
Journal of
Mathematical

Inequalities

Volume 12, Number 2 (2018), 365–377 doi:10.7153/jmi-2018-12-27

OPTIMAL BOUNDS FOR THE FIRST SEIFFERT MEAN

IN TERMS OF THE CONVEX COMBINATION OF

THE LOGARITHMIC AND NEUMAN–SÁNDOR MEAN

JIAN-JUN LEI, JING-JING CHEN AND BO-YONG LONG

Abstract. In this paper, we find the least value α and the greatest value β such that the double
inequality

αL(a,b)+(1−α)M(a,b) < P(a,b) < βL(a,b)+(1−β)M(a,b)

holds for all a,b > 0 with a �= b , where L(a,b),M(a,b) and P(a,b) are the logarithmic, the
Neuman-Sándor, and the first Seiffert means of two positive numbers a and b , respectively.
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