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ON REVERSES OF THE GOLDEN–THOMPSON TYPE INEQUALITIES
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(Communicated by Y. Seo)

Abstract. In this paper we present some reverses of the Golden-Thompson type inequalities: Let
H and K be Hermitian matrices such that eseH �ols eK �ols eteH for some scalars s � t , and
α ∈ [0,1] . Then for all p > 0 and k = 1,2, . . . ,n

λk(e(1−α)H+αK ) � (max{S(esp),S(et p)}) 1
p λk(epH �αepK)

1
p ,

where A�αB = A
1
2
(
A− 1

2 B
1
2 A− 1

2
)α

A
1
2 is α -geometric mean, S(t) is the so called Specht ra-

tio and �ols is the so called Olson order. The same inequalities are also provided with other
constants. The obtained inequalities improve some known results.

1. Introduction

In what follows, capital letters A,B,H and K stand for n×n matrices or bounded
linear operators on an n -dimentional complex Hilbert space (H ,〈 · 〉) . For a pair A,B
of Hermitian matrices, we say A � B if B−A � 0. Let A and B be two positive definite
matrices. For each α ∈ [0,1] , the weighted geometric mean A�αB of A and B in the
sense of Kubo-Ando [9] is defined by

A�αB = A
1
2
(
A− 1

2 B
1
2 A− 1

2
)α

A
1
2 .

Also for positive semidefinite matrices A and B , the weak log-majorization A ≺wlog B
means that

k

∏
j=1

λ j(A) �
k

∏
j=1

λ j(B), k = 1,2, · · · ,n,

where λ1(A) � λ2(A) � · · ·� λn(A) are the eigenvalues of A listed in decreasing order.
If equality holds when k = n , we have the log-majorization A ≺log B . It is known that
the weak log-majorization A ≺wlog B implies ‖A‖u � ‖B‖u for any unitarily invariant
norm ‖ · ‖u , i.e. ‖UAV‖u = ‖A‖u for all A and all unitaries U,V . See [2] for theory
of majorization.
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In [14], Specht obtained an inequality for the arithmetic and geometric means of
positive numbers: Let x1 � . . . � xn > 0 and set t = x1/xn . Then

x1 + . . .+ xn

n
� S(t)(x1 . . .xn)

1
n ,

where

S(t) =
(t−1)t1/(t−1)

e logt
(t �= 1) and S(1) = 1 (1)

is called the Specht ratio at t . Note that limp→0 S(t p)
1
p = 1, S(t−1) = S(t) > 1 for

t �= 1, t > 0 [5]. Specht’s inequality is a ratio type reverse inequality of the classical
arithmetic-geometric mean inequality. Using this nice ratio we can state our main result
in Section 2.

The Golden-Thompson trace inequality, which is of importance in statistical me-
chanics and in the theory of random matrices, states that TreH+K � TreHeK for arbi-
trary Hermitian matrices H and K . This inequality has been complemented in several
ways [1, 8]. Ando and Hiai in [1] proved that for every unitarily invariant norm ‖ · ‖u

and p > 0

‖(epH�αepK)
1
p ‖u � ‖e(1−α)H+αK‖u. (2)

Seo in [12] found some upper bounds on ‖e(1−α)H+αK‖u in terms of scalar multi-

ples of ‖(epH�αepK)
1
p ‖u , which show reverse of the Golden-Thompson type inequality

(2). In this paper we establish another reverses of this inequality, which improve and
refine Seo’s results. In fact the general sandwich condition sA � B � tA for positive
definite matrices, is the key for our statements. Also, the so called Olson order �ols is
used. For positive operators, A �ols B if and only if Ar � Br for every r � 1[11]. Our
results are parallel to eigenvalue inequalities obtained in [3] and [7].

2. Reverse inequalities via Specht ratio

To study the Golden-Thompson inequality, Ando-Hiai in [1] developed the fol-
lowing log-majorizationes:

Ar�αBr ≺log (A�αB)r, r � 1,

or equivalently

(Ap�αBp)
1
p ≺log (Aq�αBq)

1
q , 0 < q � p.

There are some literatures [13] on the converse of these inequalities in terms of unitarily
invariant norm ‖ · ‖u . By the following lemmas, we obtain a new reverse of these
inequalities in terms of eigenvalue inequalities.
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LEMMA 1. Let A and B be positive definite matrices such that sA � B � tA for
some scalars 0 < s � t , and α ∈ [0,1] . Then

Ar�αBr � (max{S(s),S(t)})r(A�αB)r, 0 < r � 1, (3)

where S(t) is the Specht ratio defined as (1).

Proof. Let f be an operator monotone function on [0,∞) . Then according to the
proof of Theorem 1 in [6], we have

f (A)�α f (B) � f (M(A�αB)),

where M = max{S(s),S(t)} . Putting f (t) = tr for 0 < r � 1, we reach inequality
(3). �

LEMMA 2. Let A and B be positive definite matrices such that sA �ols B �ols tA
for some scalars 0 < s � t , and α ∈ [0,1] . Then

λk(A�αB)r � max{S(sr),S(tr)}λk(Ar�αBr), r � 1, (4)

and hence,

λk(Aq�αBq)
1
q � (max{S(sp),S(t p)}) 1

p λk(Ap�αBp)
1
p , 0 < q � p, (5)

where S(t) is the Specht ratio defined as (1) and k = 1,2, . . . ,n.

Proof. First note that the condition sA�ols B�ols tA is equivalent to the condition
sνAν � Bν � tνAν for every ν � 1. In particular, we have sA � B � tA for ν = 1.
Also, for r � 1 we have 0 < 1

r � 1 and by (3)

A
1
r �αB

1
r � (max{S(s),S(t)}) 1

r (A�αB)
1
r . (6)

On the other hand, from the condition sνAν � Bν � tνAν for every ν � 1 and letting
ν = r , we have

srAr � Br � trAr.

Now if we let X = Ar , Y = Br , w = sr and z = tr , then

wX � Y � zX . (7)

Using (6) under the condition (7), we have

X
1
r �αY

1
r � (max{S(w),S(z)}) 1

r (X�αY )
1
r ,

and this is the same as

A�αB � (max{S(sr),S(tr)}) 1
r (Ar�αBr)

1
r .
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Hence

λk(A�αB) � (max{S(sr),S(tr)}) 1
r λk(Ar�αBr)

1
r .

By taking r -th power on both sides and using the spectral mapping theorem, we get the
desired inequality (4). Note that from the minimax characterization of eigenvalues of
a Hermitian matrix [2] it follows immediately that A � B implies λk(A) � λk(B) for
each k . Similarly since p/q � 1, from inequality (4)

λk(A�αB)
p
q � max{S(s

p
q ),S(t

p
q )}λk(A

p
q �αB

p
q ). (8)

Replacing A and B by Aq and Bq in (8), and using the sandwich condition sqAq �
Bq � tqAq , we have

λk(Aq�αBq)
p
q � max{S(sp),S(t p)}λk(Ap�αBp).

This completes the proof. �
Note that eigenvalue inequalities immediately imply log-majorization and unitar-

ily invariant norm inequalities.

COROLLARY 1. Let A and B be positive definite matrices such that mI � A,B �
MI for some scalars 0 < m � M with h = M/m, and let α ∈ [0,1] . Then

Ar�αBr � S(h)r(A�αB)r, 0 < r � 1, (9)

and hence

λk(A�αB)r � S(hr)λk(Ar�αBr), r � 1, (10)

λk(Aq�αBq)
1
q � S(hp)

1
p λk(Ap�αBp)

1
p , 0 < q � p, (11)

where S(t) is the Specht ratio defined as (1) and k = 1,2, . . . ,n.

Proof. Since mI � A,B � MI implies m
M A � B � M

m A , the inequality (9) is ob-
tained by letting s = m/M , t = M/m in Lemma 1. Also from mI � A,B � MI , we
have mν I � Aν ,Bν � Mν I for every ν � 1, and so

( m
M

)ν
Aν � Bν �

(M
m

)ν
Aν . (12)

Using Lemma 2 under the condition (12), we reach inequalities (10) and (11). Note that
S(h) = S( 1

h) for every h > 0. �

REMARK 1. We remark that the matrix inequality (9) is more stronger than corre-
sponding norm inequality obtained by Seo in [12, Corollary 3.2]. Also, inequality (11)
is presented in [12, Lemma 3.1].
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In the sequel we show a reverse of the Golden-Thompson type inequality (2),
which is our main result.

THEOREM 1. Let H and K be Hermitian matrices such that eseH �ols eK �ols

eteH for some scalars s � t , and let α ∈ [0,1] . Then for all p > 0 ,

λk(e(1−α)H+αK) � (max{S(esp),S(et p)}) 1
p λk(epH�αepK)

1
p ,

where S(t) is the Specht ratio defined as (1) and k = 1,2, . . . ,n.

Proof. Replacing A and B by eH and eK in the inequality (5) of Lemma 2, we
can write

λk(eqH�αeqK)
1
q � (max{S(esp),S(et p)}) 1

p λk(epH�αepK)
1
p , 0 < q � p.

By [8, Lemma 3.3], we have

e(1−α)H+αK = lim
q→0

(eqH�αeqK)
1
q ,

and hence it follows that for each p > 0,

λk(e(1−α)H+αK) � (max{S(esp),S(et p)}) 1
p λk(epH�αepK)

1
p . �

COROLLARY 2. Let H and K be Hermitian matrices such that eseH �ols eK �ols

eteH for some scalars s � t , and let α ∈ [0,1] . Then for every unitarily invariant norm
‖ · ‖u and all p > 0 ,

‖e(1−α)H+αK‖u � (max{S(esp),S(et p)}) 1
p ‖(epH�αepK)

1
p ‖u, (13)

and the right-hand side of (13) converges to the left-hand side as p ↓ 0 . In particular,

‖eH+K‖u � max{S(e2s),S(e2t)}‖(e2H�e2K)‖u.

COROLLARY 3. [12, Theorem 3.3–Theorem 3.4] Let H and K be Hermitian
matrices such that mI � H,K � MI for some scalars m � M, and let α ∈ [0,1] . Then
for all p > 0 ,

λk(e(1−α)H+αK) � S(e(M−m)p)
1
p λk(epH�αepK)

1
p , k = 1,2, . . . ,n.

So, for every unitarily invariant norm ‖ · ‖u

‖e(1−α)H+αK‖u � S(e(M−m)p)
1
p ‖(epH�αepK)

1
p ‖u,

and the right-hand side of these inequalities converges to the left-hand side as p ↓ 0 .

Proof. From mI � H,K � MI , we have eνm � eνH ,eνK � eνM for every ν � 1
and so we can derive em−MeH �ols eK �ols eM−meH . Now the assertion is obtained by
applying Theorem 1 and the fact that for every t > 0, S(t) = S( 1

t ) . �
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3. Reverse inequalities via Kantorovich constant

A well-known matrix version of the Kantorovich inequality [10] asserts that if A
and U are two matrices such that 0 < mI � A � MI and UU∗ = I , then

UA−1U∗ � (m+M)2

4mM
(UAU∗)−1. (14)

Let w > 0. The generalized Kantorovich constant K(w,α) is defined by

K(w,α) :=
(wα −w)

(α −1)(w−1)

(
α −1

α
wα −1
wα −w

)α
, (15)

for any real number α ∈ R [5]. In fact, K(M
m ,−1) = K(M

m ,2) is the constant occurring
in (14).

Now as a result of the following statement, we have another reverse Golden-
Thompson type inequality which refines corresponding inequality in [12].

PROPOSITION 1. [7, Theorem 3] Let H and K be Hermitian matrices such that
eseH �ols eK �ols eteH for some scalars s � t , and let α ∈ [0,1] . Then

λk(e(1−α)H+αK) � K(ep(t−s),α)−
1
p λk(epH�αepK)

1
p , p > 0, (16)

where K(w,α) is the generalized Kantorovich constant defined as (15).

THEOREM 2. Let H and K be Hermitian matrices such that mI � K,H � MI for
some scalars m � M and let α ∈ [0,1] . Then for every p > 0 ,

λk(e(1−α)H+αK) � K(e2p(M−m),α)−
1
p λk(epH�αepK)

1
p , k = 1,2, . . . ,n,

and the right-hand side of this inequality converges to the left-hand side as p ↓ 0 . In
particular,

λk(eH+K) � e2M + e2m

2eMem λk(e2H�e2K), k = 1,2, . . . ,n.

Proof. Since mI � K,H � MI implies em−MeH �ols eK �ols eM−meH , desired
inequalities are obtained by letting s = m−M and t = M−m in Proposition 1. For the

convergence, we know that
2w

1
4

w
1
2 +1

� K(w,α) � 1, for every α ∈ [0,1] . So, for every

p > 0

1 � K(wp,α)−
1
p �

( 2w
p
4

w
p
2 +1

)− 1
p
.
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A simple calculation shows that

lim
p→0

− 1
p

log
( 2w

p
4

w
p
2 +1

)
= lim

p→0

(w
p
2 −1) log(w)

4(w
p
2 +1)

= 0,

and hence limp→0

( 2w
p
4

w
p
2 +1

)− 1
p

= 1. Now by using the sandwich condition and letting

w = e2(M−m) , we have limp→0 K(e2p(M−m),α)−
1
p = 1. �

REMARK 2. Under the assumptions of Theorem 2, Seo in [12, Theorem 4.2]
proved that

‖e(1−α)H+αK‖u � K(e(M−m), p)−
α
p K(e2p(M−m),α)−

1
p ‖(epH�αepK)

1
p ‖u, 0 < p � 1,

and

‖e(1−α)H+αK‖u � K(e2p(M−m),α)−
1
p ‖(epH�αepK)

1
p ‖u, p � 1.

But the first inequality of Theorem 2 shows that the sharper constant for all p > 0 is

K(e2p(M−m),α)−
1
p . Since for 0 < p � 1, K(e(M−m), p)−

α
p � 1 and hence

K(e2p(M−m),α)−
1
p � K(e(M−m), p)−

α
p K(e2p(M−m),α)−

1
p .

4. Some related results

It has been shown [6] that if f : [0,∞) −→ [0,∞) is operator monotone function
and 0 < mI � A � B � MI � I with h = M

m , then for all α ∈ [0,1]

f (A)�α f (B) � exp
(

α(1−α)
(
1− 1

h

)2)
f (A�αB). (17)

This new ratio has been introduced by Furuichi and Minculete in [4], which is different
from Specht ratio and Kantorovich constant. By applying (17) for f (t) = tr , 0 < r � 1
we have the following results similar to Lemma 1 and Lemma 2.

LEMMA 3. Let A and B be positive definite matrices such that 0 < mI � A � B �
MI � I with h = M/m, and let α ∈ [0,1] . Then

Ar�αBr � exp
(
rα(1−α)

(
1− 1

h

)2)
(A�αB)r, 0 < r � 1.

LEMMA 4. Let A and B be positive definite matrices such that 0 < mI �ols A�ols

B �ols MI �ols I with h = M/m, and let α ∈ [0,1] . Then for all k = 1,2, . . . ,n,

λk(A�αB)r � exp
(

α(1−α)
(
1− 1

hr

)2)
λk(Ar�αBr), r � 1,

λk(Aq�αBq)
1
q � exp

( 1
p

α(1−α)
(
1− 1

hp

)2)
λk(Ap�αBp)

1
p , 0 < q � p. (18)
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THEOREM 3. Let H and K be Hermitian matrices such that emI �ols eH �ols

eK �ols eMI �ols I for some scalars m � M, and let α ∈ [0,1] . Then for all p > 0 and
k = 1,2, . . . ,n

λk(e(1−α)H+αK) � exp
(1

p
α(1−α)

(
1− 1

ep(M−m)

)2)
λk(epH�αepK)

1
p ,

and so, for every unitarily invariant norm ‖ · ‖u

‖e(1−α)H+αK‖u � exp
(1

p
α(1−α)

(
1− 1

ep(M−m)

)2)‖(epH�αepK)
1
p ‖u.

Proof. The proof is similar to that of Theorem 1, by replacing A and B with eH

and eK , and h = eM−m in the inequality (18). �

REMARK 3. Under the different conditions, the different coefficients are not com-
parable. But it is known that if we have a certain statement under the sandwich con-
dition 0 < sA � B � tA , then the same statement is also true under the condition
0 < mI � A,B � MI and 0 < mI � A � B � MI � I . Hence, we can compare the
following special cases:

(1) Comparison of the constants in Theorem 3 and in Theorem 2:
Let emI �ols eH �ols eK �ols eMI �ols I . Operator monotony of log(t) leads to

mI � H � K � MI � I , and so mI � H,K � MI . Now by applying Theorem 2 we have

λk(e(1−α)H+αK) � K(e2p(M−m),α)−
1
p λk(epH�αepK)

1
p , p > 0.

Also, by Theorem 3

λk(e(1−α)H+αK) � exp
(1

p
α(1−α)

(
1− 1

ep(M−m)

)2)
λk(epH�αepK)

1
p , p > 0.

Letting h = eM−m � 1, the following numerical examples show that there is no ordering
between these inequalities.

(i) Take α = 1
2 , p = 1

2 and h = 2, then we have

K(h2p,α)−
1
p − exp

( 1
p

α(1−α)
(
1− 1

hp

)2) �−0.0134963.

(ii) Take α = 1
2 , p = 1

2 and h = 8, then we have

K(h2p,α)−
1
p − exp

( 1
p

α(1−α)
(
1− 1

hp

)2) � 0.0631159.

(2) Comparison of the constants in Lemma 3 and in Lemma 1:
Let 0 < mI � A � B � MI � I . Then the following sandwich condition is obtained

m � m
M

� 1 � A− 1
2 BA− 1

2 � M
m

� 1
m

.
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Now by letting s = 1 and t = M
m = h in Lemma 1, we get

Ar�αBr � S(h)r(A�αB)r, 0 < r � 1. (19)

Also, by Lemma 3

Ar�αBr � exp
(
rα(1−α)

(
1− 1

h

)2)
(A�αB)r, 0 < r � 1. (20)

It is shown in [4, Remark 2.4] that there is no ordering between coefficients of (19) and
(20). Therefore, we may conclude evaluation of Lemma 3 and Lemma 1 are different.
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