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PARTIAL SUMS OF MITTAG–LEFFLER FUNCTION

DEEPAK BANSAL AND HALIT ORHAN

(Communicated by J. Pečarić)

Abstract. In the present investigation, Mittag-Leffler function with their normalization are con-
sidered. In this paper, we will study the ratio of a function of the form (1.4) to its sequence of par-

tial sums (Eλ ,μ )n(z) = z+
n
∑

k=1

Γ(μ)
Γ(λk+μ) z

k+1 . We will determine lower bounds for ℜ
{

Eλ ,μ (z)
(Eλ ,μ )n(z)

}
,

ℜ
{ (Eλ ,μ )n(z)

Eλ ,μ (z)

}
, ℜ

{
E′

λ ,μ (z)
(E′

λ ,μ )n(z)

}
and ℜ

{
(E′

λ ,μ )n(z)
E′

λ ,μ (z)

}
. Results obtained are new and their use-

fulness are depicted by deducing several interesting examples.

1. Introduction

Let A denote the family of all functions f that are analytic in the open unit disk
D = {z : |z| < 1} and are of the form:

f (z) = z+
∞

∑
n=2

an zn, z ∈ D. (1.1)

Recently, several researchers studied families of analytic functions involving special
functions F ⊂A , to find different conditions such that the members of F have certain
geometric properties like univalency, starlikeness or convexity in D . In this context
many results are available in the literature regarding the hypergeometric functions [11,
19, 16, 15], Bessel functions [2, 3, 4, 5, 17], Wright function [18] and Mittag-Leffler
functions [1].

The function Eλ (z) defined by

Eλ (z) =
∞

∑
n=0

zn

Γ(λn+1)
(z ∈ C, ℜ(λ ) > 0), (1.2)

was introduced by Mittag-Leffler [12] and is, therefore, known as the Mittag-Leffler
function. A more general function Eλ ,μ(z) , generalizing Eλ (z) , is defined by

Eλ ,μ(z) =
∞

∑
n=0

zn

Γ(λn+ μ)
(z,λ ,μ ∈ C; ℜ(λ ) > 0). (1.3)
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This function, sometime called, a Mittang-Leffler type function, first appeared in a pa-
per by Wiman [24, 25]. The Mittag-Leffler function arises naturally in the solution of
fractional order differential and integral equations, and especially in the investigations
of fractional generalization of kinetic equation, random walks, Lévy flights, super-
diffusive transport and in the study of complex systems. These functions interpolate
between a purely exponential law and power-law like behavior of phenomena governed
by ordinary kinetic equations and their fractional counterparts [8, 9, 7, 20]. The most
essential properties of these entire functions, investigated by many mathematicians, can
be found in [6].

Observe that, Mittag-Leffler function Eλ ,μ does not belong to the family A . Thus,
it is natural to consider the following normalization of Mittag-Leffler function:

Eλ ,μ(z) = Γ(μ)zEλ ,μ(z) (1.4)

:=
∞

∑
n=0

Γ(μ)
Γ(λn+ μ)

zn+1 (z,λ ,μ ∈ C; ℜ(λ ) > 0, μ �= 0,−1, · · ·).

Whilst formula (1.4) holds for complex-valued λ , μ and z ∈ C , however in this paper
we shall restrict our attention to the case of real-valued λ , μ and z ∈ D . Observe that,
the function Eλ ,μ contains many well known functions as its special case, for example

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

E0,1(z) =
z

1− z
, E1,1(z) = zez, E2,1(z) = zcosh(

√
z),

E1,2(z) = ez−1, E1,3(z) =
2(ez− z−1)

z
,

E1,4(z) =
6(ez−1− z)−3z2

z2 , E2,2(z) =
√

z sinh(
√

z),

E3,1(z) =
z
2

[
ez1/3

+2e−
1
2 z1/3

cos
(√

3
2 z1/3

)]
.

(1.5)

If f , g are analytic functions in D , then f is said to be subordinate to g , written as
f (z)≺ g(z) (z∈D) , if there exists an analytic function w with w(0) = 0 and |w(z)|� 1
(z ∈ D) such that f (z) = g(w(z)) . In particular, if g is univalent in D , then we have
the following equivalence:

f (z) ≺ g(z) ⇐⇒ f (0) = g(0) and f (D) ⊂ g(D).

For more details one can refer [10].
In this paper, we will study the ratio of a function of the form (1.4) to its sequence

of partial sums

(Eλ ,μ)n(z) = z+
n

∑
k=1

Γ(μ)
Γ(λk+ μ)

zk+1 (1.6)

(Eλ ,μ)0(z) = z. (1.7)

We will determine lower bounds for ℜ
{

Eλ ,μ (z)
(Eλ ,μ )n(z)

}
, ℜ

{
(Eλ ,μ )n(z)

Eλ ,μ (z)

}
, ℜ

{
E′

λ ,μ (z)
(E′

λ ,μ )n(z)

}

and ℜ
{

(E′
λ ,μ )n(z)

E′
λ ,μ (z)

}
.
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For various known results concerning with partial sums of analytic univalent func-
tions one can refer the works of Owa et. al [14], Sheil-Small [21], Silverman [22],
Silvia [23] and Orhan et. al [13].

2. Main results

To prove main results we need following Lemma:

LEMMA 2.1. If λ � 1 and μ � 1 then the function Eλ ,μ : D → C given by (1.4),
satisfies the following inequalities:

|Eλ ,μ(z)| � μ2 + μ +1
μ2 (2.1)

and

|E′
λ ,μ(z)| � μ3 +2μ2 +3μ +1

μ3 . (2.2)

Proof. Under the hypothesis, it is easy to check that Γ(n+μ)� Γ(λn+μ) , n∈N ,
which is equivalent to

Γ(μ)
Γ(λn+ μ)

� Γ(μ)
Γ(n+ μ)

=
1

μ(μ +1)(μ +2) · · ·(μ +n−1)
, n ∈ N. (2.3)

Using this inequality, we get

∣∣Eλ ,μ(z)
∣∣ � |z|+

∞

∑
n=1

Γ(μ)
Γ(λn+ μ)

|z|n+1

� 1+
∞

∑
n=1

Γ(μ)
Γ(n+ μ)

= 1+
∞

∑
n=1

1
μ(μ +1) · · ·(μ +n−1)

� 1+
1
μ

∞

∑
n=0

1
(μ +1)n

=
μ2 + μ +1

μ2 .
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Similarly

∣∣E′
λ ,μ(z)

∣∣ � 1+
∞

∑
n=1

(n+1)Γ(μ)
Γ(λn+ μ)

|z|n � 1+
∞

∑
n=1

nΓ(μ)
Γ(λn+ μ)

+
∞

∑
n=1

Γ(μ)
Γ(λn+ μ)

� 1+
∞

∑
n=1

n
μ(μ +1) · · ·(μ +n−1)

+
∞

∑
n=1

1
μ(μ +1) · · ·(μ +n−1)

� 1+
1
μ

[
1+

2
(μ +1)

+
3

(μ +1)2 + ...

]
+

1
μ

∞

∑
n=0

1
(μ +1)n

= 1+
1
μ

[
(μ +1)

μ

]2

+
μ +1

μ2 =
μ3 +2μ2 +3μ +1

μ3 . �

THEOREM 2.1. If λ � 1 , μ � 1 and μ2− μ −1 � 0 , then

ℜ
{

Eλ ,μ(z)
(Eλ ,μ)n(z)

}
� μ2 − μ −1

μ2 (z ∈ D), (2.4)

and

ℜ
{

(Eλ ,μ)n(z)
Eλ ,μ(z)

}
� μ2

μ2 + μ +1
(z ∈ D). (2.5)

Proof. It is easy to see from (2.1) of Lemma 2.1 that

1+
∞

∑
k=1

bk � μ2 + μ +1
μ2

which is equivalent to

μ2

μ +1

∞

∑
k=1

bk � 1

(
where bk =

Γ(μ)
Γ(λk+ μ)

)
. (2.6)

To prove 2.4, we have to show that

μ2

μ +1

[
Eλ ,μ(z)

(Eλ ,μ(z))n
− μ2− μ −1

μ2

]
≺ 1+ z

1− z
. (2.7)

Using definition of subordination, and putting the values of Eλ ,μ and (Eλ ,μ(z))n , we
have

1+
n
∑

k=1
bkzk + μ2

μ+1

∞
∑

k=n+1
bkzk

1+
n
∑

k=1
bkzk

=
1+w(z)
1−w(z)

.

Our assertion 2.4 is true if we show that w(0) = 0 and |w(z)| < 1 provided z ∈ D .
Simplifying for w(z) , we get

w(z) =

μ2

μ+1

∞
∑

k=n+1
bkzk

2+2
n
∑

k=1
bkzk + μ2

μ+1

∞
∑

k=n+1
bkzk

.
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Obviously w(0) = 0 and

|w(z)| �
μ2

μ+1

∞
∑

k=n+1
bk

2−2
n
∑

k=1
bk − μ2

μ+1

∞
∑

k=n+1
bk

� 1

provided
n

∑
k=1

bk +
μ2

μ +1

∞

∑
k=n+1

bk � 1. (2.8)

It suffices to show that the left hand side of (2.8) is bounded above by left hand side of
(2.6), which is equivalent to

(
μ2

μ +1
−1

) n

∑
k=1

bk � 0.

This is true as μ2 − μ −1 � 0.
To prove the result (2.5), we write

μ2 + μ +1
μ +1

[ (Eλ ,μ(z))
n

Eλ ,μ(z)
− μ2

μ2 + μ +1

]
=

1+w(z)
1−w(z)

.

Substituting the values of Eλ ,μ and (Eλ ,μ(z))n and simplifying for w(z) , we have

w(z) =
− μ2+μ+1

μ+1

∞
∑

k=n+1
bkzk

2+2
n
∑

k=1
bkzk − μ2−μ−1

μ+1

∞
∑

k=n+1
bkzk

.

Obviously w(0) = 0 and

|w(z)| �
μ2+μ+1

μ+1

∞
∑

k=n+1
bk

2−2
n
∑

k=1
bk− μ2−μ−1

μ+1

∞
∑

k=n+1
bk

� 1 (2.9)

as (2.8) is true for μ2 − μ −1 � 0. �

THEOREM 2.2. If λ � 1 and μ � 1 with μ3−2μ2−3μ −1 � 0 , then

ℜ
{

E′
λ ,μ(z)

(E′
λ ,μ)n(z)

}
� μ3−2μ2−3μ −1

μ3 (z ∈ D), (2.10)

and

ℜ
{

(E′
λ ,μ)n(z)

E′
λ ,μ(z)

}
� μ3

μ3 +2μ2 +3μ +1
(z ∈ D). (2.11)
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Proof. It is easy to see from (2.2) of Lemma 2.1 that

1+
∞

∑
k=1

bk(k+1) � μ3 +2μ2 +3μ +1
μ3

which is equivalent to

μ3

2μ2 +3μ +1

∞

∑
k=1

bk(k+1) � 1

(
where bk =

Γ(μ)
Γ(λk+ μ)

)
. (2.12)

To prove (2.10), we have to show that

μ3

2μ2 +3μ +1

[
E′

λ ,μ(z)
(E′

λ ,μ(z))n
− μ3−2μ2−3μ −1

μ3

]
≺ 1+ z

1− z
. (2.13)

Using definition of subordination, and putting the values of Eλ ,μ and (Eλ ,μ(z))n , we
have

1+
n
∑

k=1
bk(k+1)zk + μ3

2μ2+3μ+1

∞
∑

k=n+1
(k+1)bkzk

1+
n
∑

k=1
(k+1)bkzk

=
1+w(z)
1−w(z)

.

Our assertion (2.4) is ture if we show that w(0) = 0 and |w(z)| < 1 provided z ∈ D .
Simplifying for w(z) , we get

w(z) =

μ3

2μ2+3μ+1

∞
∑

k=n+1
(k+1)bkzk

2+2
n
∑

k=1
(k+1)bkzk + μ3

2μ2+3μ+1

∞
∑

k=n+1
(k+1)bkzk

Obviously w(0) = 0 and

|w(z)| �
μ3

2μ2+3μ+1

∞
∑

k=n+1
(k+1)bk

2−2
n
∑

k=1
(k+1)bk − μ3

2μ2+3μ+1

∞
∑

k=n+1
(k+1)bk

� 1

provided
n

∑
k=1

(k+1)bk +
μ3

2μ2 +3μ +1

∞

∑
k=n+1

(k+1)bk � 1. (2.14)

It suffices to show that the left hand side of (2.14) is bounded above by left hand side
of (2.12), which is equivalent to

(
μ3

2μ2 +3μ +1

) n

∑
k=1

bk � 0.

This is true in view of hypothesis.
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To prove the result (2.11), we write

μ3 +2μ2 +3μ +1
2μ2 +3μ +1

[ (E′
λ ,μ(z))

n

E′
λ ,μ(z)

− μ3

μ3 +2μ2 +3μ +1

]
=

1+w(z)
1−w(z)

.

Substituting the values of E′
λ ,μ and (E′

λ ,μ(z))n and simplifying for w(z) , we have

w(z) =
− μ3+2μ2+3μ+1

2μ2+3μ+1

∞
∑

k=n+1
(k+1)bkzk

2+2
n
∑

k=1
(k+1)bkzk +

(
1− μ3

2μ2+3μ+1

) ∞
∑

k=n+1
(k+1)bkzk

.

Obviously w(0) = 0 and

|w(z)| �
μ3+2μ2+3μ+1

2μ2+3μ+1

∞
∑

k=n+1
(k+1)bk

2−2
n
∑

k=1
(k+1)bk− μ3−2μ2−3μ−1

2μ2+3μ+1

∞
∑

k=n+1
(k+1)bk

� 1 (2.15)

as (2.14) is true under the hypothesis. �

3. Application

In view of (1.1) and Theorem 2.1 and Theorem 2.2, we get the following inequal-
ities:

(1) Choosing λ = 1, μ = 2 and n = 0, the hypothesis of Theorem 2.1 is satified but
hypothesis of Theorem 2.2 is not satisfied, thus we get the following results

ℜ
{

ez −1
z

}
� 1

4
(z ∈ D), (3.1)

ℜ
{

z
ez −1

}
� 4

7
(z ∈ D). (3.2)

(2) Choosing λ = 2, μ = 2 and n = 0, the hypothesis of Theorem 2.1 is satified but
hypothesis of Theorem 2.2 is not satisfied, thus we get the following results

ℜ
{

sinh
√

z√
z

}
� 1

4
(z ∈ D), (3.3)

ℜ
{ √

z
sinh

√
z

}
� 4

7
(3.4)

One can find out more examples in view of (1.1). The following are graphs of
some of the functions discusses above. These figures depicts validity of our results.
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i We have the image domains of f1(z) = ez−1
z , f2(z) = z

ez−1 , in Figure 1.

Figure 1.

ii We have the image domains of f3(z) = sinh(
√

z)√
z , f4(z) =

√
z

sinh(
√

z) , in Figure 2.

Figure 2.
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