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BOUNDEDNESS OF MARCINKIEWICZ INTEGRALS ON HARDY

SPACES Hp OVER NON–HOMOGENEOUS METRIC MEASURE SPACES

HAOYUAN LI AND HAIBO LIN

(Communicated by Y. Sawano)

Abstract. Under the assumption that (X , d, μ) is a non-homogeneous metric measure space,
the authors prove that the Marcinkiewicz integral operator is bounded from the molecular Hardy
space H̃ p,q, γ,ε

mb,ρ (μ) (or the atomic Hardy space H̃ p,q, γ
atb,ρ (μ) ) into the Lebesgue space Lp(μ). To

this end, some boundedness criteria on these Hardy spaces are established.

1. Introduction

It is known that the Marcinkiewicz integral, introduced by Marcinkiewicz [19] on
the one-dimensional Euclidean space R and by Stein [24] on the higher-dimensional
Euclidean space Rn , plays an important role in harmonic analysis and PDE. In the
classical Euclidean space equipped with the Lebesgue measure, there are lots of pa-
pers focus on the boundedness of the Marcinkiewicz integral operator on varieties of
function spaces; see, for example, [34, 31, 8, 18] and the references therein.

On the other hand, many theories of harmonic analysis on the classical Euclidean
spaces have been generalized into the metric measure spaces. One of them is the
space of homogeneous type in the sense of Coifman and Weiss [6, 7], that is, a met-
ric space (X , d) equipped with a non-negative measure μ satisfying the following
measure doubling condition: there exists a positive constant C(μ) such that, for all balls
B(x, r) := {y ∈ X : d(x, y) < r} with x ∈ X and r ∈ (0, ∞) ,

μ(B(x, 2r)) � C(μ)μ(B(x, r)). (1.1)

Another generalized setting is the metric measure space with non-doubling measure.
To be precise, if μ is a non-negative Radon measure on Rn satisfying the polynomial
growth condition that there exist some positive constants C0 and κ ∈ (0, n] such that,
for all x ∈ Rn and r ∈ (0, ∞) ,

μ(B(x, r)) � C0r
κ , (1.2)
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then it may not satisfy the doubling condition (1.1). The analysis on such non-doubling
context has proved to play a striking role in solving the long-standing open Vitushkin’s
conjecture and Painlevé’s problem; see [29, 30]. Moreover, many classical results con-
cerning the usual operators (such as the Calderón-Zygmund operators) and function
spaces have been proved still valid for this setting; see, for example, [20, 27, 28, 29, 21,
22, 23, 5, 4, 12, 32] and the references therein.

However, the measure μ as in (1.2) is different from, not general than the doubling
measure as in (1.1); see Hytönen [13]. In [13], Hytönen introduced a new class of met-
ric measure spaces, which include both spaces of homogeneous type and metric spaces
with non-doubling measures as special cases. These new metric measure spaces are
assumed to satisfy both the so-called upper doubling condition and the geometrically
doubling condition (see, respectively, Definitions 1.1 and 1.2 below) and are called as
non-homogeneousmetric measure spaces. In this new setting, Lin and Yang [17] estab-
lished the equivalent boundedness of Marcinkiewicz integral operators. Recently, Fu
et al. [9] introduced the Hardy spaces Hp and obtained the boundedness of Calderón-
Zygmund operators on these spaces. More research on function spaces and the bound-
edness of various operators in this setting can be found in [14, 15, 10, 26, 25, 2, 3] and
the references therein. We refer the reader to the monograph [33] for more develop-
ments on harmonic analysis in this new context.

In this paper, we establish the boundedness of the Marcinkiewicz integral operator
on the Hardy space Hp over non-homogeneous metric measure spaces.

In order to state our main results, we first recall the following notion of upper
doubling metric measure spaces originally introduced by Hytönen [13].

DEFINITION 1.1. A metric measure space (X , d, μ) is said to be upper doubling
if μ is a Borel measure on X and there exist a dominating function λ : X × (0, ∞)→
(0, ∞) and a positive constant C(λ ) , depending on λ , such that, for each x ∈ X , r →
λ (x, r) is non-decreasing and, for all x ∈ X and r ∈ (0, ∞) ,

μ(B(x, r)) � λ (x, r) � C(λ )λ (x, r/2). (1.3)

REMARK 1.1. (i) If we take λ (x, r) := μ(B(x, r)) for all x ∈ X and r ∈ (0, ∞) ,
then the upper doubling space goes back to the space of homogeneous type. Moreover,
let (X , d, μ) = (Rn, | · |, μ) with μ be as in (1.2). By taking λ (x, r) := C0rκ for all
x ∈ Rn and r ∈ (0, ∞) , we see that it is also an upper doubling space.

(ii) Hytönen et al. in [16] proved that there exists another dominating function λ̃
such that λ̃ � λ , C(λ̃ ) � C(λ ) and, for all x, y ∈ X with d(x, y) � r ,

λ̃ (x, r) � C(λ̃ )λ̃(y, r). (1.4)

Based on this, in the whole paper, we always assume that λ satisfies (1.4).

The following notion of geometrically doubling can be found in [6, pp. 66–67]
and is also known as metrically doubling (see [11, p. 81]). It should be pointed out
that Coifman and Weiss in [6, pp. 66–68] proved that spaces of homogeneous type are
geometrically doubling.
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DEFINITION 1.2. A metric space (X , d) is said to be geometrically doubling if
there exists some N0 ∈N := {1, 2, . . .} such that, for any ball B(x, r)⊂X with x∈X
and r ∈ (0, ∞) , there exists a finite ball covering {B(xi, r/2)}i of B(x, r) such that the
cardinality of this covering is at most N0 .

Now we recall the definition of the discrete coefficient K̃(ρ), p
B,S first introduced by

Bui and Duong [1] when p = 1. Before this we first give an assumption that, for any
two balls B, S ⊂ X , if B = S , then cB = cS and rB = rS , here and hereafter, for any
ball B , we denote its center and radius, respectively, by cB and rB ; see [11, pp. 1–2].

This shows that if B ⊂ S , then rB � 2rS , which guarantees that the definition of K̃(ρ), p
B,S

makes sense; see [9, pp. 314–315] for the details.

DEFINITION 1.3. For any ρ ∈ (1, ∞) , p ∈ (0, 1] and any two balls B ⊂ S ⊂ X ,
let

K̃(ρ), p
B,S :=

⎧⎪⎨⎪⎩1+
N

(ρ)
B,S

∑
k=−�logρ 2�

[
μ(ρkB)

λ (cB, ρkrB)

]p

⎫⎪⎬⎪⎭
1/p

,

here and hereafter, for any a∈R , �a� represents the biggest integer which is not bigger

than a , and N(ρ)
B,S is the smallest integer satisfying ρN

(ρ)
B,SrB � rS .

REMARK 1.2. (i) Obviously,

K̃(ρ), p
B,S ∼

⎧⎪⎨⎪⎩1+
N

(ρ)
B,S+�logρ 2�+1

∑
k=1

[
μ(ρkB)

λ (cB, ρkrB)

]p

⎫⎪⎬⎪⎭
1/p

.

(ii) Hytönen in [13] introduced the following coefficient KB,S , which can be seen

as a continuous version of the K̃(ρ), p
B,S when p = 1: for any two balls B ⊂ S ⊂ X ,

KB,S := 1+
∫
(2S)\B

1
λ (cB, d(x, cB))

dμ(x). (1.5)

On (Rn, | · |, μ) with μ as in (1.2), KB,S ∼ K̃(ρ),1
B,S , but KB,S and K̃(ρ),1

B,S are usually not
equivalent on non-homogeneous metric measure spaces; see [10] for the details.

DEFINITION 1.4. Let ρ ∈ (1, ∞) , 0 < p � 1 � q � ∞ , p �= q , and γ ∈ [1, ∞) . A
function b in L2(μ) when p∈ (0, 1) and in L1(μ) when p = 1 is called a (p, q, γ, ρ)λ -
atomic block if

(i) there exists a ball B such that supp(b) ⊂ B ;
(ii)

∫
X b(x)dμ(x) = 0;

(iii) for any j ∈ {1, 2} , there exist a function a j supported on a ball Bj ⊂ B and
a number λ j ∈ C such that b = λ1a1 + λ2a2 and
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∥∥a j
∥∥

Lq(μ) � [μ(ρBj)]1/q−1[λ (cB, rB)]1−1/p[K̃(ρ), p
B j ,B

]−γ .

Moreover, let |b|H̃ p,q, γ
atb,ρ (μ) := |λ1|+ |λ2| .

A function f is said to belong to the space H̃
p,q,γ
atb,ρ (μ) if there exists a sequence of

(p, q, γ, ρ)λ -atomic blocks, {bi}∞
i=1 , such that f = ∑∞

i=1 bi in L2(μ) when p ∈ (0, 1)
and in L1(μ) when p = 1, and

∞

∑
i=1

|bi|pH̃p,q, γ
atb,ρ (μ)

< ∞.

Moreover, define

‖ f‖H̃ p,q, γ
atb,ρ (μ) := inf

⎧⎨⎩
[

∞

∑
i=1

|bi|pH̃p,q, γ
atb,ρ (μ)

]1/p
⎫⎬⎭ ,

where the infimum is taken over all possible decompositions of f as above.
The atomic Hardy space H̃ p,q,γ

atb,ρ (μ) is then defined as the completion of H̃ p,q,γ
atb,ρ (μ)

with respect to the p -quasi-norm ‖ · ‖p
H̃p,q, γ

atb,ρ (μ)
.

DEFINITION 1.5. Let ρ ∈ (1, ∞) , 0 < p � 1 � q � ∞ , p �= q , γ ∈ [1,∞) and
ε ∈ (0, ∞) . A function b in L2(μ) when p∈ (0, 1) and in L1(μ) when p = 1 is called
a (p, q, γ, ε, ρ)λ -molecular block if

(i)
∫
X b(x)dμ(x) = 0;

(ii) there exist some ball B := B(cB, rB) , with cB ∈ X and rB ∈ (0, ∞) , and some
constants M̃, M ∈ N such that, for all k ∈ Z+ and j ∈ {1, · · · , Mk} with Mk = M̃
if k = 0 and Mk = M if k ∈ N , there exist functions mk, j supported on some balls
Bk, j ⊂Uk(B) for all k ∈ Z+ , where U0(B) := ρ2B and Uk(B) := ρk+2B\ρk−2B with

k ∈ N , and λk, j ∈ C such that b = ∑∞
k=0 ∑Mk

j=1 λk, jmk, j in L2(μ) when p ∈ (0, 1) and

in L1(μ) when p = 1,∥∥mk, j

∥∥
Lq(μ) � ρ−kε [μ(ρBk, j)]1/q−1[λ (cB, ρk+2rB)]1−1/p[K̃(ρ), p

Bk, j ,ρk+2B
]−γ (1.6)

and

|b|p
H̃p,q, γ,ε

mb,ρ (μ)
:=

∞

∑
k=0

Mk

∑
j=1

|λk, j|p < ∞.

A function f is said to belong to the space H̃
p,q,γ,ε
mb,ρ (μ) if there exists a sequence

of (p, q, γ, ε, ρ)λ -molecular blocks, {bi}∞
i=1 , such that f = ∑∞

i=1 bi in L2(μ) when
p ∈ (0, 1) and in L1(μ) when p = 1, and

∞

∑
i=1

|bi|pH̃p,q, γ,ε
mb,ρ (μ)

< ∞.
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Moreover, define

‖ f‖H̃ p,q, γ,ε
mb,ρ (μ) := inf

⎧⎨⎩
[

∞

∑
i=1

|bi|pH̃p,q, γ,ε
mb,ρ (μ)

]1/p
⎫⎬⎭ ,

where the infimum is taken over all possible decompositions of f as above.
The molecular Hardy space H̃ p,q,γ,ε

mb,ρ (μ) is then defined as the completion of

H̃
p,q,γ,ε
mb,ρ (μ) with respect to the p -quasi-norm ‖·‖p

H̃p,q, γ,ε
mb,ρ (μ)

.

REMARK 1.3. (i) When p = 1, the atomic Hardy space H̃1,q,γ
atb,ρ (μ) and the molec-

ular Hardy space H̃1,q,γ,ε
mb,ρ (μ) were introduced by Fu et al. [10]. It was proved in [10]

that H̃1,q,γ
atb,ρ (μ) = H̃1,q,γ,ε

mb,ρ (μ) and they are independent of the choices of ρ , q , γ and

ε . Thus, in what follows, we denote H̃1,q,γ
atb,ρ (μ) simply by H̃1(μ) .

(ii) When p ∈ (0, 1) , it is unclear whether the atomic Hardy space H̃ p,q,γ
atb,ρ (μ) and

the molecular Hardy space H̃ p,q,γ,ε
mb,ρ (μ) are independent of the choices of ρ , q, γ and

ε . Moreover, H̃ p,q,γ
atb,ρ (μ) ⊂ H̃ p,q,γ,ε

mb,ρ (μ) in the sense that there exists a map T from

H̃ p,q,γ
atb,ρ (μ) to H̃ p,q,γ,ε

mb,ρ (μ) such that, for any f ∈ H̃ p,q,γ
atb,ρ (μ) , there is a unique element

f̃ ∈ H̃ p,q,γ,ε
mb,ρ (μ) satisfying T ( f ) = f̃ and ‖ f̃‖H̃ p,q, γ,ε

mb,ρ (μ) � ‖ f‖H̃ p,q, γ
atb,ρ (μ) ; see [9].

Let K be a locally integrable function on (X ×X )\{(x, x) : x ∈ X }) . Assume
that there exists a positive constant C such that, for all x, y ∈ X with x �= y ,

|K(x, y)| � C
d(x, y)

λ (x, d(x, y))
; (1.7)

and there exist positive constants δ ∈ (0, 1] and c(K) , depending on K , such that, for
all x, x̃, y ∈ X with d(x, y) � c(K)d(x, x̃) ,

|K(x, y)−K(x̃, y)|+ |K(y, x)−K(y, x̃)| � C
[d(x, x̃)]δ [d(x, y)]1−δ

λ (x, d(x, y))
. (1.8)

The Marcinkiewicz integral operator M with kernel K satisfying (1.7) and (1.8) is
defined by setting, for all x ∈ X ,

M ( f )(x) :=

[∫ ∞

0

∣∣∣∣∫
d(x,y)<t

K(x, y) f (y)dμ(y)
∣∣∣∣2 dt

t3

]1/2

. (1.9)

REMARK 1.4. (i) In the classical Euclidean space Rn , where λ (x, r) := Crn , let

K(x, y) :=
1

|x− y|n−1 Ω(x− y)
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with Ω being homogeneous of degree zero and Ω ∈ Lipα(Sn−1) for some α ∈ (0, 1] ,
then K satisfies (1.7) and (1.8), and M ( f ) in (1.9) is just the Marcinkiewicz integral
introduced by Stein [24].

(ii) If K satisfies (1.8), then it also satisfies the following Hörmander type condi-
tion that there exists a positive constant C such that, for all y, y′ ∈ X ,

∫
d(x,y)�2d(y,y′)

[|K(x, y)−K(x, y′)|+ |K(y, x)−K(y′, x)|] 1
d(x, y)

dμ(x) � C. (1.10)

The Marcinkiewicz integral M ( f ) associated to K satisfying (1.7) and (1.10) is just
the Marcinkiewicz integral on non-homogeneous metric measure spaces in [17].

In what follows, let ν := log2C(λ ) and δ be as in (1.8). The main results of this
paper are stated as follows.

THEOREM 1.1. Let ρ ∈ (1, ∞) ,
ν

ν +min{ 1
4 , δ} < p � 1 < q< ∞ , ε � max{ 1

4 ,δ}
and γ ∈ [1,∞) . Assume that the Marcinkiewicz integral operator M , defined by (1.9),
associated with kernel K satisfying (1.7) and (1.8) is bounded on L2(μ) . Then M is
bounded from H̃ p,q,γ,ε

mb,ρ (μ) into Lp(μ) .

THEOREM 1.2. Let ρ ∈ (1, ∞) ,
ν

ν +min{ 1
4 , δ} < p � 1 < q < ∞ and γ ∈ [1, ∞) .

Assume that the Marcinkiewicz integral operator M , defined by (1.9), associated with
kernel K satisfying (1.7) and (1.8) is bounded on L2(μ) . Then M is bounded from
H̃ p,q,γ

atb,ρ (μ) into Lp(μ) .

The paper is organized as follows. In Section 2, our major job is to establish the
boundedness criteria of the operator T on the Hardy spaces H̃ p,q,γ

atb,ρ (μ) and H̃ p,q,γ,ε
mb,ρ (μ)

with the assumption that T is sublinear when p = 1 and is non-negative sublinear when
p∈ (0, 1) (see Theorems 2.1 and 2.2 below). Section 3 is devoted to proving Theorems

1.1 and 1.2. To this end, we first recall the properties of the discrete coefficient K̃(ρ), p
B,S

and show the boundedness of M from the Hardy space H̃1(μ) to the Lebesgue space
L1(μ) (see Lemma 3.2 below), and then we prove Theorem 1.1 by using some ideas
from [9, Theorem 4.8] with much more complicated demonstrations. Theorem 1.2 can
be seen as a corollary of Theorem 1.1.

Throughout this paper, C denotes a positive constant that is independent of the
main parameters, but whose value may vary from line to line. We denote by C(α) a
positive constant depending on the parameter α . The expression Y � Z means that
there exists a positive constant C such that Y � CZ . The expression A ∼ B means that
A � B � A . Given any q ∈ (0, ∞) , its conjugate index is denoted by q′ := q/(q−1) .
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2. Boundedness criteria

THEOREM 2.1. Let ρ , q ∈ (1, ∞) , γ ∈ [1, ∞) and T be a sublinear operator
bounded from L1(μ) to L1,∞(μ) . If there exists a positive constant C such that, for
all (1, q, γ, ρ)λ -atomic blocks b,

‖Tb‖L1(μ) � C|b|
H̃1,q, γ

atb,ρ (μ), (2.1)

then T is extended to be a bounded sublinear operator from H̃1(μ) to L1(μ) .

Proof. The argument is almost the same as the one used in the proof of [32, The-
orem 1.13]. We will repeat it for the sake of completeness. Let f ∈ H̃1,q,γ

atb,ρ (μ) and
f = ∑∞

i=1 bi , where, for each i ∈ N , bi is a (1,q,γ,ρ)λ -atomic block. By the bounded-
ness of T from L1(μ) to L1,∞(μ) , we have that, for any ε > 0,

lim
N→∞

μ

({
x ∈ X :

∣∣∣∣∣T
(

∞

∑
i=N+1

bi

)
(x)

∣∣∣∣∣> ε

})
� lim

N→∞

1
ε

∞

∑
i=N+1

‖bi‖L1(μ) = 0.

This, via the Riesz theorem, shows that there exists a subsequence {T (∑ jk
i=1 bi)}k of

{T (∑ j
i=1 bi)} j such that, for μ -a.e. x ∈ X ,

|T ( f )(x)| �
∣∣∣∣∣T
(

jk−1

∑
i=1

bi

)
(x)

∣∣∣∣∣+
∣∣∣∣∣T
(

∞

∑
i= jk

bi

)
(x)

∣∣∣∣∣
�

jk−1

∑
i=1

|T (bi)(x)|+
∣∣∣∣∣T
(

∞

∑
i= jk

bi

)
(x)

∣∣∣∣∣→ ∞

∑
i=1

|T (bi)(x)|, jk → ∞.

By the sublinearity of T , we have that, for μ -a.e. x∈X , |T ( f )(x)|� ∑∞
i=1 |T (bi)(x)| ,

which together with (2.1), implies that

‖T ( f )‖L1(μ) �
∞

∑
i=1

‖T (bi)‖L1(μ) �
∞

∑
i=1

|bi|H̃1,q, γ
atb,ρ (μ).

From this, we conclude that T ( f ) ∈ L1(μ) and ‖T ( f )‖L1(μ) � ‖ f‖H̃1(μ) , which com-
plete the proof of Theorem 2.1. �

THEOREM 2.2. Let ρ ∈ (1,∞) , 0 < p < 1 � q � ∞ , γ ∈ [1, ∞) and ε ∈ (0,∞) .
Let T be a non-negative sublinear operator. Assume that T is bounded on L2(μ) .

(i) If there exists a positive constant C such that, for all (p, q, γ, ε, ρ)λ -molecular
blocks b,

‖T (b)‖Lp(μ) � C|b|H̃ p,q, γ,ε
mb,ρ (μ), (2.2)

then T is extended to be a bounded operator from H̃ p,q,γ,ε
mb,ρ (μ) to Lp(μ) .
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(ii) If there exists a positive constant C such that, for all (p, q, γ, ρ)λ -atomic
blocks b,

‖T (b)‖Lp(μ) � C|b|H̃ p,q, γ
atb,ρ (μ), (2.3)

then T is extended to be a bounded operator from H̃ p,q,γ
atb,ρ (μ) to Lp(μ) .

Proof. To prove (i), we first claim that, for any f ∈ H̃
p,q,γ,ε
mb,ρ (μ) with p ∈ (0, 1) ,

‖T ( f )‖p
Lp(μ) � ‖ f‖p

H̃p,q, γ,ε
mb,ρ (μ)

.

In fact, for any f ∈ H̃
p,q,γ,ε
mb,ρ (μ) with p ∈ (0, 1) , there exists a sequence {bi}i∈N of

(p, q, γ, ε, ρ)λ -molecular blocks such that f = ∑∞
i=1 bi in L2(μ) and

∞

∑
i=1

|bi|p
H̃

p,q, γ
atb,ρ (μ)

∼ ‖ f‖p

H̃
p,q, γ,ε
mb,ρ (μ)

.

By the fact that T is a non-negative sublinear operator and is bounded on L2(μ) , we
see that, for any N ∈ N ,∥∥∥∥∥T

(
N

∑
i=1

bi

)
−T( f )

∥∥∥∥∥
L2(μ)

�
∥∥∥∥∥T
(

N

∑
i=1

bi− f

)∥∥∥∥∥
L2(μ)

�
∥∥∥∥∥ N

∑
i=1

bi− f

∥∥∥∥∥
L2(μ)

→ 0, as N → ∞,

which further implies that, for all η ∈ (0,∞) ,

μ

({
x ∈ X :

∣∣∣∣∣T
(

N

∑
i=1

bi

)
(x)−T ( f )(x)

∣∣∣∣∣ > η

})
→ 0, as N → ∞. (2.4)

From the Riesz theorem, we conclude that there exists a subsequence {T (∑Nk
i=1 bi)}k of

{T (∑N
i=1 bi)}N such that, for μ -a.e. x ∈ X ,

T ( f )(x) = lim
k→∞

T

(
Nk

∑
i=1

bi

)
(x),

which, together with the sublinearity of T , the assumption that p ∈ (0,1) , the Fatou
lemma and (2.2), implies that

‖T ( f )‖p
Lp(μ) =

∥∥∥∥∥ lim
k→∞

T

(
Nk

∑
i=1

bi

)∥∥∥∥∥
p

Lp(μ)

�
∫

X
limsup

k→∞

Nk

∑
i=1

[T (bi)(x)]pdμ(x)

� liminf
k→∞

Nk

∑
i=1

∫
X

[T (bi)(x)]pdμ(x) � liminf
k→∞

Nk

∑
i=1

|bi|pH̃p,q, γ,ε
mb,ρ (μ)

�
∞

∑
i=1

|bi|pH̃p,q, γ,ε
mb,ρ (μ)

∼ ‖ f‖p
H̃p,q, γ,ε

mb,ρ (μ)
.
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This finishes the proof of our claim. By a standard density argument, we extend T to be
a bounded sublinear integral from H̃ p,q,γ,ε

mb,ρ (μ) into Lp(μ) , which completes the proof
of (i).

An argument similar to that used in the proof of (i) leads to (ii), which completes
the proof of Theorem 2.2. �

3. Proof of Theorems 1.1 and 1.2

To prove Theorems 1.1 and 1.2, we first recall the following useful properties of

K̃(ρ), p
B,S proved in [9].

LEMMA 3.1. Let p ∈ (0,1] and ρ ∈ (1, ∞) .
(i) For all balls B ⊂ R ⊂ S ,

[K̃(ρ), p
B,R ]p � C(ρ)[K̃

(ρ), p
B,S ]p, [K̃(ρ), p

R,S ]p � c̃(ρ , p,ν)[K̃
(ρ), p
B,S ]p

and
[K̃(ρ), p

B,S ]p � [K̃(ρ), p
B,R ]p + c(ρ , p,ν)[K̃

(ρ), p
R,S ]p,

where C(ρ) is a positive constant depending on ρ , c(ρ , p,ν) and c̃(ρ , p,ν) are positive
constants depending on ρ , p and ν .

(ii) Let α ∈ [1, ∞) . For all balls B ⊂ S with rS � αrB , [K̃(ρ), p
B,S ]p � C(α ,ρ) , where

C(α ,ρ) is a positive constant depending on α and ρ .

Recall that when p = 1, the Hardy spaces H̃1,q,γ
atb,ρ (μ) and H̃1,q,γ,ε

mb,ρ (μ) coincide

and are simply denoted by H̃1(μ) . By Theorem 2.1 and an argument similar to that
used in the proof of [17, Theorem 2.3], we obtain the following boundedness of M on
the Hardy space H̃1(μ) and the Lebesgue space Lp(μ) with p ∈ [1, ∞) . We omit the
details here.

LEMMA 3.2. Let K satisfy (1.7) and (1.8), and M be as in (1.9). If M is
bounded on L2(μ) , then M is bounded from L1(μ) to L1,∞(μ) and from H̃1(μ) to
L1(μ) , and is bounded on Lp(μ) for all p ∈ (1, ∞) .

Now we prove Theorem 1.1.

Proof of Theorem 1.1. The case of p = 1 has been showed in Lemma 3.2. It re-
mains to be proved the case of p∈ (0, 1) . Let ρ , p, q, γ and ε be as in the assumptions
of Theorem 1.2. For the sake of simplicity, we take ρ = 2 and γ = 1. With some slight
modifications, the arguments here are still valid for general cases. By Theorem 2.2(i),
we only need to show that, for all (p, q, 1, ε, 2)λ -molecular blocks b,

‖M (b)‖Lp(μ) � |b|
H̃ p,q,1,ε

mb,2 (μ). (3.1)

Now let b = ∑∞
k=0 ∑Mk

j=1 λk, jmk, j be a (p, q, 1, ε, 2)λ−molecular block, where, for any
k ∈ Z+ and j ∈ {1, · · · , Mk} , supp(mk, j)⊂ Bk, j ⊂Uk(B) for some balls B and Bk, j as
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in Definition 1.5. Without loss of generality, we may assume that M̃ = M in Definition
1.5. Let �∗ := min{�−5, � �

2�} . Since M is sublinear, we have

‖M (b)‖p
Lp(μ) �

∞

∑
�=5

∫
U�(B)

∣∣∣∣∣M
(

�∗

∑
k=0

M

∑
j=1

λk, jmk, j

)
(x)

∣∣∣∣∣
p

dμ(x)

+
∞

∑
�=5

∫
U�(B)

∣∣∣∣∣M
(

�+4

∑
k=�∗+1

M

∑
j=1

λk, jmk, j

)
(x)

∣∣∣∣∣
p

dμ(x)

+
∞

∑
�=5

∫
U�(B)

∣∣∣∣∣M
(

∞

∑
k=�+5

M

∑
j=1

λk, jmk, j

)
(x)

∣∣∣∣∣
p

dμ(x)

+
4

∑
�=0

∫
U�(B)

|M (b)(x)|p dμ(x)

=: I+ II+ III+ IV.

We first estimate III. For x ∈ U�(B) and y ∈ Bk, j ⊂ Uk(B) with k � � + 5, we
have

d(x, cB) < 2�+2rB =
1
2

(
2�+3rB

)
� 1

2

(
2k−2rB

)
� 1

2
d(y, cB), (3.2)

which further implies that d(x, y) ∼ d(y, cB) . It then follows from (1.4) that

λ (x, d(x, y)) ∼ λ (x, d(y, cB)) � λ (x, d(x, cB)) ∼ λ (cB, d(x, cB)).

From this, together with Minkowski’s inequality, (1.7), Hölder’s inequality, (1.3) and
(1.6), we deduce that

III =
∞

∑
�=5

∫
U�(B)

∣∣∣∣∣∣
∫ ∞

0

∣∣∣∣∣
∫

d(x,y)<t

∞

∑
k=�+5

M

∑
j=1

λk, jmk, j(y)K(x, y)dμ(y)

∣∣∣∣∣
2
dt
t3

∣∣∣∣∣∣
p/2

dμ(x)

�
∞

∑
�=5

∞

∑
k=�+5

M

∑
j=1

|λk, j|p
∫
U�(B)

[∫
X

|K(x, y)||mk, j(y)| 1
d(x, y)

dμ(y)
]p

dμ(x)

�
∞

∑
�=5

∞

∑
k=�+5

M

∑
j=1

|λk, j|p
∫
U�(B)

[∫
Bk, j

|mk, j(y)|
[λ (x, d(x, y))]

dμ(y)
]p

dμ(x)

�
∞

∑
�=5

∞

∑
k=�+5

M

∑
j=1

|λk, j|p
∫
U�(B)

1
[λ (cB, d(x, cB)]p

dμ(x)
[
μ(Bk, j)

]p/q′ ∥∥mk, j
∥∥p

Lq(μ)

�
∞

∑
�=5

∞

∑
k=�+5

M

∑
j=1

|λk, j|p μ(2�+2B)
[λ (cB, 2�−2rB)]p

[μ(Bk, j)]p/q′ ∥∥mk, j
∥∥p

Lq(μ)

�
∞

∑
�=5

∞

∑
k=�+5

M

∑
j=1

|λk, j|pμ(2�+2B)
1−p

[μ(Bk, j)]p/q′

×2−kε p[μ(2Bk, j)]−p/q′[λ (cB, 2k+2rB)]p−1
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�
∞

∑
�=5

∞

∑
k=�+5

M

∑
j=1

2−kε p|λk, j|p �
M

∑
j=1

∞

∑
k=10

k−5

∑
�=5

2−kε p|λk, j|p

�
M

∑
j=1

∞

∑
k=10

k2−kε p|λk, j|p �
∞

∑
k=0

M

∑
j=1

|λk, j|p ∼ |b|p
H̃p,q,1,ε

mb,2 (μ)
.

To estimate the term I, write

I �
∞

∑
�=5

∫
U�(B)

∣∣∣∣∣∣
∫ d(x,cB)+2�∗+2rB

0

∣∣∣∣∣
∫

d(x,y)<t

�∗

∑
k=0

M

∑
j=1

λk, jmk, j(y)K(x, y)dμ(y)

∣∣∣∣∣
2
dt
t3

∣∣∣∣∣∣
p/2

dμ(x)

+
∞

∑
�=5

∫
U�(B)

∣∣∣∣∣∣
∫ ∞

d(x,cB)+2�∗+2rB

∣∣∣∣∣
∫

d(x,y)<t

�∗

∑
k=0

M

∑
j=1

λk, jmk, j(y)K(x, y)dμ(y)

∣∣∣∣∣
2
dt
t3

∣∣∣∣∣∣
p/2

dμ(x)

=: I1 + I2.

Similar to (3.2), if x ∈ U�(B) and y ∈ Bk, j ⊂ Uk(B) with 0 � k � �∗ , we then have
d(y, cB) � 1

2d(x, cB) , which implies that

d(y, cB) � 1
2
d(x, cB) � d(x,y) � 3

2
d(x, cB). (3.3)

This, together with a trivial computation, leads to that, for all x ∈U�(B) and y ∈ Bk, j ⊂
Uk(B) with 0 � k � �∗ ,∣∣∣∣∣ 1

[d(x, y)]2
− 1

[d(x, cB)+2�∗+2rB]2

∣∣∣∣∣� 2�/2rB

[d(x, cB)]3
.

On the other hand, for p ∈ ( ν
ν+min{ 1

4 ,δ} ,1) and ε � max{ 1
4 , δ} , we have ν(1− p)−

p/4 < 0 and −ε p−ν(1− p)< 0. From the above estimates, together with Minkowski’s
inequality, (1.7), (3.3), (1.4), Hölder’s inequality, (1.6) and (1.3), we deduce that

I1 �
∞

∑
�=5

�∗

∑
k=0

M

∑
j=1

|λk, j|p

×
∫
U�(B)

∣∣∣∣∣∣
∫

Bk, j

|mk, j(y)||K(x,y)|
(∫ d(x,cB)+2�∗+2rB

d(x,y)

1
t3

dt

)1/2

dμ(y)

∣∣∣∣∣∣
p

dμ(x)

�
∞

∑
�=5

�∗

∑
k=0

M

∑
j=1

|λk, j|p
∫
U�(B)

∣∣∣∣∣∣
∫

Bk, j

|mk, j(y)||K(x, y)|
(

2�/2rB

[d(x, cB)]3

)1/2

dμ(y)

∣∣∣∣∣∣
p

dμ(x)

�
∞

∑
�=5

�∗

∑
k=0

M

∑
j=1

|λk, j|p
∫
U�(B)

2−�p/4

[λ (cB, d(x, cB))]p
dμ(x)

∣∣∣∣∫
Bk, j

|mk, j(y)|dμ(y)
∣∣∣∣p
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�
∞

∑
�=5

�∗

∑
k=0

M

∑
j=1

|λk, j|p2−�p/4
∫
U�(B)

1
[λ (cB, 2�−2rB)]p

dμ(x)[μ(Bk, j)]p/q′ ∥∥mk, j

∥∥p
Lq(μ)

�
∞

∑
�=5

�∗

∑
k=0

M

∑
j=1

|λk, j|p2−�p/4 μ(2�+2B)
[λ (cB, 2�−2rB)]p

[μ(Bk, j)]p/q′

×2−kε p[μ(2Bk, j)]−p/q′ [λ (cB, 2k+2rB)]p−1

�
∞

∑
�=5

�∗

∑
k=0

M

∑
j=1

|λk, j|pC(�−k)(1−p)
(λ ) 2−kε p2−�p/4

�
∞

∑
�=5

�∗

∑
k=0

M

∑
j=1

|λk, j|p2[ν(1−p)−p/4]�2[−ε p−ν(1−p)]k

�
∞

∑
k=0

M

∑
j=1

|λk, j|p ∼ |b|p
H̃p,q,1,ε

mb,2 (μ)
.

To estimate I2 , write

I2 �
∞

∑
�=5

∫
U�(B)

∣∣∣∣∣
∫ ∞

d(x,cB)+2�∗+2rB

∣∣∣∣∣
∫

d(x,y)<t

�∗

∑
k=0

M

∑
j=1

λk, jmk, j(y)

× [K(x, y)−K(x, cB)]dμ(y)|2 dt
t3

∣∣∣∣p/2

dμ(x)

+
∞

∑
�=5

∫
U�(B)

∣∣∣∣∫ ∞

d(x,cB)+2�∗+2rB

×
∣∣∣∣∣
∫

d(x,y)<t

�∗

∑
k=0

M

∑
j=1

λk, jmk, j(y)K(x, cB)dμ(y)

∣∣∣∣∣
2
dt
t3

∣∣∣∣∣∣
p/2

dμ(x)

=: I2,1 + I2,2

Now we deal with the term I2,1 . Notice that, for p∈ ( ν
ν+min{ 1

4 ,δ} ,1) and ε � max{ 1
4 , δ} ,

ν(1− p)−δ p < 0 and δ p− ε p−ν(1− p) < 0. It then follows from Minkowski’s in-
equality, (1.8), (1.4), (3.3), Hölder’s inequality, (1.6) and (1.3), that

I2,1 �
∞

∑
�=5

�∗

∑
k=0

M

∑
j=1

|λk, j|p
∫
U�(B)

∣∣∣∣∫
Bk, j

|K(x, y)−K(x, cB)||mk, j(y)| 1
d(x, y)

dμ(y)
∣∣∣∣p dμ(x)

�
∞

∑
�=5

�∗

∑
k=0

M

∑
j=1

|λk, j|p
∫
U�(B)

∣∣∣∣∣
∫

Bk, j

[d(y, cB)]δ [d(x,y)]1−δ

λ (y,d(x, y))
|mk, j(y)| 1

d(x,y)
dμ(y)

∣∣∣∣∣
p

dμ(x)

�
∞

∑
�=5

�∗

∑
k=0

M

∑
j=1

|λk, j|p
∫
U�(B)

∣∣∣∣∣
∫

Bk, j

|mk, j(y)|2(k+2)δ rδ
B

λ (cB, d(x, cB))2(�−2)δ rδ
B

dμ(y)

∣∣∣∣∣
p

dμ(x)

�
∞

∑
�=5

�∗

∑
k=0

M

∑
j=1

|λk, j|p
∫
U�(B)

2(k−�)δ p

[λ (cB, d(x, cB))]p
dμ(x)

[∫
Bk, j

|mk, j(y)|dμ(y)
]p
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�
∞

∑
�=5

�∗

∑
k=0

M

∑
j=1

|λk, j|p
∫
U�(B)

2(k−�)δ p

[λ (cB, d(x, cB))]p
dμ(x)[μ(Bk, j)]p/q′ ∥∥mk, j

∥∥p
Lq(μ)

�
∞

∑
�=5

�∗

∑
k=0

M

∑
j=1

|λk, j|p μ(2�+2B)2(k−�)δ p

[λ (cB, 2�−2rB)]p
[μ(Bk, j)]p/q′

×2−kε p[μ(2Bk, j)]−p/q′ [λ (cB, 2k+2rB)]p−1

�
∞

∑
�=5

�∗

∑
k=0

M

∑
j=1

|λk, j|p2(k−�)δ p2−kε p[λ (cB, 2�+2rB)]1−p[λ (cB, 2k+2rB)]p−1

�
∞

∑
�=5

�∗

∑
k=0

M

∑
j=1

|λk, j|p2(k−�)δ p2−kε pC(�−k)(1−p)
(λ )

�
∞

∑
�=5

�∗

∑
k=0

M

∑
j=1

|λk, j|p2[ν(1−p)−δ p]�2k[δ p−ε p−ν(1−p)]

�
∞

∑
k=0

M

∑
j=1

|λk, j|p ∼ |b|p
H̃p,q,1,ε

mb,2 (μ)
.

Then we turn to estimate I2,2 . If we fix x ∈U�(B) , then, for all y ∈ Bk, j ⊂Uk(B)
with 0 � k � �∗ , we have

d(x, y) � d(x, cB)+d(y, cB) < d(x, cB)+2�∗+2rB.

From this, together with the vanishing moment of b , Minkowski’s inequality, (1.7),
(1.4), Hölder’s inequality, (1.6) and (1.3), we deduce that

I2,2 =
∞

∑
�=5

|λk, j|p
∫
U�(B)

∣∣∣∣∣∣
∫ ∞

d(x,cB)+2�∗+2rB

∣∣∣∣∣
∫

X

�∗

∑
k=0

M

∑
j=1

mk, j(y)K(x, cB)dμ(y)

∣∣∣∣∣
2
dt
t3

∣∣∣∣∣∣
p/2

dμ(x)

�
∞

∑
�=5

∞

∑
k=�∗+1

M

∑
j=1

|λk, j|p

×
∫
U�(B)

∣∣∣∣∣
∫

X
|mk, j(y)||K(x, cB)|

(∫ ∞

d(x,cB)+2�∗+2rB

1
t3

dt

)1/2

dμ(y)

∣∣∣∣∣
p

dμ(x)

�
∞

∑
�=5

∞

∑
k=�∗+1

M

∑
j=1

|λk, j|p
∫
U�(B)

∣∣∣∣∫
X

|mk, j(y)||K(x, cB)| 1
d(x, cB)

dμ(y)
∣∣∣∣p dμ(x)

�
∞

∑
�=5

∞

∑
k=�∗+1

M

∑
j=1

|λk, j|p
∫
U�(B)

∣∣∣∣∫
X

|mk, j(y)| 1
λ (x, d(x, cB))

dμ(y)
∣∣∣∣p dμ(x)

�
∞

∑
�=5

∞

∑
k=�∗+1

M

∑
j=1

|λk, j|p
∫
U�(B)

1
[λ (cB, d(x, cB))]p

dμ(x)
∣∣∣∣∫

Bk, j

|mk, j(y)|dμ(y)
∣∣∣∣p

�
∞

∑
�=5

∞

∑
k=�∗+1

M

∑
j=1

|λk, j|p
∫
U�(B)

1
[λ (cB, 2�−2rB]p

dμ(x)
∥∥mk, j

∥∥p
Lq(μ)

[
μ(Bk, j)

]p/q′
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�
∞

∑
�=5

∞

∑
k=�∗+1

M

∑
j=1

|λk, j|p μ(2�+2B)
[λ (cB, 2�−2rB)]p

×2−kε p[μ(2Bk, j)]−p/q′ [λ (cB, 2k+2rB)]p−1[μ(Bk, j)]p/q′

�
∞

∑
�=5

∞

∑
k=�∗+1

M

∑
j=1

|λk, j|p2−kε p �
∞

∑
k=1

max{k+4,2k}
∑
�=0

M

∑
j=1

|λk, j|p2−kε p

�
∞

∑
k=0

M

∑
j=1

k2−kε p|λk, j|p �
∞

∑
k=0

M

∑
j=1

|λk, j|p ∼ |b|p
H̃p,q,1,ε

mb,2 (μ)
,

which, together with the estimates for I1 and I2,1 , implies that I � |b|p
H̃p,q,1,ε

mb,2 (μ)
.

Now we estimate II . Write

II �
∞

∑
�=5

�+4

∑
k=�∗+1

M

∑
j=1

|λk, j|p
∫

2Bk, j

∣∣M (mk, j)(x)
∣∣p dμ(x)

+
∞

∑
�=5

�+4

∑
k=�∗+1

M

∑
j=1

|λk, j|p
∫
U�(B)\2Bk, j

∣∣M (mk, j)(x)
∣∣p dμ(x)

=: II1 + II2.

By Lemma 3.1, we see that M is bounded on Lq(μ) , which, together with Hölder’s
inequality, (1.6) and (1.3), implies that

II1 �
∞

∑
�=5

�+4

∑
k=�∗+1

M

∑
j=1

|λk, j|p
∥∥M (mk, j)

∥∥p
Lq(μ) [μ(2Bk, j)]1−p/q

�
∞

∑
�=5

�+4

∑
k=�∗+1

M

∑
j=1

|λk, j|p
∥∥mk, j

∥∥p
Lq(μ) [μ(2Bk, j)]1−p/q

�
∞

∑
�=5

�+4

∑
k=�∗+1

M

∑
j=1

|λk, j|p2−kε p[μ(2Bk, j)]−p/q′ [λ (cB, 2k+2rB)]p−1[μ(2Bk, j)]1−p/q

�
∞

∑
�=5

�+4

∑
k=�∗+1

M

∑
j=1

2−kε p|λk, j|p �
∞

∑
k=1

max{k+4,2k}
∑

�=k−4

M

∑
j=1

2−kε p|λk, j|p

�
∞

∑
k=0

M

∑
j=1

k2−kε p|λk, j|p �
∞

∑
k=0

M

∑
j=1

|λk, j|p ∼ |b|p
H̃p,q,1,ε

mb,2 (μ)
.

To estimate II2 , we notice that, for x /∈ 2Bk, j and y ∈ Bk, j ,

d(x,y) � d(x, cBk, j)−d(y,cBk, j) � 1
2
d(x, cBk, j).

On the other hand, from Lemma 3.1, we deduce that, for all k ∈ N ,[
K̃(2),p

Bk, j ,22k+1B

]p
� k
[
K̃(2),p

Bk, j ,2k+2B

]p
.
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The above estimates, together with Minkowski’s inequality, (1.7), (1.4), (1.3), Hölder’s
inequality and (1.6), show that

II2 �
∞

∑
�=5

�+4

∑
k=�∗+1

M

∑
j=1

∫
U�(B)\2Bk, j

[∫ ∞

0

∣∣∣∣∫
d(x,y)<t

K(x,y)mk, j(y)dμ(y)
∣∣∣∣2 dt

t3

]p/2

dμ(x)

�
∞

∑
�=5

�+4

∑
k=�∗+1

M

∑
j=1

|λk, j|p
∫
U�(B)\2Bk, j

[∫
X

|K(x, y)||mk, j(y)| 1
d(x, y)

dμ(y)
]p

dμ(x)

�
∞

∑
�=5

�+4

∑
k=�∗+1

M

∑
j=1

|λk, j|p
∫
U�(B)\2Bk, j

1
[λ (cBk, j ,d(x,cBk, j ))]p

[∫
Bk, j

|mk, j(y)|dμ(y)
]p

dμ(x)

�
∞

∑
�=5

�+4

∑
k=�∗+1

M

∑
j=1

|λk, j|p
∫

2max{k+6,2k+2}B\2Bk, j

1
[λ (cBk, j , d(x, cBk, j))]p

dμ(x)
∥∥mk, j

∥∥p
L1(μ)

�
∞

∑
�=5

�+4

∑
k=�∗+1

M

∑
j=1

|λk, j|p
∥∥mk, j

∥∥p
L1(μ)

N
(2)

Bk, j ,2
max{k+5,2k+1}B

+1

∑
i=0

μ(2i+1Bk, j)
[λ (cBk, j , 2irBk, j)]p

�
∞

∑
�=5

�+4

∑
k=�∗+1

M

∑
j=1

|λk, j|p
∥∥mk, j

∥∥p
L1(μ)

×
[

μ

(
2

N
(2)

Bk, j ,2
max{k+5,2k+1}B

+2
Bk, j

)]1−p[
K̃(2), p

Bk, j ,2max{k+5,2k+1}B

]p

�
∞

∑
�=5

�+4

∑
k=�∗+1

M

∑
j=1

|λk, j|p
∥∥mk, j

∥∥p
Lq(μ) [μ(Bk, j)]p/q′

× [μ(2max{k+9,2k+5}B)]1−p
[
K̃(2), p

Bk, j ,2max{k+5,2k+1}B

]p

�
∞

∑
�=5

�+4

∑
k=�∗+1

M

∑
j=1

|λk, j|p×2−kε p[μ(2Bk, j)]−p/q′[λ (cB, 2k+2rB)]p−1
[
K̃(2), p

Bk, j ,2k+2B

]−p

× [μ(Bk, j)]p/q′ [μ(2max{k+9,2k+5}B)]1−p
[
K̃(2), p

Bk, j ,2max{k+5,2k+1}B

]p

�
∞

∑
�=5

�+4

∑
k=�∗+1

M

∑
j=1

kCk(1−p)
(λ ) 2−kε p|λk, j|p

�
∞

∑
k=1

max{k+4,2k}
∑

�=k−4

M

∑
j=1

k2[v(1−p)−ε p]k|λk, j|p

�
∞

∑
k=0

M

∑
j=1

k22[v(1−p)−ε p]k|λk, j|p �
∞

∑
k=0

M

∑
j=1

|λk, j|p ∼ |b|p
H̃p,q,1,ε

mb,2 (μ)
,

where, in the second to the last inequality, we use the fact that, for p ∈ ( ν
ν+min{ 1

4 ,δ} , 1)

and ε � max{ 1
4 , δ} , ν(1− p)− ε p < 0.
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Combining the estimates for II1 and II2 , we conclude that II � |b|p
H̃p,q,1,ε

mb,2 (μ)
.

Finally, we deal with IV. We further write

IV �
4

∑
�=0

∫
U�(B)

∣∣∣∣∣M
(

�+4

∑
k=0

M

∑
j=1

λk, jmk, j(x)

)∣∣∣∣∣
p

dμ(x)

+
4

∑
�=0

∫
U�(B)

∣∣∣∣∣M
(

∞

∑
k=�+5

M

∑
j=1

λk, jmk, j(x)

)∣∣∣∣∣
p

dμ(x)

=: IV1 + IV2.

By some arguments similar to that used in the estimates for II and III, we respectively
obtain IV1 � |b|p

H̃p,q,1,ε
mb,2 (μ)

and IV2 � |b|p
H̃p,q,1,ε

mb,2 (μ)
. We omit the details here.

Combining the estimates for I to IV, we obtain the desired estimate (3.1), which
completes the proof of Theorem 1.1. �

Proof of Theorem 1.2. Let ρ , p, q and γ be as in assumptions of Theorem 1.2.
For the sake of simplicity, we take ρ = 2 and γ = 1. By Theorem 2.2(ii), it suffices to
show that, for any (p, q, 1, 2)λ -atomic block b ,

‖Tb‖Lp(μ) � |b|
H̃ p,q,1

atb,2 (μ),

which is an easy consequence of the facts that b is also a (p, q, 1, ε, 2)-molecular
block and |b|

H̃ p,q,1,ε
mb,2 (μ) � |b|

H̃ p,q,1
atb,2 (μ) (see [9, (4.3)]), together with (3.1). We then finish

the proof of Theorem 1.2. �
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[31] A. TORCHINSKY AND S. WANG, A note on the Marcinkiewicz integral, Colloq Math. 60/61, 1 (1990),

235–243.
[32] DA. YANG AND DO. YANG, Boundedness of linear operators via atoms on Hardy spaces with non-

doubling measures, Georgian Math. J. 18, 2 (2011), 377–397.



364 H. LI AND H. LIN

[33] DA. YANG, DO. YANG AND G. HU, The Hardy Space H1 with Non-doubling Measures and Their
Applications, Lecture Notes in Mathematics 2084, Springer-Verlag, Berlin, xiii+653 pp, 2013.

[34] A. ZYGMUND, On certain integrals, Trans. Amer. Math. Soc. 55, 2 (1944), 170–204.

(Received February 26, 2017) Haoyuan Li
College of Science

China Agricultural University
Beijing 100083, China

e-mail: lhy00math@126.com

Haibo Lin
College of Science

China Agricultural University
Beijing 100083, China

e-mail: haibolincau@126.com

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


