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(Communicated by S. Abramovich)

Abstract. We consider inequalities which involve two linear isotonic functionals. We give two
variants of the Cauchy inequality and few Pólya-Szegö type inequalities in which functions with
variable bounds occurred. With help of these inequalities we are able to obtain a new bound for
the Chebyshev difference and give some particular cases. Connections of the presented results
with earlier results involving fractional integrals are also pointed out.

1. Introduction and preliminaries

The well-known classical Cauchy inequality for two sequences states that if
(a1, . . . ,as) and (b1, . . . ,bs) are two real s-tuples, then(

s

∑
k=1

akbk

)2

�
s

∑
k=1

a2
k

s

∑
k=1

b2
k . (1)

The above-mentioned inequality is also known as the Cauchy-Schwarz or the
Cauchy-Buniakowski-Schwarz inequality or, shortly, the CBS inequality. There are lots
of different versions or/and generalizations of the above inequality. For example, we get
the Cauchy inequality for integrals, for positive functionals, for C∗ -valued sesquilin-
ear forms etc. This type of inequality has been obtained in different settings such as
an inner product space, a C∗ -algebra, a semi-inner product C∗ -module, a semi-inner
product H∗ -module etc. We refer reader to papers [5, 6, 8, 9] and references therein.

A research, which has been done parallelly by the investigation of the Cauchy
inequality, was connected with the reversed inequalities. Let us point out the so-called
Pólya-Szegö inequality which was obtained at 1925 in [14, pp. 71–72].

THEOREM 1. Let (a1, . . . ,as) and (b1, . . . ,bs) be two real s-tuples. If

0 < m � ai � M, 0 < n � bi � N, i ∈ {1,2, . . . ,s}, (2)

then
s

∑
k=1

a2
k

s

∑
k=1

b2
k � (mn+MN)2

4mnMN

(
s

∑
k=1

akbk

)2

. (3)
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The weighted version of the above-mentioned inequality is known as the Greub-
Reinboldt inequality. When condition (2) is replaced by the following

0 < m � ai

bi
� M for each i ∈ {1,2, . . . ,s},

then we are talking about the Cassels inequality. In that case, the constant on the right-

hand side is equal to
(m+M)2

4mM
.

In this paper we continue the research about the Cauchy and the Pólya-Szegö in-
equalities for two isotonic linear functionals. Also, we will give a new upper bound for
the Chebyshev difference by the help of the Pólya-Szegö inequality. Let us mention
some definitions and theorems related to that topic.

Let E be a non-empty set and L be a class of real-valued functions on E satisfying
that a linear combination of functions from L is also in L and the function 1 belongs to
L , (1(t) = 1 for t ∈ E ). A functional A : L → R is called an isotonic linear functional
if it is linear and if nonnegativity of f ∈ L implies A( f ) � 0.

A functional version of the Cauchy inequality is given in the following theorem,
[13].

THEOREM 2. (The Cauchy inequality for one functional) Let f , g , f g , f 2 , g2 ∈
L and A : L → R be a linear isotonic functional. Then

A2( f g) � A( f 2)A(g2). (4)

The Cassels type inequality for one functional is given in [6, p. 14]:

THEOREM 3. (The Cassels inequality for one functional) Let f , g , h ∈ L such
that f gh, f 2h, g2h ∈ L, h � 0 . If m,M > 0 are such that

mg � f � Mg,

then for any linear isotonic functional A : L → R with A(h) > 0 , we have

1 � A( f 2h)A(g2h)
A( f gh)

� (M +m)2

4mM
. (5)

The paper is organized in the following way. After this introductory section we
follow with Cauchy type inequalities involving two linear isotonic functionals. The
third section is devoted to the reversed inequality, i.e. to the inequality of Pólya-Szegö
type. Results, involving an upper bound for the Chebyshev difference, we give in the
fourth section. In the last chapter we present several examples with applications.

2. The Cauchy inequality for two functionals

THEOREM 4. Let f , g , f g , f 2 , g2 ∈ L and A, B be linear isotonic functionals
on L. Then

A( f 2)B(g2)+A(g2)B( f 2) � 2A( f g)B( f g). (6)
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Proof. Acting on the inequality ( f (x)g(y)− f (y)g(x))2 � 0, i.e.

f 2(x)g2(y)+ f 2(y)g2(x) � 2 f (x)g(y) f (y)g(x)

by the functional A with respect to x and using isotonicity and linearity of A we get

g2(y)A( f 2)+ f 2(y)A(g2) � 2g(y) f (y)A( f g).

Acting on the last inequality by B with respect to y we get the wanted inequality. �

REMARK 1. As pointed out by referee, inequality (6) was obtained in paper [4]
for the first time.

Obviously, putting in (6) A = B and dividing by 2 we get inequality (4). The
Cauchy type inequality for two functionals is also considered in the following theorem.

THEOREM 5. Let f , g , f g , f 2 , g2 ∈ L and A, B be linear isotonic functionals
on L. Then[

B(1)A( f 2)+A(1)B( f 2)
][

B(1)A(g2)+A(1)B(g2)
]

�
[
B(1)A( f g)+A(1)B( f g)

]2
.

(7)

Proof. Let us define the pairs x and y as following:

x =
(√

B(1)A( f 2),
√

A(1)B( f 2)
)

, y =
(√

B(1)A(g2),
√

A(1)B(g2)
)

.

Using the discrete Cauchy inequality (1) for the pairs x and y we get[
B(1)A( f 2)+A(1)B( f 2)

][
B(1)A(g2)+A(1)B(g2)

]
�
[
B(1)

√
A( f 2)A(g2)+A(1)

√
B( f 2)B(g2)

]2
�
[
B(1)|A( f g)|+A(1)|B( f g)|

]2
�
[
B(1)A( f g)+A(1)B( f g)

]2
,

where in the second inequality we use result (4) twice. �

3. Pólya-Szegö type inequalities

In this section we prove several inequalities which can be considered as the Pólya-
Szegö type inequalities. We consider a situation when the functions f and g are
bounded by functions ϕ1,ϕ2,ψ1,ψ2 , i.e. when f and g have variable bounds. This
condition was motivated by certain investigation of fractional integrals, see [2, 10, 12].



328 L. NIKOLOVA AND S. VAROŠANEC

THEOREM 6. Let A and B be two isotonic linear functionals on L. Let f , g , ϕ1 ,
ϕ2 , ψ1 , ψ2 be functions on E such that

(H1) : 0 < ϕ1 � f � ϕ2, 0 < ψ1 � g � ψ2.

Then (
B(1)A(ψ1ψ2 f 2)+A(1)B(ψ1ψ2 f 2)

)(
A(1)B(ϕ1ϕ2g

2)+B(1)A(ϕ1ϕ2g
2)
)

� 1
4

(
B(1)A((ϕ1ψ1 + ϕ2ψ2) f g)+A(1)B((ϕ1ψ1 + ϕ2ψ2) f g)

)2
(8)

and

A(1)B(1)
(
A(ψ1ψ2 f 2)+A(ϕ1ϕ2g

2)
)(

B(ψ1ψ2 f 2)+B(ϕ1ϕ2g
2)
)

� 1
4

(
B(1)A((ϕ1ψ1 + ϕ2ψ2) f g)+A(1)B((ϕ1ψ1 + ϕ2ψ2) f g)

)2
(9)

provided all terms are well-defined.
Both inequalities involve

A(1)B(1)
√

A(ψ1ψ2 f 2)A(ϕ1ϕ2g2)B(ψ1ψ2 f 2)B(ϕ1ϕ2g2)

� 1
16

(
B(1)A((ϕ1ψ1 + ϕ2ψ2) f g)+A(1)B((ϕ1ψ1 + ϕ2ψ2) f g)

)2
(10)

and

A(ψ1ψ2 f 2)A(ϕ1ϕ2g
2) � 1

4
A2((ψ1ϕ1 + ψ2ϕ2) f g). (11)

Proof. From (H1) we have that
ϕ2(x)
ψ1(x)

− f (x)
g(x)

and
f (x)
g(x)

− ϕ1(x)
ψ2(x)

are nonnega-

tive. After multiplying them and after a simple calculation one can get that

(ϕ1(x)ψ1(x)+ ϕ2(x)ψ2(x)) f (x)g(x) � ψ1(x)ψ2(x) f 2(x)+ ϕ1(x)ϕ2(x)g2(x).

Acting with A we get

A((ϕ1ψ1 + ϕ2ψ2) f g) � A(ψ1ψ2 f 2)+A(ϕ1ϕ2g
2).

From here

B(1)
{

A((ϕ1ψ1 + ϕ2ψ2) f g)−A(ψ1ψ2 f 2)−A(ϕ1ϕ2g
2)
}

� 0.

In the same way we get

A(1)
{

B((ϕ1ψ1 + ϕ2ψ2) f g)−B(ψ1ψ2 f 2)−B(ϕ1ϕ2g
2)
}

� 0.
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Adding these inequalities and using the AM-GM inequality we get:

B(1)A((ϕ1ψ1 + ϕ2ψ2) f g)+A(1)B((ϕ1ψ1 + ϕ2ψ2) f g)

�
{

B(1)A(ψ1ψ2 f 2]+A(1)B(ψ1ψ2 f 2)
}

+
{

A(1)B(ϕ1ϕ2g
2)+B(1)A(ϕ1ϕ2g

2)
}

� 2
√

B(1)A(ψ1ψ2 f 2)+A(1)B(ψ1ψ2 f 2)
√

A(1)B(ϕ1ϕ2g2)+B(1)A(ϕ1ϕ2g2)

from where we easily obtain inequality (8).
Using once more the AM-GM inequality we get

B(1)A((ϕ1ψ1 + ϕ2ψ2) f g)+A(1)B((ϕ1ψ1 + ϕ2ψ2) f g)

� 2

√
A(1)B(1)2

√
A(ψ1ψ2 f 2)B(ψ1ψ2 f 2) ·2

√
A(ϕ1ϕ2g2)B(ϕ1ϕ2g2))

from where we easily get (10). If we put A = B we get

A(ψ1ψ2 f 2)A(ϕ1ϕ2g
2) � 1

4
A2((ψ1ϕ1 + ψ2ϕ2) f g).

If the summands are ordered in another way and then the AM-GM inequality is used,
we get

B(1)A((ϕ1ψ1 + ϕ2ψ2) f g)+A(1)B((ϕ1ψ1 + ϕ2ψ2) f g)

� B(1)
{

A(ψ1ψ2 f 2)+A(ϕ1ϕ2g
2)
}

+A(1)
{
B(ψ1ψ2 f 2)+B(ϕ1ϕ2g

2)
}

� 2

√
A(1)B(1)

{
A(ψ1ψ2 f 2)+A(ϕ1ϕ2g2)

}{
B(ψ1ψ2 f 2)+B(ϕ1ϕ2g2)}

from which inequality (9) follows. �

Inequality (11) is in fact, the functional version of the Polya-Szegö inequality when
the functions f and g have variable bounds.

In the following corollary we discuss a case when bounds for the functions f and
g are constants. Then it will be clear why the inequalities from Theorem 6 are called
Polya-Szegö type inequalities.

COROLLARY 1. Let A and B be two isotonic linear functionals on L. Let f , g
be functions on E such that

(H1(c)) : 0 < m � f (t) � M, 0 < n � g(t) � N for t ∈ E,

for some real numbers m, M , n and N . Then

(
B(1)A( f g)+A(1)B( f g)

)2
�
(
B(1)A( f 2)+A(1)B( f 2)

)(
A(1)B(g2)+B(1)A(g2)

)
� (mn+MN)2

4mnMN

(
B(1)A( f g)+A(1)B( f g)

)2
, (12)



330 L. NIKOLOVA AND S. VAROŠANEC

provided all terms are well-defined.
In particular, the functional variant of the Pólya-Szegö result is valid:

A( f 2)A(g2) � (mn+MN)2

4mnMN
A2( f g). (13)

Moreover,

A(1)B(1)
√

A( f 2)A(g2)B( f 2)B(g2) � (mn+MN)2

16mnMN

(
B(1)A( f g)+A(1)B( f g)

)2
.

Proof. Putting in (8):

ϕ1 = m, ϕ2 = M, ψ1 = n, ψ2 = N,

we get the most right inequality in (12). The most left inequality in (12) is the Cauchy
inequality (7). Putting the same constants in (10) we obtain the last inequality in Corol-
lary. Inequality (13) follows from (12) for A = B . �

Our attempts in a construction of the reversed Cauchy inequalities lead us to the
following result.

LEMMA 1. Let the assumptions of Theorem 6 hold. Then

A( f 2)B(g2) � A

(
ϕ2 f g
ψ1

)
B

(
ψ2 f g

ϕ1

)
,

provided all terms are well-defined.

Proof. From (H1) we have that ϕ2(x)
ψ1(x)

− f (x)
g(x) � 0 and f 2(x) � ϕ2(x) f (x)g(x)

ψ1(x)
. Acting

with A and B we get

A( f 2) � A

(
ϕ2 f g
ψ1

)
, B(g2) � B

(
ψ2 f g

ϕ1

)
.

By multiplying both inequalities the proof is over. �

COROLLARY 2. Let the assumptions of Corollary 1 hold. Then

A( f 2)B(g2) � MN
mn

A( f g)B( f g),

provided all terms are well-defined. In particular,

A( f 2)A(g2) � MN
mn

A2( f g). (14)
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REMARK 2. Note that inequality (13) is better than (14) , because

(mn+MN)2

4mMnN
=

1
4

(
mn
MN

+2+
MN
mn

)
� 1

4

(
3+

MN
mn

)
� 1

4
·4MN

mn
=

MN
mn

.

Note also that if 0 < m � f (x) � M by putting g(x) = 1 we get

A(1)A( f 2) � (m+M)2

4mM
A2( f ).

THEOREM 7. Let the assumptions of Theorem 6 hold. Then

A( f 2)B(ψ1ψ2)B(g2)A(ϕ1ϕ2) � 1
4

(
A(ϕ1 f )B(ψ1g)+A(ϕ2 f )B(ψ2g)

)2
, (15)

provided all terms are well-defined.
If the hypothesis (H1(c)) is fulfilled, then

A( f 2)B(1)B(g2)A(1) � (mn+MN)2

4mnMN
A2( f )B2(g). (16)

Proof. From (H1) we have that
ϕ2(x)
ψ1(y)

− f (x)
g(y)

and
f (x)
g(y)

− ϕ1(x)
ψ2(y)

are nonnega-

tive. After multiplying them and making a simple calculation one can get that

ϕ1(x) f (x)ψ1(y)g(y) + ϕ2(x) f (x)ψ2(y)g(y) � ψ1(y)ψ2(y) f 2(x)+ ϕ1(x)ϕ2(x)g2(y).

Acting by A with respect of x and B with respect of y we get

A(ϕ1 f )B(ψ1g)+A(ϕ2 f )B(ψ2g) � A( f 2)B(ψ1ψ2)+B(g2)A(ϕ1ϕ2).

Using the AM-GM inequality we obtain

A(ϕ1 f )B(ψ1g)+A(ϕ2 f )B(ψ2g) � 2
√

A( f 2)B(ψ1ψ2)B(g2)A(ϕ1ϕ2),

from which the first inequality of Theorem is easily obtained. The last inequality fol-
lows by using the constant bounds m,n,M,N for f and g . �

LEMMA 2. Let the assumptions of Theorem 6 hold. Then

A( f g)B(ϕ1ψ1 + ϕ2ψ2)+B( f g)A(ϕ1ψ1 + ϕ2ψ2)

� 4
{

A(ϕ1g)B(ϕ2g)A(ϕ2g)B(ϕ1g)A(ψ1 f )B(ψ2 f )A(ψ2 f )B(ψ1 f )
} 1

4
,

provided all terms are well-defined. In particular,

A( f g)A(ϕ1ψ1 + ϕ2ψ2) � 2
{
A(ϕ1g)A(ϕ2g)A(ψ1 f )A(ψ2 f )

} 1
2
.
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Proof. Since
ϕ2(x)
ψ1(y)

− f (x)
g(y)

and
f (y)
g(x)

− ϕ1(y)
ψ2(x)

are nonnegative, acting by A and

B we get

A(ϕ2ψ2)B( f g)−A(ϕ2g)B(ϕ1g)−A(ψ2 f )B(ψ1 f )+A( f g)B(ϕ1ψ1) � 0.

Changing the places of A and B we have

B(ϕ2ψ2)A( f g)−A(ϕ1g)B(ϕ2g)−A(ψ1 f )B(ψ2 f )+B( f g)A(ϕ1ψ1) � 0.

Summing the above two inequalities we get

A( f g)B(ϕ1ψ1 + ϕ2ψ2)+B( f g)A(ϕ1ψ1 + ϕ2ψ2)−A(ϕ1g)B(ϕ2g)

−A(ϕ2g)B(ϕ1g)−A(ψ1 f )B(ψ2 f )−A(ψ2 f )B(ψ1 f ) � 0.

By applying the AM-GM inequality we obtain the first inequality in Lemma.
Putting A = B we get

A( f g)A(ϕ1ψ1 + ϕ2ψ2)−A(ϕ1g)A(ϕ2g)−A(ψ1 f )A(ψ2 f ) � 0

and after applying the AM-GM inequality we have

A( f g)A(ϕ1ψ1 + ϕ2ψ2) � 2
{
A(ϕ1g)A(ϕ2g)A(ψ1 f )A(ψ2 f )

} 1
2
. �

Replacing ϕ1 = m , ϕ2 = M , ψ1 = n , ψ2 = N in the above inequalities we get the
following corollary.

COROLLARY 3. Let the assumptions of Corollary 1 hold. Then

A( f g)(mn+MN) � mMA(g)2 +nNA( f )2

and

A2(g)A2( f ) � (mn+MN)2

4mMnN
A2( f g),

provided all terms are well-defined.

This result differs from Pólya-Szegö type result (13), because here on the left-hand
side of the inequality the term A2(g)A2( f ) stays.

THEOREM 8. Let A and B be two isotonic linear functionals on L and let p,q > 1

such that
1
p

+
1
q

= 1 . Let f , g be positive functions on E and let m, M be positive

real numbers such that 0 < m � f
g

� M. Then

A( f )B(g) � 2p−1Mp

p(M +1)p A( f p +gp)B(1)+
2q−1

q(m+1)q B( f q +gq)A(1),

provided all terms are well-defined.
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Proof. From the inequality
f (x)
g(x)

� M we get

(M +1) f (x) � M( f +g)(x) and f p(x) � Mp( f +g)(x)p

(M +1)p .

Acting with A we get

A( f p) � Mp

(M +1)p A(( f +g)p).

On the other hand (m+1)g(x) � ( f +g)(x) and

B(gq) � 1
(m+1)q B(( f +g)q).

Acting by A with respect to x and by B with respect to y on the Young inequality

f (x)g(y) � f p(x)
p

+
gq(y)

q

we get

A( f )B(g) � A( f p)
p

B(1)+
B(gq)

q
A(1)

and

A( f )B(g) � Mp

p(M +1)p A(( f +g)p)B(1)+
1

q(m+1)qB(( f +g)q)A(1).

Using inequality (a+b)r � 2r−1(ar +br) we get the wanted inequality. �

4. Bounds for the Chebyshev difference

Let us mention some of the classical results, in which bounds for the Chebyshev
difference are given. We write it in the functional variant, but as a historical remark, let
us say that the first result of that type was an integral inequality proved in the thirties of
the XXth century, nowdays known as the Grüss inequality.

The difference TA( f ,g) given by

TA( f ,g) = A( f g)A(1)−A( f )A(g)

is called the Chebyshev difference or the Chebyshev functional. The most known esti-
mation for TA( f ,g) is the Grüss inequality which states that

T 2
A ( f ,g) � TA( f , f )TA(g,g)

and if the numbers m , M , n , N are such that m � f (x) � M , n � g(x) � N for all
x ∈ [a,b] , then

|TA( f ,g)| � 1
4
(M−m)(N−n)A2(1).

Very recently, in [10, 11], the Grüss inequality and other bounds for the Chebyshev
difference involving two linear functionals A and B were considered. Namely, the
following theorem was proved in [10].
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THEOREM 9. (The Grüss inequality for two functionals) Let A and B be isotonic
linear functionals on L. If f , g are functions such that f , g , f g ∈ L, then

T ( f ,g)2 � T ( f , f )T (g,g), (17)

where
T ( f ,g) = A(1)B( f g)+B(1)A( f g)−A( f )B(g)−A(g)B( f ).

In this section we give a bound for T ( f ,g) via the Pólya-Szegö inequality (8).

THEOREM 10. Let A and B be two isotonic linear functionals on L. Let f , g ,
ϕ1 , ϕ2 , ψ1 , ψ2 be functions on E such that (H1) is satisfied with

A(1)B(ϕ1ϕ2)+B(1)A(ϕ1ϕ2) �= 0, A(1)B(ψ1ψ2)+B(1)A(ψ1ψ2) �= 0.

Then

T 2( f ,g) � D( f ,ϕ1,ϕ2) ·D(g,ψ1,ψ2), (18)

where

D(u,v,w) =

{
B(1)A((v+w)u)+A(1)B((v+w)u)

}2

4
[
A(1)B(vw)+B(1)A(vw)

] −2A(u)B(u),

provided all terms are well-defined. In particular,

|A(1)A( f g)−A( f )A(g)| �
(
G( f ,ϕ1,ϕ2)G(g,ψ1,ψ2)

) 1
2
, (19)

where

G(u,v,w) =
A(1)A2((v+w)u)

4A(vw)
−A2(u).

Moreover, if the hypothesis H1(c) is fulfilled, then

|A(1)A( f g)−A( f )A(g)|� (M−m)(N−n)
4
√

mnMN
A( f )A(g). (20)

Proof. Putting in inequality (8) g = ψ1 = ψ2 = 1 we have(
B(1)A( f 2)+A(1)B( f 2)

)(
A(1)B(ϕ1ϕ2)+B(1)A(ϕ1ϕ2)

)
� 1

4

(
B(1)A((ϕ1 + ϕ2) f )+A(1)B((ϕ1 + ϕ2) f )

)2
,

i.e.

B(1)A( f 2)+A(1)B( f 2) �

{
A(1)B((ϕ1 + ϕ2) f )+B(1)A((ϕ1 + ϕ2) f )

}2

4
(
A(1)B(ϕ1ϕ2)+B(1)A(ϕ1ϕ2)

) .
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Using this estimation and the Grüss inequality for two functionals (17) we get

T ( f ,g)2 � T ( f , f )T (g,g) � D( f ,ϕ1,ϕ2) ·D(g,ψ1,ψ2).

If A = B , then inequality (18) collapses in inequality (19), and (20) easily follows
from (19). �

REMARK 3. If A( f ) =
∫ b
a f (x)dx , then inequality (20) can be found in the paper

[7] as Theorem 1, i.e.∣∣∣∣ 1
b−a

∫ b

a
f (x)g(x)dx−

(
1

b−a

∫ b

a
f (x)dx

)(
1

b−a

∫ b

a
g(x)dx

)∣∣∣∣
� (M−m)(N−n)

4(b−a)2
√

mnMN

∫ b

a
f (x)dx

∫ b

a
g(x)dx,

where f and g are two positive integrable functions such that 0 < m � f � M and
0 < n � g � N .

5. Examples and applications

We consider the case of piecewise affine, and in particular, step functions ϕ1 , ψ1 ,
ϕ2 , ψ2. Let E =

⋃s
i=1 Ei and χi be the characteristic function of Ei . Let

ϕ1(x) =
s

∑
i=1

(kix+ li)χi(x), ϕ2(x) =
s

∑
i=1

(Kix+Li)χi(x), (21)

ψ1(x) =
s

∑
i=1

(pix+ ri)χi(x), ψ2(x) =
s

∑
i=1

(Pix+Ri)χi(x), (22)

with ki , Ki , li , Li , pi , Pi , ri , Ri ∈ R for i = 1, . . . ,s .
We say that the hypothesis (H1(l)) is fulfilled if the hypothesis (H1) with the

piecewise affine functions ϕ1 , ψ1 , ϕ2 , ψ2 , defined as above is fulfilled. For functions
which satisfy the hypothesis (H1(l)) we obtain the following results.

THEOREM 11. Let A and B be two isotonic linear functionals on L. If the hy-
pothesis (H1(l)) is fulfilled with A(1)B(ϕ1ϕ2) + B(1)A(ϕ1ϕ2) �= 0 , A(1)B(ψ1ψ2) +
B(1)A(ψ1ψ2) �= 0 , then

|A(1)B( f g)+A( f g)B(1)−A( f )B(g)−A(g)B( f )| � D( f ,ϕ1,ϕ2) ·D(g,ψ1,ψ2), (23)

where

D( f ,ϕ1,ϕ2) =
1

4
[
A(1)B(ϕ1ϕ2)+B(1)A(ϕ1ϕ2)

]

×
{

B(1)
( s

∑
i=1

(ki +Ki)A(x f χi)+
s

∑
i=1

(li +Li)A( f χi)
)

+ A(1)
( s

∑
i=1

(ki +Ki)B(x f χi)+
s

∑
i=1

(li +Li)B( f χi)
)}2

−2A( f )B( f )
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with

A(ϕ1ϕ2) =
s

∑
i=1

kiKiA(x2χi)+
s

∑
i=1

(kiLi +Kili)A(xχi)+
s

∑
i=1

liLiA(χi)

and similar for B(ϕ1ϕ2) provided all terms are well-defined.

Proof. It is a consequence of Theorem 10 applied on the functions ϕ1 , ψ1 , ϕ2 ,
ψ2 defined in (21) and (22). �

REMARK 4. It is interesting to see particular cases, i.e. when the bound-functions
ϕ1 , ψ1 , ϕ2 , ψ2 are step or piecewise linear functions. Namely, if

ϕ1 =
s

∑
i=1

liχi, ϕ2 =
s

∑
i=1

Liχi, ψ1 =
s

∑
i=1

riχi, ψ2 =
s

∑
i=1

Riχi,

then, under the assumptions of Theorem 11, inequality (23) holds with

D( f ,ϕ1,ϕ2) =
{B(1)∑s

i=1(li +Li)A( f χi)+A(1)∑s
i=1(li +Li)B( f χi)}2

4
[
A(1)∑s

i=1 liLiB(χi)+B(1)∑s
i=1 liLiA(χi)

] −2A( f )B( f ).

If ϕ1 , ψ1 , ϕ2 , ψ2 are piecewise linear functions, i.e.

ϕ1(x) =
s

∑
i=1

kixχi(x), ϕ2(x) =
s

∑
i=1

Kixχi(x), ψ1(x) =
s

∑
i=1

pixχi(x), ψ2(x) =
s

∑
i=1

Pixχi(x),

then D( f ,ϕ1,ϕ2) becomes

D( f ,ϕ1,ϕ2) =

{
∑s

i=1(ki +Ki)
(
B(1)A(x f χi)+A(1)B(x f χi)

)}2

4∑s
i=1 kiKi

(
A(1)B(x2χi)+B(1)A(x2χi)

) −2A( f )B( f ).

6. Applications for different fractional integral operators

In the paper [12] the authors gave some results involving the Riemann-Liouville
fractional integral operators A = Rα

0,t and B = Rβ
0,t , where

Rα
0,t{ f}(t) :=

1
Γ(α)

∫ t

0
(t − s)α−1 f (s)ds.

For example, the results given in Lemma 3.1, Corollary 3.1, Lemma 3.3 and Corollary
3.2 from that paper are, in fact, our results (11), (13), (15) and (16). As Theorem 3.6 in
[12] we can find the following Chebyshev type inequality which we repeat here in the
language of functionals.
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Let f and g be two positive integrable functions on [0,∞) . Assume that there exist
four positive integrable functions ϕ1 , ψ1 , ϕ2 , ψ2 satisfying (H1) . Then for t > 0 and
α , β > 0 , the following inequality is true

|A(1)B( f g)+B(1)A( f g)−A( f )B(g)−A(g)B( f )|2 (24)

�
(
G1( f ,ϕ1,ϕ2)(t)+G2( f ,ϕ1,ϕ2)(t)

)
·
(
G1(g,ψ1,ψ2)(t)+G2(g,ψ1,ψ2)(t)

)
,

where

G1(u,v,w)(t) = B(1)
A2((v+w)u)

4A(vw)
−A(u)B(u),

G2(u,v,w)(t) = A(1)
B2((v+w)u)

4B(vw)
−A(u)B(u), A = Rα

0,t , B = Rβ
0,t .

Comparing the right-hand side of (24) with the right-hand side of (18) we get that
our upper bound given in (18) is smaller (so, better) than the upper bound given in (24).
Also, in [12] examples including the step functions ϕ1 , ψ1 , ϕ2 , ψ2 are given, but
again, we point out that the recent upper bound for the Chebyshev difference given in
Remark 4 for s = 1 are better than bound from [12].

Investigation which is very similar to investigation described in [12] can be found
in the paper [2] but for the generalized Riemann-Liouville k -fractional integral oper-
ators. In that paper we can find the Pólya-Szegö inequality (15) and the Chebyshev
inequality (24) for two generalized Riemann-Liouville k -fractional integral operators
Rα ,r

a,k and Rβ ,r
a,k . Also, the example with linear functions ϕ1 , ψ1 , ϕ2 , ψ2 is considered.

Pólya-Szegö type inequalities for two q -analogue of the Saigo fractional integrals
Iα ,β ,η
q are considered in the paper [1], but there we can find only results when functions

ϕ1 , ψ1 , ϕ2 , ψ2 are constants.
Finally, Pólya-Szegö type inequalities for two Hadamard fractional integrals D−α

1,t

and D−β
1,t are given in the paper [3]. In the same paper result related to Theorem 8 is

given.
As we can see, this paper contains a unified treatment for several classes of frac-

tional integral operators as well for other isotonic linear functionals. Also, we obtain
several new inequalities which are variants of the Pólya-Szegö inequality and give an
upper bound for the Chebyshev difference which is better than bounds recently occured
in the observed particular cases.
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