r]

m (Im;p)

M[s]
m (Im;p)

M[s]
m (x;p) , (3)

where M[r]
m (x;p) =

(
1

∑m
i=1 pi

∑m
i=1 pixr

i

)1/r
, Im = (0,1, . . . ,m−1) . Equality in (3) is ob-

tained for x = Im . Analogous inequality holds for a decreasing, non-negative, concave
x . Inequality (3) is a discrete analogue of inequality (1) and it can be obtained from
Theorem 2 in the same manner as Corollary 1 follows from Theorem 1 (see Lemma 2).

For an increasing concave (m + 1)-tuple (0,x) = (0,x1, . . . ,xm) , the following
inequality

M[1]
m (x,1) � m+1

2(m!)1/m
M[0]

m (x,1) (4)

was proven in [8], where 1 = (1, . . . ,1) . This is a non-weighted version of (3), but for
a different class of concave m-tuples.

The following lemma is given in [6]. It is an important technical tool used while
dealing with the monotonicity in mean of sequences.

LEMMA 1. Let u = (u1, . . . ,um) be a positive m-tuple.

(i) If v = (v1, . . . ,vm) is a decreasing real m-tuple, then

k

∑
i=1

viui

m

∑
i=1

ui �
m

∑
i=1

viui

k

∑
i=1

ui, k = 1, . . . ,m.
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(ii) If v is an increasing real m-tuple, then the reversed inequality holds in (i) .

The weighted majorization will be frequently used in the text. For a given non-
negative m-tuple p , an m-tuple x p -majorize an m-tuple y if

k

∑
i=1

pixi �
k

∑
i=1

piyi, k = 1, . . . ,m−1 and
m

∑
i=1

pixi =
m

∑
i=1

piyi. (5)

In this case we write x �p y .
The following theorem is given in [6] (see also [11]).

THEOREM 3. Let f : I → R be a convex function, where I ⊆R is an interval. Let
p = (p1, . . . , pm) be a positive m-tuple and let x = (x1, . . . ,xm) , y = (y1, . . . ,ym) ∈ Im

such that x �p y .

(i) If y is a decreasing m-tuple, then
m

∑
i=1

pi f (xi) �
m

∑
i=1

pi f (yi) . (6)

(ii) If x is an increasing m-tuple, then the reversed inequality holds in (6) .

If f is concave, then the reversed inequalities hold in (i) and (ii) .

Both the claims (i) and (ii) in Theorem 3 also hold for f which is convex with
respect to a strictly increasing function ζ : I → R (that is f ◦ ζ−1 is convex) under the
assumption ζ (x) �p ζ (y) , where ζ (x) = (ζ (x1) , . . . ,ζ (xm)) .

The following theorem is proved by S. Khalid, J. Pečarić and A. Vukelić in [5],
which is a consequence of a Fink’s identity given in [3].

THEOREM 4. Let f : [a,b] → R , n � 1 , be such that f (n−1) is absolutely contin-
uous. Let xi,yi ∈ [a,b] , pi ∈ R , i = 1, . . . ,m and let k (t,x) be defined as

k (t,x) =
{

t−a, a � t � x � b,
t−b, a � x < t � b.

(7)

If
m

∑
i=1

pi (xi− t)n−1 k (t,xi) �
m

∑
i=1

pi (yi − t)n−1 k (t,yi) (8)

holds and if f is n-convex, then
m

∑
i=1

pi f (xi)−
m

∑
i=1

pi f (yi)

� 1
b−a

n−1

∑
k=1

n− k
k!

(
f (k−1) (a)

(
m

∑
i=1

pi (yi −a)k −
m

∑
i=1

pi (xi −a)k
)

− f (k−1) (b)

(
m

∑
i=1

pi (yi −b)k −
m

∑
i=1

pi (xi −b)k
))

. (9)

If the reversed inequality holds in (8) , then the reversed inequality holds in (9) .



270 S. KHALID, J. PEČARIĆ AND I. PERIĆ

n -Convexity of a function is defined in the usual way by using the non-negativity
of its divided differences of order n .

The organization of the paper is the following: in Section 2, we present the
main results of this paper which consist of the refinements and generalizations of the
weighted majorization-type inequalities for the two real m-tuples x and y . In Sections
3 and 4, refinements and generalizations of the discrete Favard and Berwald-type in-
equalities are given respectively. An outline of the analogous results in the continuous
case is also presented in Section 5.

2. Refinements of the majorization-type inequalities

The following theorem presents a refinement of the weighted majorization-type
inequality as well as a refinement of the reversed weighted majorization-type inequality
for monotonous m-tuples.

THEOREM 5. Let f : [a,b] → R , n � 1 , be such that f (n−1) is absolutely contin-
uous. Suppose that p is a positive m-tuple, x , y ∈ [a,b]m such that x �p y .

(i) If y is a decreasing m-tuple, n � 2 is even and f is n-convex, then the inequality
(9) holds.

(ii) Let y be a decreasing m-tuple and let F : [a,b] → R be defined by

F (x) =
1

b−a

n−1

∑
k=1

n− k
k!

(
(x−b)k f (k−1) (b)− (x−a)k f (k−1) (a)

)
. (10)

If F is a convex function and the inequality (9) holds, then the inequality (6)
holds.

(iii) If x is an increasing m-tuple, n � 2 is even and f is n-convex, then the reversed
inequality holds in (9) .

(iv) Let x be an increasing m-tuple. If F given by (10) is a convex function and the
reversed inequality holds in (9) , then the reversed inequality holds in (6) .

Proof. Set η (x) := (x− t)n−1 k (t,x) . For n = 2, this is obviously a convex func-
tion. For n � 3, η is differentiable with η ′(x) = (n− 1)(x− t)n−2k(x,t) which is an
increasing function for even n . This shows that η is a convex function for even n � 2.

(i) Apply Theorem 3(i) for the convex function η , it follows (8) for even n , n �
2. As by assumption f is n -convex, apply Theorem 4, the inequality (9) is
immediate.

(ii) It is easy to see that the inequality (9) is equivalent to

m

∑
i=1

pi f (xi)−
m

∑
i=1

pi f (yi) �
m

∑
i=1

piF (xi)−
m

∑
i=1

piF (yi) . (11)

The claim follows by using Theorem 3(i) for the function F .
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(iii) Apply Theorem 3(ii) for the convex function η . The reversed inequality in (8)
follows for even n , n � 2, and as f is n -convex by assumption, apply Theorem
4, the reversed inequality in (9) is immediate.

(iv) As the reverse of the inequality (9) is equivalent to the reverse of the inequality
(11), by using F in Theorem 3(ii), the claim follows. �

REMARK 1. Theorem 5 is a generalization and a refinement of the Theorem 3. In
the convex case ( that is for n = 2 ) , the function F defined in (10) is a linear function,
which clearly implies (under the assumption x �p y ) that the right-hand side of the
inequality (9) vanishes, which gives inequality (6) . For functions f which, besides
being convex, poses some higher convexity of even order, Theorem 5 gives refinements
of inequality (6) .

REMARK 2. It is obvious that the function f (x) = x2 is n -convex for any n � 2.
The function F defined in (10) in this case is given by:

F(x) =
1

b−a

[
(n−1)

(
b2(x−b)−a2(x−a)

)
+

n−2
2

(
2b(x−b)2−2a(x−a)2)

+
n−3
3!

(
2(x−b)3−2(x−a)3)]

and obviously F ′′(x) = 2. This shows that Theorem 5 generates genuine refinements
of the weighted majorization inequality (6) .

3. Refinements and generalizations of the Favard-type inequalities

The aim of this section is to present some refinements of the well known results
including generalized Favard’s inequality.

If x = (x1, . . . ,xm) and y = (y1, . . . ,ym) are two m-tuples, then we define xy =
(x1y1, . . . ,xmym) and x

y =
(

x1
y1

, . . . , xm
ym

)
with each yi 	= 0 for i = 1, . . . ,m.

The following theorem presents refinement of the generalized discrete weighted
Favard’s inequality.

THEOREM 6. Let f : [a,b] → R , [a,b] ⊂ (0,∞) , n � 1 , be such that f (n−1) is
absolutely continuous. Let p , x and y be positive m-tuples such that x̃i = xi

∑m
j=1 p jx j

,

ỹi = yi
∑m

j=1 p jy j
∈ [a,b] , i = 1, . . . ,m.

Let x
y be a decreasing m-tuple.

(i) If y is a decreasing m-tuple and if f is n-convex for even n, n � 2 , then

m

∑
i=1

pi f (x̃i)−
m

∑
i=1

pi f (ỹi) �
m

∑
i=1

piF (x̃i)−
m

∑
i=1

piF (ỹi) , (12)

where F is defined in (10) .
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(ii) Let y be a decreasing m-tuple and let the inequality (12) be satisfied. If F is
convex, then

m

∑
i=1

pi f (x̃i) �
m

∑
i=1

pi f (ỹi) . (13)

(iii) If x is an increasing m-tuple and if f is n-convex for even n, n � 2 , then the
reversed inequality holds in (12) .

(iv) Let x be an increasing m-tuple and let the reverse of the inequality (12) be
satisfied. If F is convex, then the reversed inequality holds in (13) .

Analogous statements hold if x
y is an increasing m-tuple.

Proof. The idea of the proof is the same as in the proof of Theorem 2.3 in [6].
Obviously ∑m

i=1 pix̃i = ∑m
i=1 piỹi = 1. For the positive m-tuple u = py and for

the decreasing m-tuple v = x
y , apply Lemma 1(i) , it follows ∑k

i=1 pix̃i � ∑k
i=1 piỹi ,

k = 1, . . . ,m−1 and we have
x̃ �p ỹ. (14)

(i) The assumption that y is decreasing obviously implies that ỹ is decreasing. Ap-
ply Theorem 5(i) with (14) , the inequality (12) is immediate.

(ii) As (14) holds, apply Theorem 3(i) for the convex function F , the right hand
side of the inequality (12) is non-negative.

(iii) By following the proof of (i) and by applying Theorem 5(iii) , the reverse of the
inequality (12) follows.

(iv) Apply Theorem 3(ii) for the convex function F , the claim follows. �
The following definition is given in [12, p. 6].

DEFINITION 1. An m-tuple x = (x1, . . . ,xm)∈R
m is said to be convex if xk−1+xk+1

2
� xk holds for k = 2, . . . ,m− 1. If the reversed inequality holds, then x is said to be
concave.

By simple induction, it is easy to prove the following lemma.

LEMMA 2.

1. If x = (x1, . . . ,xm) is a non-negative and concave m-tuple, then y =
( x2

1 , x3
2 , . . . ,

xm
m−1

)
is a decreasing (m−1)-tuple. If x is non-negative and convex with x1 = 0 ,

then y is increasing.

2. If x = (x0,x1, . . . ,xm) is non-negative and concave (alt. convex) with x0 = 0 ,
then

( x1
1 , x2

2 , . . . , xm
m

)
is decreasing (alt. increasing) .

3. If x = (x1, . . . ,xm) is a non-negative and concave m-tuple, then z =
( x1

m−1 , x2
m−2 ,

. . . ,
xm−1

1

)
is increasing. If x is non-negative and convex with xm = 0 , then z is

decreasing.
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4. If (x1, . . . ,xm,xm+1) is non-negative and concave (alt. convex) with xm+1 = 0 ,
then

( x1
m , x2

m−1 , . . . , xm
1

)
is increasing (alt. decreasing) .

COROLLARY 2. Let f : [a,b] → R , [a,b] ⊂ (0,∞) , n � 1 , be such that f (n−1)

is absolutely continuous and let f be n-convex for even n, n � 2 . Suppose that p
and (x1, . . . ,xm) are positive m-tuples such that x̃i = xi

∑m
j=1 p jx j

, ũi = i
∑m

j=1 p j j
, ṽi =

m+1−i
∑m

j=1 p j(m+1− j) ∈ [a,b] , i = 1, . . . ,m.

(i) If x = (x0,x1, . . . ,xm) is an increasing concave (m+1)-tuple with x0 = 0 , then

m

∑
i=1

pi f (x̃i)−
m

∑
i=1

pi f (ũi) �
m

∑
i=1

piF (x̃i)−
m

∑
i=1

piF (ũi) , (15)

where F is defined in (10) .

(ii) If x = (x0,x1, . . . ,xm) is a convex (m+ 1)-tuple with x0 = 0 , then the reversed
inequality holds in (15) .

(iii) If x = (x1, . . . ,xm,xm+1) is a decreasing concave (m+ 1)-tuple with xm+1 = 0 ,
then

m

∑
i=1

pi f (x̃i)−
m

∑
i=1

pi f (ṽi) �
m

∑
i=1

piF (x̃i)−
m

∑
i=1

piF (ṽi) , (16)

where F is defined in (10) .

(iv) If x = (x1, . . . ,xm,xm+1) is a convex (m+ 1)-tuple with xm+1 = 0 , then the re-
versed inequality holds in (16) .

Proof. The idea of the proof is the same as that of the proof of Corollary 2.4 in
[6].

(i) By using the concavity of x with x0 = 0, it follows that
( x1

1 , x2
2 , . . . , xm

m

)
is de-

creasing by Lemma 2(2) . As x is increasing by assumption, apply Theorem
6(iii) , inequality (15) is immediate.

(ii) Use Lemma 2(2) and apply Theorem 6 (12) , the claim follows.

(iii) As the concavity of (m+1)-tuple x with xm+1 = 0 implies (by Lemma 2 (4))
that

( x1
m , x2

m−1 , . . . , xm
1

)
is increasing and as by assumption x is decreasing, use

the reverse of the inequality (12) , we obtain inequality (16) .

(iv) By using Lemma 2(4) and by applying Theorem 6(i) , the claim follows. �

REMARK 3. For f (x) = xp , where x ∈ (0,∞) , it is easy to see that the function f
is

(i) 1-convex for p ∈ (0,∞)
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(ii) 2-convex or convex for p ∈ (−∞,0)∪ (1,∞)

(iii) n -convex for odd n � 3 for p ∈ (0,1)∪ (2,3)∪ . . .∪ (n−3,n−2)∪ (n−1,∞)

(iv) n -convex for even n � 4 for p ∈ (−∞,0)∪ (1,2)∪ (3,4)∪ . . .∪ (n−3,n−2)∪
(n−1,∞).

The following corollary is an application of Theorem 6.

COROLLARY 3. Let f (x) = xp , x ∈ (0,∞) , be n-convex for even n, n � 2 . Let
p , x and y be positive m-tuples and let [a,b] ⊆ (0,∞) such that x̃i = xi

∑m
j=1 p jx j

, ỹi =
yi

∑m
j=1 p jy j

∈ [a,b] , i = 1, . . . ,m. Consider the inequality

∑m
i=1 pix

p
i

∑m
i=1 piy

p
i
−
(

∑m
i=1 pixi

∑m
i=1 piyi

)p

� (∑m
i=1 pixi)p

∑m
i=1 piy

p
i

· 1
b−a

n−1

∑
k=1

n− k
k!

(p)k−1

×
(

ap−k+1

(
m

∑
i=1

pi (ỹi −a)k −
m

∑
i=1

pi (x̃i −a)k
)

−bp−k+1

(
m

∑
i=1

pi (ỹi −b)k −
m

∑
i=1

pi (x̃i −b)k
))

,

(17)

where (p)k−1 = p(p−1) . . .(p− (k−2)) is the Pochhammer symbol.
Let x

y be a decreasing m-tuple.

(i) If y is a decreasing m-tuple, then the inequality (17) holds.

(ii) If x is an increasing m-tuple, then the reversed inequality holds in (17) .

Analogous statements hold if x
y is an increasing m-tuple.

An application of Corollary 2 states that:

COROLLARY 4. Let f (x) = xp , x ∈ (0,∞) , be n-convex for even n, n � 2 . Let
p be a positive m-tuple and let [a,b] ⊂ (0,∞) such that x̃i = xi

∑m
j=1 p jx j

, ũi = i
∑m

j=1 p j j
,

ṽi = m+1−i
∑m

j=1 p j(m+1− j) ∈ [a,b] , i = 1, . . . ,m.

( i) If x = (x0,x1, . . . ,xm) is an increasing concave (m+1)-tuple with x0 = 0 , then

∑m
i=1 pix

p
i

∑m
i=1 piip

−
(

∑m
i=1 pixi

∑m
i=1 pii

)p

� (∑m
i=1 pixi)

p

∑m
i=1 piip

· 1
b−a

n−1

∑
k=1

n− k
k!

(p)k−1

×
(

ap−k+1

(
m

∑
i=1

pi (ũi −a)k −
m

∑
i=1

pi (x̃i−a)k
)

−bp−k+1

(
m

∑
i=1

pi (ũi−b)k −
m

∑
i=1

pi (x̃i−b)k
))

.

(18)
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( ii) If x = (x0,x1, . . . ,xm) is a convex (m+ 1)-tuple with x0 = 0 , then the reversed
inequality holds in (18) .

( iii) If x = (x1, . . . ,xm,xm+1) is a decreasing concave (m+ 1)-tuple with xm+1 = 0 ,
then

∑m
i=1 pix

p
i

∑m
i=1 pi (m+1− i)p −

(
∑m

i=1 pixi

∑m
i=1 pi (m+1− i)

)p

� (∑m
i=1 pixi)

p

∑m
i=1 pi (m+1− i)p ·

1
b−a

n−1

∑
k=1

n− k
k!

(p)k−1

×
(

ap−k+1

(
m

∑
i=1

pi (ṽi−a)k −
m

∑
i=1

pi (x̃i −a)k
)

−bp−k+1

(
m

∑
i=1

pi (ṽi−b)k −
m

∑
i=1

pi (x̃i −b)k
))

. (19)

( iv) If x = (x1, . . . ,xm,xm+1) is a convex (m+ 1)-tuple with xm+1 = 0 , then the re-
versed inequality holds in (19) .

REMARK 4. By using the method given in [6], it is easy to prove an analogue of
inequality (18) for the m-tuples x which are non-negative, increasing and concave. In
this case set ũi = i−1

∑m
i=1 pi(i−1) , i = 1, . . . ,m , a = 0 and p � n−1. Analogous statement

holds for the inequality (19) by setting ṽi = m−i
∑m

i=1 pi(m−i) , i = 1, . . . ,m , a = 0 and p �
n−1.

4. Refinements and generalizations of the Berwald-type inequalities

By using the analogous methods as in the previous sections, refinements and gen-
eralizations of Berwald-type inequalities are obtained.

THEOREM 7. Let f ,ζ : [a,b]→R , n � 1 , be such that ζ is strictly increasing and(
f ◦ ζ−1

)(n−1)
is absolutely continuous. Let p be a positive m-tuple and x , y∈ [a,b]m

such that ζ (x) �p ζ (y) holds.

(i) If y is a decreasing m-tuple and if f ◦ ζ−1 is n-convex for even n, n � 2 , then

m

∑
i=1

pi f (xi)−
m

∑
i=1

pi f (yi) � 1
ζ (b)− ζ (a)

n−1

∑
k=1

n− k
k!

×
((

f ◦ ζ−1)(k−1)
(ζ (a))

(
m

∑
i=1

pi (ζ (yi)− ζ (a))k −
m

∑
i=1

pi (ζ (xi)− ζ (a))k

)

−( f ◦ ζ−1)(k−1)
(ζ (b))

(
m

∑
i=1

pi (ζ (yi)− ζ (b))k −
m

∑
i=1

pi (ζ (xi)− ζ (b))k
))

.

(20)
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(ii) Let y be a decreasing m-tuple and let the inequality (20) be satisfied. Suppose
that G is a function defined by

G(x) =
1

ζ (b)− ζ (a)

n−1

∑
k=1

n− k
k!

(
(x− ζ (b))k

(
f ◦ ζ−1)(k−1)

(ζ (b))

−(x− ζ (a))k ( f ◦ ζ−1)(k−1)
(ζ (a))

)
. (21)

If G is convex, then the inequality (6) holds.

( iii) If x is an increasing m-tuple and if f ◦ ζ−1 is n-convex for even n, n � 2 , then
the reversed inequality holds in (20) .

(iv) Let x be an increasing m-tuple and let the reverse of the inequality (20) be
satisfied. If G is defined in (21) and if G is convex, then the reversed inequality
holds in (6) .

Proof.

(i) Apply Theorem 5(i) for the n -convex function f ◦ ζ−1 and for the m-tuples
x̃ = (ζ (x1) , . . . ,ζ (xm)) and ỹ = (ζ (y1) , . . . ,ζ (ym)) .

(ii) It is easy to see that the inequality (20) is equivalent to

m

∑
i=1

pi f (xi)−
m

∑
i=1

pi f (yi) �
m

∑
i=1

piG(ζ (xi ))−
m

∑
i=1

piG(ζ (yi )) . (22)

The claim follows by using Theorem 3(i) .

(iii) For the n -convex function f ◦ζ−1 and for the m-tuples x̃ and ỹ , apply Theorem
5(iii) , the reverse of the inequality (20) follows.

(iv) As the reverse of the inequality (20) is equivalent to the reverse of the inequality
(22) , apply Theorem 3(ii) for the convex function G , the claim follows. �

The following theorem presents refinement of the generalized discrete weighted
Berwald’s inequality.

THEOREM 8. Let f ,ζ : (0,∞) → R , n � 1 , be such that ζ is continuous and

strictly increasing and
(
f ◦ ζ−1

)(n−1)
is absolutely continuous. Let p , x and y be

positive m-tuples and let z1 be such that

m

∑
i=1

piζ (xi) =
m

∑
i=1

piζ (z1yi) . (23)

Suppose that [a,b] ⊂ (0,∞) is such that xi,z1yi ∈ [a,b] , i = 1, . . . ,m.
Let x

y be a decreasing m-tuple.
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( i) If y is a decreasing m-tuple and if f ◦ ζ−1 is n-convex for even n, n � 2 , then

m

∑
i=1

pi f (xi)−
m

∑
i=1

pi f (z1yi) �
m

∑
i=1

piG(ζ (xi))−
m

∑
i=1

piG(ζ (z1yi)) , (24)

where G is given by (21) .

( ii) Let y be a decreasing m-tuple and let the inequality (24) be satisfied. If G is
defined in (21) and if G is convex, then

m

∑
i=1

pi f (xi) �
m

∑
i=1

pi f (z1yi) (25)

holds.

( iii) If x is an increasing m-tuple and if f ◦ ζ−1 is n-convex for even n, n � 2 , then
the reversed inequality holds in (24) .

( iv) Let x be an increasing m-tuple and let the reverse of the inequality (24) be
satisfied. If G is defined in (21) and if G is convex, then the reversed inequality
holds in (25) .

Analogous statements hold if x
y is an increasing m-tuple.

Proof. The existence of z1 is shown in [6, Theorem2.8]. Obviously z1 ∈
[
min j

x j
y j

,

max j
x j
y j

]
.

As x
y is a decreasing m-tuple, ζ is strictly increasing and as (23) holds, there is

an l ∈ {1, . . . ,m} such that

xi

yi
� z1, i = 1, . . . , l and z1 � xi

yi
, i = l +1, . . . ,m. (26)

Since ζ is strictly increasing, from (26) it follows that

k

∑
i=1

piζ (xi) �
k

∑
i=1

piζ (z1yi) , k = 1, . . . , l (27)

and
k

∑
i=l+1

piζ (xi) �
k

∑
i=l+1

piζ (z1yi) , k = l +1, . . . ,m. (28)

By using (23) and inequality (28) , it follows ∑k
i=1 piζ (xi) � ∑k

i=1 piζ (z1yi) , k = l +
1, . . . ,m, which combined together with (27) yields that

k

∑
i=1

piζ (xi) �
k

∑
i=1

piζ (z1yi) , k = 1, . . . ,m,

and the above inequality combined together with (23) implies that

ζ (x) �p ζ (z1y) . (29)
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(i) If y is a decreasing m-tuple, then apply Theorem 7(i) with (29) , we have in-
equality (24) .

(ii) As (29) holds, apply Theorem 3(i) , the claim follows.

(iii) If x is an increasing m-tuple, then apply Theorem 7(iii) with (29) , reverse of
the inequality (24) is immediate.

(iv) Apply Theorem 3(ii) with (29) , the claim follows.

For the second case the idea of the proof is the same as discussed above. �

COROLLARY 5. Let f ,ζ : (0,∞) → R , n � 1 , be such that ζ is continuous and

strictly increasing and
(
f ◦ ζ−1

)(n−1)
is absolutely continuous. Let f ◦ ζ−1 be n-

convex for even n, n � 2 . Let p be a positive m-tuple and let z1 and z2 be such
that

m

∑
i=1

piζ (xi) =
m

∑
i=1

piζ (z1i) ,
m

∑
i=1

piζ (xi) =
m

∑
i=1

piζ (z2 (m+1− i)) (30)

hold. Suppose that [a1,b1] , [a2,b2] ⊂ (0,∞) are such that xi,z1i ∈ [a1,b1] , xi , z2(m+
1− i) ∈ [a2,b2] , i = 1, . . . ,m.

(i) If x = (x0,x1, . . . ,xm) is an increasing concave (m+1)-tuple with x0 = 0 , then

m

∑
i=1

pi f (xi)−
m

∑
i=1

pi f (z1i) �
m

∑
i=1

piG(ζ (xi))−
m

∑
i=1

piG(ζ (z1i)) , (31)

where G is defined in (21) ( for the interval [a1,b1] ) .

(ii) If x = (x0,x1, . . . ,xm) is a convex (m+ 1)-tuple with x0 = 0 , then the reversed
inequality holds in (31) .

(iii) If x = (x1, . . . ,xm,xm+1) is a decreasing concave (m+ 1)-tuple with xm+1 = 0 ,
then

m

∑
i=1

pi f (xi)−
m

∑
i=1

pi f (z2 (m+1− i))

�
m

∑
i=1

piG(ζ (xi))−
m

∑
i=1

piG(ζ (z2 (m+1− i))) , (32)

where G is defined in (21) ( for the interval [a2,b2] ) .

(iv) If x = (x1, . . . ,xm,xm+1) is a convex (m+ 1)-tuple with xm+1 = 0 , then the re-
versed inequality holds in (32) .

Proof.

(i) By the same arguing as given in the Corollary 2(i) , apply Theorem 8 (iii) , in-
equality (31) is immediate.
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(ii) As xi
i , i = 1, . . . ,m , is increasing, apply Theorem 8 (24) , the claim follows.

(iii) For a decreasing m-tuple x and an increasing m-tuple xi
m+1−i , i = 1, . . . ,m , apply

reverse of the inequality (24) such that (30) holds, inequality (32) is immediate.

(iv) As xi
m+1−i , i = 1, . . . ,m is decreasing, apply Theorem 8 (i) such that (30) holds,

the result is immediate. �
The following corollary is an application of Theorem 8.

COROLLARY 6. Let f (x) = xp , ζ (x) = xq , q > 0 , be such that x �→ x
p
q is n-

convex for even n, where x ∈ (0,∞) and n � 2 . Let p , x and y be positive m-tuples

and let [a,b] ⊆ (0,∞) be such that xi ,
(

∑m
i=1 pix

q
i

∑m
i=1 piy

q
i

) 1
q
yi ∈ [a,b] , i = 1, . . . ,m.

Let x
y be a decreasing m-tuple.

( i) If y is a decreasing m-tuple, then

∑m
i=1 pix

p
i

∑m
i=1 piy

p
i
−
(

∑m
i=1 pix

q
i

∑m
i=1 piy

q
i

) p
q

� 1

∑m
i=1 piy

p
i
· 1
bq−aq

n−1

∑
k=1

n− k
k!

(
p
q

)
k−1

×
(

ap−(k−1)q

(
m

∑
i=1

pi

(
yq
i ·

∑m
i=1 pix

q
i

∑m
i=1 piy

q
i
−aq

)k

−
m

∑
i=1

pi
(
xq
i −aq)k)

−bp−(k−1)q

(
m

∑
i=1

pi

(
yq
i ·

∑m
i=1 pix

q
i

∑m
i=1 piy

q
i
−bq

)k

−
m

∑
i=1

pi
(
xq
i −bq)k)) . (33)

( ii) If x is an increasing m-tuple, then the reversed inequality holds in (33) .

Analogous statements hold if x
y is an increasing m-tuple.

Proof. It’s proof is an immediate consequence of Theorem 8. Notice that in this

case z1 =
(

∑m
i=1 pix

q
i

∑m
i=1 piy

q
i

) 1
q
. �

An application of Corollary 5 states that:

COROLLARY 7. Let f (x) = xp , ζ (x) = xq , q > 0 , be such that x �→ x
p
q is n-

convex for even n, where x ∈ (0,∞) and n � 2 . Let p be a positive m-tuple.

(i) If x = (x0,x1, . . . ,xm) is an increasing concave (m+1)-tuple with x0 = 0 , then

∑m
i=1 pix

p
i

∑m
i=1 piip

−
(

∑m
i=1 pix

q
i

∑m
i=1 piiq

) p
q

� 1

∑m
i=1 piip

· 1
bq−aq

n−1

∑
k=1

n− k
k!

(
p
q

)
k−1

×
(

ap−(k−1)q

(
m

∑
i=1

pi

(
iq · ∑m

i=1 pix
q
i

∑m
i=1 piiq

−aq
)k

−
m

∑
i=1

pi
(
xq
i −aq)k)

−bp−(k−1)q

(
m

∑
i=1

pi

(
iq · ∑m

i=1 pix
q
i

∑m
i=1 piiq

−bq
)k

−
m

∑
i=1

pi
(
xq
i −bq)k)) , (34)
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where [a,b] ⊂ (0,∞) is such that xi ,
(

∑m
i=1 pix

q
i

∑m
i=1 piiq

) 1
q
i ∈ [a,b] , i = 1, . . . ,m.

(ii) If x = (x0,x1, . . . ,xm) is a convex (m+ 1)-tuple with x0 = 0 , then the reversed
inequality holds in (34) .

(iii) If x = (x1, . . . ,xm,xm+1) is a decreasing concave (m+ 1)-tuple with xm+1 = 0 ,
then inequality (34) holds, where the m-tuple (m,m−1, . . . ,2,1) is used instead
of the m-tuple (1,2, . . . ,m) .

(iv) If x = (x1, . . . ,xm,xm+1) is a convex (m+ 1)-tuple with xm+1 = 0 , then the re-
versed inequality holds in (34) , where the m-tuple (m,m− 1, . . . ,2,1) is used
instead of the m-tuple (1,2, . . . ,m) .

Claims given in Remark 4 also hold in the setting of the Corollary 7, that is, in-
equality (34) also holds for non-negative, increasing and concave m-tuples x by us-
ing the m-tuple (0,1, . . . ,m− 1) instead of the m-tuple (1,2, . . . ,m) for a = 0 and
p
q � n−1. Analogous claims hold for non-negative, decreasing and concave m-tuples.

The most interesting case is 0 < q � p in which Corollary 7 holds for n = 2.
In this case the right-hand side of the inequality (34) vanishes. By rearranging and
expressing in terms of power means, it follows that

M[p]
m (x;p) � M[p]

m (Jm;p)

M[q]
m (Jm;p)

M[q]
m (x;p) , (35)

where Jm = (1,2, . . . ,m) , which holds for m-tuples x for which (m+1)-tuples (0,x)
are increasing and concave. Obviously inequality (35) is sharp and equality is attained
for x = Jm . By limiting argument inequality (35) also holds for q = 0. It is easy to
see that the inequality (4) follows from inequality (35) for p = 1, q = 0, p = 1 =
(1,1, . . . ,1) .

By using the above remarks (as given in Remark 4), an analogous inequality also
holds for m-tuples x which are non-negative, increasing and concave, that is

M[p]
m (x;p) � M[p]

m (Im;p)

M[q]
m (Im;p)

M[q]
m (x;p) , (36)

which is exactly estimation (3). Notice that since (36) holds for x = Jm , it follows that

M[p]
m (Jm;p) � M[p]

m (Im;p)

M[q]
m (Im;p)

M[q]
m (Jm;p) ,

which shows that the estimation in (35) is better than the estimation in (36), but the first
estimation holds for smaller class of concave functions.

OPEN PROBLEM. Find the best possible estimation of the form (35) for all the
non-negative concave m-tuples x .
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5. The continuous case

Here we just give an outline of the continuous analogous of the main results of this
paper. The integral analogue of Theorems 2 and 3 and Lemma 1 are given in [7].

The following theorem is the integral version of Theorem 4 (see [5]).

THEOREM 9. Let f : [a,b] → R , n � 1 , be such that f (n−1) is absolutely contin-
uous and let k (t,x) be defined in (7) . Let p : [c,d] → R and ϕ ,ψ : [c,d] → [a,b] be
continuous functions. If

∫ d

c
p(z) (ϕ (z)− t)n−1 k (t,ϕ (z))dz �

∫ d

c
p(z)(ψ (z)− t)n−1 k (t,ψ (z))dz (37)

holds and if f is n-convex, then

∫ d

c
p(z) f (ϕ (z))dz−

∫ d

c
p(z) f (ψ (z))dz

� 1
b−a

n−1

∑
k=1

n− k
k!

(
f (k−1) (a)

(∫ d

c
p(z)(ψ (z)−a)k dz−

∫ d

c
p(z) (ϕ (z)−a)k dz

)

− f (k−1) (b)
(∫ d

c
p(z) (ψ (z)−b)k dz−

∫ d

c
p(z)(ϕ (z)−b)k dz

))
. (38)

If the reversed inequality holds in (37) , then the reversed inequality holds in (38) .

The integral version of Theorem 5 is as follows:

THEOREM 10. Let f : [a,b] → R , n � 1 , be such that f (n−1) is absolutely con-
tinuous. Let p : [c,d] → R and let ϕ ,ψ : [c,d] → [a,b] be continuous functions such
that ϕ �p ψ ( the obvious continuous variant of (5) ) .

(i) If ψ is a decreasing function and if f is n-convex for even n � 2 , then the
inequality (38) holds.

(ii) Let ψ be a decreasing function and let the inequality (38) be satisfied. If F
defined in (10) is convex, then

∫ d

c
p(z) f (ϕ (z))dz �

∫ d

c
p(z) f (ψ (z))dz. (39)

(iii) If ϕ is an increasing function and if f is n-convex for even n � 2 , then the
reversed inequality holds in (38) .

(iv) Let ϕ be an increasing function and let the reverse of the inequality (38) be
satisfied. If F defined in (10) is convex, then the reversed inequality holds in
(39) .
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Proof. The proof is analogous to the proof of Theorem 5 but we apply Theorem 9
and [7, Theorem 2.1] instead of Theorems 3 and 4. �

The following theorem is the integral version of Theorem 8.

THEOREM 11. Let f ,ζ : [0,∞) → R be such that for n � 1 ,
(
f ◦ ζ−1

)(n−1)
is

absolutely continuous and ζ is continuous and strictly increasing. Let p,ϕ ,ψ : [c,d]→
[0,∞) be integrable functions. Let z1 be defined as

∫ d

c
p(z)ζ (ϕ (z))dz =

∫ d

c
p(z)ζ (z1ψ (z))dz. (40)

Suppose that [a,b] ⊂ [0,∞) is such that ϕ(z) , z1ψ(z) ∈ [a,b] for every z ∈ [c,d] .
Let ϕ

ψ be a decreasing function.

( i) If ψ is a decreasing function and if f ◦ ζ−1 is n-convex for even n � 2 , then

∫ d

c
p(z) f (ϕ (z))dz−

∫ d

c
p(z) f (z1ψ (z))dz

�
∫ d

c
p(z)G(ζ (ϕ (z)))dz−

∫ d

c
p(z)G(ζ (z1ψ (z)))dz (41)

holds, where G is defined by (21) .

( ii) Let ψ be a decreasing function and let the inequality (41) be satisfied. If G
defined in (21) is convex, then the inequality

∫ d

c
p(z) f (ϕ (z))dz �

∫ d

c
p(z) f (z1ψ (z))dz (42)

holds.

( iii) If ϕ is an increasing function and if f ◦ζ−1 is n-convex for even n � 2 , then the
reversed inequality holds in (41) .

( iv) Let ϕ be an increasing function and let the reverse of the inequality (41) be
satisfied. If G defined in (21) is convex, then the reversed inequality holds in
(42) .

Analogous claims hold if ϕ
ψ is an increasing function.

Proof. The idea of the proof is the same as that of the proof of Theorem 8. Apply
an obvious variant of Theorem 7. �

REMARK 5. Let z1 > 0, where z1 is defined in (40) and let ϕ be a positive
increasing concave function defined on [c,d] .

(i) If we substitute ψ (z) = z−c
d−c in the reverse of the inequality (41) , then Theorem

11 (iii) combined together with (iv) gives refinement of the weighted Berwald’s
inequality.
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(ii) If we substitute ψ (z) = d−z
d−c in the reverse of the inequality (41) , then Theorem

11 (iii) combined together with (iv) gives refinement of the weighted Berwald’s
inequality.

The following corollary is an application of Theorem 11.

COROLLARY 8. Let f (x) = xp and ζ (x) = xq , q > 0 , where x ∈ (0,∞) be such

that x �→ x
p
q is n-convex for even n � 2 . Let p,ϕ ,ψ : [c,d] → (0,∞) be integrable

functions. Let [a,b] ⊂ (0,∞) be such that ϕ(z) ,
(∫ d

c p(z)ϕq(z)dz∫ d
c p(z)ψq(z)dz

)1/q

ψ(z) ∈ [a,b] for

every z ∈ [a,b] . Consider the inequality

∫ d
c p(z)ϕ p(z)dz∫ d
c p(z)ψ p(z)dz

−
(∫ d

c p(z)ϕq(z)dz∫ d
c p(z)ψq(z)dz

) p
q

� 1∫ d
c p(z)ψ p(z)dz

· 1
bq−aq

n−1

∑
k=1

n− k
k!

(
p
q

)
k−1

×
⎛
⎝ap−(k−1)q

(∫ d

c
p(z)

(
ψq(z)

∫ d
c p(z)ϕq(z)dz∫ d
c p(z)ψq(z)dz

−aq

)k

dz−
∫ d

c
p(z)(ϕq(z)−aq)k dz

)

−bp−(k−1)q

⎛
⎝∫ d

c
p(z)

(
ψq(z)

∫ d
c p(z)ϕq(z)dz∫ d
c p(z)ψq(z)dz

−bq

)k

dz−
∫ d

c
p(z)(ϕq(z)−bq)k dz

⎞
⎠
⎞
⎠ .

(43)

Let ϕ
ψ be a decreasing function.

( i) If ψ is a decreasing function, then the inequality (43) holds.

( ii) If ϕ is an increasing function, then the reversed inequality holds in (43) .

Analogous claims hold if ϕ
ψ is an increasing function.
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