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GENERAL THEOREMS ON EXPONENTIAL AND ROSENTHAL’S

INEQUALITIES AND ON COMPLETE CONVERGENCE

ISTVÁN FAZEKAS, SÁNDOR PECSORA AND BETTINA PORVÁZSNYIK

(Communicated by Z. S. Szewczak)

Abstract. Exponential inequalities are obtained under general conditions. Then it is shown that
an exponential inequality implies both Rosenthal’s inequality and complete convergence of sums
of random variables. The general results are applied to weakly orthant dependent sequences.

1. Introduction

Analysing the proofs of asymptotic results for independent randomvariables (r.v.’s)
one can see that certain exponential relations play fundamental role. Similar observa-
tion is true for some weakly dependent sequences of r.v.’s. It leads to the following
definition. The r.v.’s X1,X2, . . . ,Xn are called acceptable if

Ee∑n
i=1 λXi �

n

∏
i=1

EeλXi (1.1)

for any real number λ , see [1]. Then exponential inequalities and complete conver-
gence theorems were obtained for acceptable sequences, furthermore some versions of
the notion of acceptability were introduced, see e.g. [22] and [28].

In this paper we shall show that an appropriate version of inequality (1.1) im-
plies an exponential inequality. Then the exponential inequality implies a Rosenthal’s
inequality. Moreover, the exponential inequality implies immediately complete con-
vergence. We emphasize that to obtain the above results no additional dependence
conditions are needed. Then our general theorems will be applied to weakly orthant
dependent sequences.

Our main aim is to obtain general theorems and to point out the general features of
methods of proofs. The same approach inspired the paper [8] where a general method
was described to obtain Strong Laws of Large Numbers (SLLN). In that paper it was
proved that a Hájek-Rényi type maximal inequality is always a consequence of an ap-
propriate Kolmogorov type maximal inequality. Moreover, the Hájek-Rényi type max-
imal inequality immediately implies the SLLN. The benefit of that result was that no
restriction was assumed on the dependence structure of the random variables. Then the
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results of [8] were widely applied for dependent r.v.’s (see the list in the review paper
[7]).

In Section 2 of this paper exponential inequalities are studied. It is well-known that
exponential inequalities played important role to obtain asymptotic results for sums in-
dependent r.v.’s. Classical exponential inequalities were obtained e.g. by Bernstein,
Kolmogorov, Fuk and Nagaev (see the monographs [20], [23] and the paper [11]). Ex-
ponential bounds are used to prove the law of the iterated logarithm (see [14], [23]). Ex-
ponential inequalities were obtained also for dependent r.v.’s, e.g., in [4] for negatively
associated, in [12] for negatively orthant dependent, in [29] for extended negatively
orthant dependent r.v.’s. In [22] exponential inequalities were obtained for acceptable
random variables and using them complete convergence results were proved. In our
paper we shall assume the acceptability of the truncated r.v.’s, therefore our Theorem
2.1 and the results in [22] are different.

Section 3 is devoted to Rosenthal’s inequality. Rosenthal’s inequality plays an
important role in the theory of independent r.v.’s. There are several methods to prove
it (see, e.g., [14], [20], [19]). Rosenthal’s inequality is true under weak dependence
conditions like mixing (e.g. [9]) or negative dependence (e.g. [12], [30]). In this pa-
per we shall prove that a general exponential inequality implies a Rosenthal inequality
(Theorem 3.1).

In Section 4 complete convergence is studied. For independent identically dis-
tributed r.v.’s Kolmogorov’s SLLN is one of the most important results of probability
theory. The complete convergence in Kolmogorov’s SLLN was proven by [16] and [5].
More general rate of convergence was obtained by Baum and Katz in [2]. The classical
results of Baum and Katz were extended to arrays of independent dominated r.v.’s by
[17]. The weakly mean dominated case was considered by Gut in [13]. Gut’s results
were extended to vector valued case in [6].

There is a vast literature of extensions of Baum-Katz type results to dependent ran-
dom variables e.g. in [21] α -mixing, in [29] and in [30] extended negatively dependent,
in [27] widely orthant dependent r.v.’s were considered.

In Section 4 of this paper, we want to give some general conditions for Baum-Katz
type results. We show that an exponential inequality for the truncated and centered r.v.’s
implies the Baum-Katz type convergence rate (Theorem 4.1). We prove our result for
sequences of weakly mean dominated r.v.’s. We underline that we do not assume any
restriction on the dependence structure of the r.v.’s.

In Section 5 widely orthant dependent (WOD) sequences are considered. This
notion was introduced in [25]. It is known that extended negatively orthant dependent
sequences, negatively orthant dependent sequences, negatively superadditive depen-
dent sequences, negatively associated and independent sequences are WOD, see [27].
In Section 5, first we compare the notions of WOD sequence and widely acceptable
sequence. It is known that a WOD sequence satisfies equation (2.1) so it is widely ac-
ceptable. On the other hand, our Example 5.1 shows that the class of widely acceptable
r.v.’s is larger than the class of WOD r.v.’s. Therefore our results on widely acceptable
sequences are more general than former results on WOD sequences. In the remaining
part of Section 5 consequences of our general results are listed. Therefore we obtain
exponential inequality (Theorem 5.1), Hoeffding’s inequality (Theorem 5.2), Rosen-
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thal’s inequality (Theorem 5.3) and complete convergence (Theorem 5.4) for WOD
sequences.

2. Exponential inequalities

Let d > 0 be a real number, and let ξ be a random variable (r.v.). Throughout the
paper

ξ (d) = min{ξ ,d}
will denote the r.v. truncated from above.

For a sequence of r.v.’s η1,η2, . . . ,ηn we shall consider the condition

Ee∑n
i=1 λ ηi � g(n)

n

∏
i=1

Eeλ ηi (2.1)

where 0 < g(n) < ∞ . If condition (2.1) is satisfied for all λ ∈ R and for all n , then the
sequence η1,η2, . . . is called widely acceptable, see [28]. If g(n)≡ 1, then we are at the
notion of acceptable r.v.’s ([1], [22]). If (2.1) is true for η1,η2, . . . ,ηn , then it remains
true for η1 − a1,η2 − a2, . . . ,ηn − an for any real numbers a1, . . . ,an , in particular it
remains true for η1 −Eη1,η2 −Eη2, . . . ,ηn −Eηn . If we assume condition (2.1) for
positive values of λ and for the appropriately truncated r.v’s, then we shall obtain a
one-sided exponential inequality. If we assume condition (2.1) both for positive and
negative values of λ , then shall we obtain a two-sided exponential inequality.

The following type exponential inequality was obtained for negatively orthant de-
pendent r.v.’s in Lemma 3 of [12] and for extended negatively dependent r.v.’s in Lemma
1.2 of [29].

THEOREM 2.1. Let X1,X2, . . . ,Xn be a sequence of zero mean r.v.’s, d > 0 . Let
Sn = ∑n

i=1 Xi be the sum and Bn = ∑n
i=1 EX2

i be the sum of variances.

Assume that (2.1) is satisfied for ηi = X (d)
i , i = 1,2, . . . ,n and 0 < λ � λ0 . Then

for any x with 0 < x � (Bnedλ0 −Bn)/d , we have

P(Sn > x) � P

(
max
1�i�n

Xi > d

)
+g(n)exp

(
x
d
− x

d
ln

(
1+

xd
Bn

))
. (2.2)

If (2.1) is satisfied both for ηi = X (d)
i i = 1,2, . . . ,n, and ηi = (−Xi)(d) , i =

1,2, . . . ,n and 0 < λ � λ0 , then for any x with 0 < x � (Bnedλ0 −Bn)/d we have

P(|Sn| > x) � P

(
max
1�i�n

|Xi| > d

)
+2g(n)exp

(
x
d
− x

d
ln

(
1+

xd
Bn

))
. (2.3)

Proof. The proof follows the classical ideas of [11] (see also [20]). The same
method was applied for the proofs of Lemma 3 in [12] and Lemma 1.2 in [29]. First we

prove (2.2). Let ηi = X (d)
i , i = 1,2, . . . ,n denote the truncated r.v.’s. As EXi = 0, so
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Eηi � 0. Let Fi(x) = P(Xi < x) be the distribution function of Xi . Algebraic calculation
and Eηi � 0 gives

Eeλ ηi =
∫ d

−∞
eλ xdFi(x)+ eλd

P(Xi � d)

=
∫ d

−∞
(eλ x−1−λx)dFi(x)+ (eλd −1−λd)P(Xi � d)+1+ λEηi

�
∫ d

−∞
(eλ x−1−λx)dFi(x)+ (eλd −1−λd)P(Xi � d)+1

� 1+
eλd −1−λd

d2

(∫ d

−∞
x2dFi(x)+d2

P(Xi � d)
)

� 1+
eλd −1−λd

d2 EX2
i � exp

(
eλd −1−λd

d2 EX2
i

)
. (2.4)

Above we applied that the function f (t) = (eλ t − 1−λ t)/t2 in monotone increasing,
Eη2

i � EX2
i and 1+ t � et . Now, by (2.1) and (2.4),

e−λ x
Ee∑n

i=1 λ ηi � g(n)e−λ x
n

∏
i=1

Eeλ ηi � g(n)exp

(
−λx+

eλd −1−λd
d2 Bn

)
. (2.5)

The minimum of the function f (λ ) =−λx+ eλd−1−λd
d2 Bn is at λ =

(
ln
(
1+ xd

Bn

))/
d .

We can choose this value of λ because 0 < λ � λ0 is satisfied in view of condition
0 < x � (Bnedλ0 − Bn)/d . Therefore the application of (2.1) is allowed for this λ .

Moreover, we see that for this value of λ we have eλd−1−λd
d2 Bn � x

d . Therefore (2.5)
implies

e−λ x
Ee∑n

i=1 λ ηi � g(n)exp

(
x
d
− x

d
ln

(
1+

xd
Bn

))
. (2.6)

By Markov’s inequality and (2.6)

P

(
n

∑
i=1

X (d)
i > x

)
= P

(
eλ ∑n

i=1 ηi > eλ x
)

� e−λ x
Ee∑n

i=1 λ ηi (2.7)

� g(n)exp

(
x
d
− x

d
ln

(
1+

xd
Bn

))
.

Now

P(Sn > x) � P

(
max
1�i�n

Xi > d

)
+P

(
n

∑
i=1

X (d)
i > x

)
,

therefore an application of (2.7) gives (2.2).
Now we turn to the proof of (2.3). If (2.1) is true for ηi = (−Xi)(d) , i = 1,2, . . . ,n

and 0 < λ � λ0 , then (2.7) is true for the r.v.’s −X1,−X2, . . . ,−Xn , too. Applying (2.7)
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both for the r.v.’s X1,X2, . . . ,Xn and the r.v.’s −X1,−X2, . . . ,−Xn , we get

P(|Sn| > x) � P

(
max
1�i�n

|Xi| > d

)
+P

(
n

∑
i=1

X (d)
i > x

)
+P

(
n

∑
i=1

(−Xi)(d) > x

)

� P

(
max
1�i�n

|Xi| > d

)
+2g(n)exp

(
x
d
− x

d
ln

(
1+

xd
Bn

))
,

so we obtain (2.3). �
Now we turn to Hoeffding’s inequality. It was obtained for independent random

variables in [15]. Then it was extended to certain depended sequences. Our next theo-
rem is a version of Theorem 2.3 in [22], where acceptable r.v.’s were considered.

THEOREM 2.2. Let X1,X2, . . . ,Xn be a sequence of r.v.’s. Let Sn = ∑n
i=1 Xi be the

sum. Let the random variables be bounded, i.e. ai � Xi � bi for i = 1,2, . . . ,n, where
ai and bi are real numbers. Assume that (2.1) is satisfied with ηi = Xi , i = 1,2, . . . ,n
and 0 < λ � λ0 . Then for any ε with 0 < ε � λ0

4 ∑n
i=1(bi −ai)2 , we have

P(Sn−ESn � ε) � g(n)exp

(
− 2ε2

∑n
i=1(bi−ai)2

)
. (2.8)

Assume that (2.1) is satisfied for ηi = Xi , i = 1,2, . . . ,n and |λ | � λ0 . Then for any ε
with 0 < ε � λ0

4 ∑n
i=1(bi −ai)2 , we have

P(|Sn−ESn| � ε) � 2g(n)exp

(
− 2ε2

∑n
i=1(bi −ai)2

)
. (2.9)

Proof. We can follow the original proof given for independent r.v.’s (see [15], The-
orem 2). For acceptable r.v.’s an appropriate version of the original proof is described
in [22] (see the proof of Theorem 2.3 in [22]). �

Now we turn to the maximal version of Hoeffding’s inequality. We remark that in
[22] the maximal Hoeffding’s inequality for acceptable r.v.’s was not considered.

COROLLARY 2.1. Let X1,X2, . . . ,Xn be a sequence of r.v.’s. Assume that the ran-
dom variables are bounded, i.e. ai � Xi � bi for i = 1,2, . . . ,n, where ai and bi are
real numbers. For k, l with 1 � k � l � n denote by Mk,l the following maximum

Mk,l = max
k� j�l

∣∣∣∣∣
j

∑
t=k

(Xt −EXt)

∣∣∣∣∣ . (2.10)

Assume that

Ee∑l
i=k λXi � C

l

∏
i=k

EeλXi (2.11)

for any 1 � k < l � n and any λ ∈ R . Let ε > 0 . Then for any 0 < δ < 1 there exists
a C1 = C1(δ ) such that

P
(
Mk,l � ε

)
� 2CC1 exp

(
− 2ε2(1− δ )

∑l
i=k(bi−ai)2

)
(2.12)

for any 1 � k � l � n.
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Proof. By (2.9) we have

P

(∣∣∣∣∣
l

∑
t=k

(Xt −EXt)

∣∣∣∣∣� ε

)
� 2Cexp

(
− 2ε2

∑l
i=k(bi −ai)2

)
(2.13)

for any 1 � k < l � n . Here g(k, l) = ∑l
i=k(bi−ai)2 is a superadditive function. There-

fore Theorem 1 of [18] implies the desired result. �

3. Rosenthal’s inequality

We show that a general exponential inequality implies an appropriate Rosenthal
inequality.

THEOREM 3.1. Let X1,X2, . . . ,Xn be a sequence of zero mean r.v.’s, let Sn =
∑n

i=1 Xi be their sum and Bn be a sequence of positive numbers. Assume that

P(|Sn| > x) � l(n)P
(

max
1�i�n

|Xi| > d

)
+h(n)exp

(
x
d
− x

d
ln

(
1+

xd
Bn

))
(3.1)

is satisfied for any x > 0 and d > 0 where l(n) and h(n) are some real numbers. Then,
for p > 0 we have

E|Sn|p � C1l(n)E max
1�i�n

|Xi|p +C2h(n)Bp/2
n , (3.2)

where C1 = pp , C2 = 1
2 p1+p/2epB

( p
2 , p

2

)
are absolute constants with B(u,v) being the

beta function.

Proof. We shall use the classical method, see [20]. Apply (3.1) with d = x/p .
Then we obtain

E|Sn|p =
∫ ∞

0
pP(|Sn| � x)xp−1dx

�
∫ ∞

0
pl(n)P

(
max
1�i�n

|Xi| > x
p

)
xp−1dx+

∫ ∞

0
ph(n)ep

(
1+

x2

pBn

)−p

xp−1dx

= l(n)pp
E max

1�i�n
|Xi|p +h(n)

1
2

p1+p/2epB
( p

2
,
p
2

)
Bp/2

n ,

where in the last step we changed the variable in the second integral as t = x2

pBn
and

B(u,v) is the beta function

B(u,v) =
∫ 1

0
tu−1(1− t)v−1dt =

∫ ∞

0
tu−1(1+ t)−(u+v)dt, u > 0, v > 0. �

REMARK 3.1. Let X1,X2, . . . ,Xn be a sequence of zero mean r.v.’s, let Sn = ∑n
i=1 Xi

be their sum and Bn = ∑n
i=1 EX2

i be the sum of variances. Assume that (2.1) is satisfied

both for ηi = X (d)
i , i = 1,2, . . . ,n and for ηi = (−Xi)(d) , i = 1,2, . . . ,n for any λ > 0

and d > 0. Then Theorem 2.1 and inequality (3.2) imply

E|Sn|p � C1E max
1�i�n

|Xi|p +2C2g(n)Bp/2
n , (3.3)

where p > 0.
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We remark that in [24] it was proved that Marcinkiewicz-Zygmund and Rosenthal
inequalities imply complete moment convergence. Moreover, in [26] it was shown that
a Rosenthal inequality implies complete convergence and complete moment conver-
gence.

4. Complete convergence

In this section we shall show that a general exponential inequality implies a Baum-
Katz type theorem.

Let Yn , i = 1,2, . . . , be a sequence of random variables. We say that this sequence
is weakly mean dominated (wmd) by the r.v. Y , if

1
n

n

∑
i=1

P(|Yi| > t) � CP(|Y | > t) (4.1)

for all t � 0 and n = 1,2, . . . (see [13]).
We shall often use the following technical lemma (see [6]).

LEMMA 4.1. Let the sequence Yn , i = 1,2, . . . be weakly mean dominated by the
r.v. Y . Let t > 0 be fixed. Let f : [0,∞) → [0,∞) be a strictly increasing unbounded
function with f (0) = 0 . Then

1
n

n

∑
i=1

E|Yi| � CE|Y |; (4.2)

the sequence f (|Yn|) , i = 1,2, . . . is weakly mean dominated by the r.v. f (|Y |); the
truncated sequence |Yn|(t) , i = 1,2, . . . is weakly mean dominated by the truncated r.v.
|Y |(t) ;

1
n

n

∑
i=1

E|Yi|I{|Yi| > t} � CE|Y |I{|Y | > t} . (4.3)

Given a r.v. X and a positive number t , we shall use the following truncated r.v.

X̃ (t) = −tI{X < −t}+XI{|X | � t}+ tI{X > t} . (4.4)

Here I denotes the indicator function of a set.

THEOREM 4.1. Let X1,X2, . . . be a sequence of r.v.’s, let Sn = ∑n
i=1 Xi be their

partial sum. Let 0 < p < 2 and let α be a positive number. Assume that the exponential
inequality is satisfied for the truncated and centered r.v.’s, that is

P

(∣∣∣∣∣
n

∑
i=1

(
X̃ (t)

i −EX̃ (t)
i

)∣∣∣∣∣> x

)
(4.5)

� P

(
max
1�i�n

∣∣∣X̃ (t)
i −EX̃ (t)

i

∣∣∣> d

)
+g(n)exp

(
x
d
− x

d
ln

(
1+

xd
Bn

))

for all t > 0 , x > 0 , d > 0 and n = 1,2, . . . , where Bn = ∑n
i=1 E

(
X̃ (t)

i −EX̃ (t)
i

)2
.

Assume that g(.) is regularly varying with exponent r , where 0< r < α(2− p) . Assume
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that X1,X2, . . . is weakly mean dominated by the r.v. X for which E|X |pg(|X |1/α) < ∞ .
If 0 < p < 1 , then assume α p > 1 . If 1 � p < 2 , then assume α p � 1 and EXi = 0
for all i . Then we have

∞

∑
n=1

nα p−2
P(|Sn| > εnα) < ∞.

Proof. For simplicity, denote X ′
ni = X̃ (εnα /4)

i . Now we have

∞

∑
n=1

nα p−2
P(|Sn| > εnα) �

∞

∑
n=1

nα p−2
n

∑
i=1

P

(
|Xi| > εnα

4

)

+
∞

∑
n=1

nα p−2
P

(∣∣∣∣∣
n

∑
i=1

(X ′
ni −EX ′

ni)

∣∣∣∣∣> εnα

2

)

+
∞

∑
n=1

nα p−2
I

(∣∣∣∣∣
n

∑
i=1

EX ′
ni

∣∣∣∣∣> εnα

2

)
= A1 +A2 +A3,

say. Using the (wmd) assumption, we have

A1 � C
∞

∑
n=1

nα p−1
P

(
|X | > εnα

4

)

� C
∞

∑
n=1

nα p−1
∞

∑
i=n

P

(
εiα

4
< |X | � ε(i+1)α

4

)

= C
∞

∑
i=1

P

(
εiα

4
< |X | � ε(i+1)α

4

) i

∑
n=1

nα p−1

� C
∞

∑
i=1

iα p
P

(
εiα

4
< |X | � ε(i+1)α

4

)
� CE|X |p < ∞.

We have

V = n−α

∣∣∣∣∣
n

∑
i=1

EX ′
ni

∣∣∣∣∣
= n−α

∣∣∣∣∣
n

∑
i=1

(
−εnα

4
P

{
Xi < −εnα

4

}
+EXiI

{
|Xi| � εnα

4

}
+

εnα

4
P

{
Xi >

εnα

4

})∣∣∣∣∣ .
If p � 1, then using that EXi = 0, the (wmd) assumption and Lemma 4.1, we obtain

V � n−α
n

∑
i=1

(
E|Xi|I

{
|Xi| > εnα

4

}
+

εnα

4
P

{
|Xi| > εnα

4

})

� 2n−αn
1
n

n

∑
i=1

E|Xi|I
{
|Xi| > εnα

4

}
� Cn1−α

E|X |I
{
|X | > εnα

4

}

� Cn1−α
E|X | |X |p−1

nα(p−1) I

{
|X | > εnα

4

}
= Cn1−α p

E|X |pI
{
|X | > εnα

4

}
→ 0,

as n → ∞ , because E|X |p < ∞ and α p � 1.
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If p < 1, then using the (wmd) assumption and Lemma 4.1, we obtain

V � n−α
n

∑
i=1

(
E|Xi|I

{
|Xi| � εnα

4

}
+

εnα

4
P

{
|Xi| > εnα

4

})

� Cn1−α
E|X |I

{
|X | � εnα

4

}
+Cn1−α εnα

4
P

{
|X | > εnα

4

}

� Cn1−α
E|X | |X |p−1

(εnα/4)p−1 I

{
|X | � εnα

4

}
+Cn

E|X |p
(εnα/4)p

� Cn1−α p
E|X |pI

{
|X | � εnα

4

}
+Cn1−α p

E|X |p → 0

as n → ∞ because E|X |p < ∞ and α p > 1 in this case. Therefore

n−α ∣∣∑n
i=1 EX ′

ni

∣∣< ε
2
, (4.6)

if n > nε . Therefore A3 < ∞ . Applying equation (4.5) with d = x = εnα/2 and using
notation Bn = ∑n

i=1 E(X ′
ni−EX ′

ni)
2 , we obtain

A2 =
∞

∑
n=1

nα p−2
P

(∣∣∣∣∣
n

∑
i=1

(X ′
ni −EX ′

ni)

∣∣∣∣∣> εnα

2

)

�
∞

∑
n=1

nα p−2
P

(
max
1�i�n

∣∣X ′
ni −EX ′

ni

∣∣> d

)
+

∞

∑
n=1

nα p−2g(n)exp

(
x
d
− x

d
ln

(
1+

xd
Bn

))
.

Here the first term is zero. So

A2 �
∞

∑
n=1

nα p−2g(n)e
1

1+ xd
Bn

� C
∞

∑
n=1

nα p−2−2αg(n)Bn

� C
∞

∑
n=1

nα p−2−2αg(n)
n

∑
i=1

E(X ′
ni)

2.

Using (wmd) assumption, by Lemma 4.1, we obtain ∑n
i=1 E(X ′

ni)
2 � nE(X ′)2 . So we

have

A2 � C
∞

∑
n=1

nα p−1−2αg(n)
(

εnα

4

)2

P

(
|X | > εnα

4

)

+C
∞

∑
n=1

nα p−1−2αg(n)E
(

X2
I

{
|X | � εnα

4

})
= B1 +B2.

We have

B2 � C
∞

∑
n=1

nα p−1−2αg(n)
n−1

∑
i=0

P

(
εiα

4
< |X | � ε(i+1)α

4

)(
ε(i+1)α

4

)2

� C
∞

∑
i=0

P

(
εiα

4
< |X | � ε(i+1)α

4

)(
ε(i+1)α

4

)2 ∞

∑
n=i+1

nα p−1−2αg(n).
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Now, using known properties of regularly varying functions (see [3], pp. 26–27)
we obtain

B2 � C
∞

∑
i=0

iα pg(i)P

(
i <

(
4|X |

ε

)1/α
� i+1

)
� CE|X |pg

(
|X |1/α

)
< ∞.

Similarly, we have

B1 � C
∞

∑
n=1

nα p−1g(n)P
(
|X | > εnα

4

)

= C
∞

∑
n=1

nα p−1g(n)
∞

∑
i=n

P

(
εiα

4
< |X | � ε(i+1)α

4

)

� C
∞

∑
i=1

P

(
εiα

4
< |X | � ε(i+1)α

4

) i

∑
n=1

nα p−1g(n).

Now, using again properties of regularly varying functions (see [3], pp. 26–27)

B1 � C
∞

∑
i=0

iα pg(i)P

(
i <

(
4|X |

ε

)1/α
� i+1

)
� CE|X |pg

(
|X |1/α

)
< ∞. �

5. Widely orthant dependent sequences of r.v.’s

The sequence of r.v.’s X1,X2, . . . is called widely orthant dependent (WOD) if for
any positive integer n there exists a finite g(n) so that for any real numbers x1, . . . ,xn

we have

P(X1 > x1,X2 > x2, . . . ,Xn > xn) � g(n)
n

∏
i=1

P(Xi > xi) (5.1)

and

P(X1 � x1,X2 � x2, . . . ,Xn � xn) � g(n)
n

∏
i=1

P(Xi � xi), (5.2)

see [25]. It is known that extended negatively orthant dependent sequences, negatively
orthant dependent sequences, negatively superadditive dependent sequences, negatively
associated, and independent sequences are WOD, see [27]. In [27] exponential inequal-
ities and complete convergence theorems were proved for WOD sequences.

In this section, first we compare the notions of WOD sequence and widely accept-
able sequence. If X1,X2, . . . is a WOD sequence, then it is known that

Ee∑n
i=1 λXi � g(n)

n

∏
i=1

EeλXi (5.3)

for any real number λ . Recall that X1,X2, . . . are called widely acceptable it they sat-
isfy equation (5.3). So if a sequence of r.v.’s is WOD, then it is widely acceptable with
the same multiplier sequence g(n) . We shall give an example to show that the reverse
statement is not true. Our Example 5.1 shows that the class of widely acceptable r.v.’s
is larger than the class of WOD r.v.’s assuming the same multiplier sequence g(n) . In
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order to show it we shall use an example which can be considered as a discrete coun-
terpart of the example given in [22]. That example is based on Feller’s counterexample
(see problem III/1 in [10]).

EXAMPLE 5.1. Let X and Y be discrete r.v.’s with the following joint distribution

P(X = 0,Y = 0) = 1
16 , P(X = 0,Y = 1) = 3

16 , P(X = 0,Y = 2) = 0,

P(X = 1,Y = 0) = 1
16 , P(X = 1,Y = 1) = 4

16 , P(X = 1,Y = 2) = 3
16 ,

P(X = 2,Y = 0) = 2
16 , P(X = 2,Y = 1) = 1

16 , P(X = 2,Y = 2) = 1
16 .

We see that X and Y are not independent, but the distribution of X +Y is the same as
the convolution of the distribution of X and the distribution of Y . Therefore

Eeλ (X+Y ) = EeλX
EeλY .

However, by direct calculation,

P(X � u,Y � v) � gP(X � u)P(Y � v) (5.4)

and
P(X > u,Y > v) � gP(X > u)P(Y > v) (5.5)

are not satisfied for g = 1. For example,

P(X > 0,Y > 1) =
1
4

=
4
3
· 3
16

=
4
3

P(X > 0)P(Y > 1).

We can see that the smallest constant which satisfies the above two inequalities (5.4) -
(5.5) is g = 4/3. Now, let the two-dimensional r.v.’s (X1,X2),(X3,X4),(X5,X6), . . . be
independent copies of (X ,Y ) . Then inequality (5.3) is satisfied with g(n) ≡ 1 while
(5.1) and (5.2) are satisfied with g(n) = (4/3)n/2 . So we can obtain sharper result if we
use inequality (5.3) directly.

In the remaining part of this section we shall apply the results of the previous
sections for WOD sequences. To this end first we list a few known facts on WOD
sequences. If X1,X2, . . . is a WOD sequence and the real functions f1, f2, . . . are either
all non-decreasing or all non-increasing, then the sequence f1(X1), f2(X2), . . . is also

WOD. In particular, the truncated sequence X (t)
1 ,X (t)

2 , . . . is WOD.

THEOREM 5.1. Let X1,X2, . . . ,Xn be a sequence of zero mean WOD r.v.’s. Let
Sn = ∑n

i=1 Xi be the sum and Bn = ∑n
i=1 EX2

i be the sum of variances. Then for d > 0
and x > 0 we have

P(Sn > x) � P

(
max
1�i�n

Xi > d

)
+g(n)exp

(
x
d
− x

d
ln

(
1+

xd
Bn

))
(5.6)

and

P(|Sn| > x) � P

(
max
1�i�n

|Xi| > d

)
+2g(n)exp

(
x
d
− x

d
ln

(
1+

xd
Bn

))
. (5.7)



444 I. FAZEKAS, S. PECSORA AND B. PORVÁZSNYIK

Proof. It is a simple consequence of Theorem 2.1 and inequality (5.3). We re-
mark that (5.7) is a special case of Lemma 2.2 in [27], where no detailed proof was
presented. �

Now we turn to Hoeffding’s inequality for WOD sequences.

THEOREM 5.2. Let X1,X2, . . . ,Xn be a WOD sequence of r.v.’s. Let Sn = ∑n
i=1 Xi

be the sum. Let the random variables be bounded, i.e. ai � Xi � bi for i = 1,2, . . . ,n,
where ai and bi are real numbers. Let ε > 0 . Then we have

P(Sn−ESn � ε) � g(n)exp

(
− 2ε2

∑n
i=1(bi−ai)2

)
, (5.8)

P(|Sn−ESn| � ε) � 2g(n)exp

(
− 2ε2

∑n
i=1(bi −ai)2

)
. (5.9)

Let Mk,l the maximum defined by (2.10). Assume that (5.1) and (5.2) are satisfied with
g(n) = C. Then for any 0 < δ < 1 there exists a C1 = C1(δ ) such that

P
(
Mk,l � ε

)
� 2CC1 exp

(
− 2ε2(1− δ )

∑l
i=k(bi−ai)2

)
(5.10)

for any 1 � k � l � n.

Proof. It is a simple consequence of Theorem 2.2, Corollary 2.1 and inequality
(5.3). �

Now we turn to the Rosenthal inequality for WOD sequences.

THEOREM 5.3. Let X1,X2, . . . ,Xn be a WOD sequence of zero mean r.v.’s, let Sn =
∑n

i=1 Xi be their sum and Bn = ∑n
i=1 EX2

i . Then, for p > 0 we have

E|Sn|p � C1E max
1�i�n

|Xi|p +C2g(n)Bp/2
n , (5.11)

where C1 and C2 are absolute constants.

Proof. It is a simple consequence of Remark 3.1 and inequality (5.3). �
The following complete convergence theorem is a version of Corollary 3.2 of [27].

THEOREM 5.4. Let X1,X2, . . . be a WOD sequence of r.v.’s, let Sn = ∑n
i=1 Xi be

their partial sum. Let 0 < p < 2 and let α be a positive number. Assume that g(.) is
regularly varying with exponent r , where 0 < r < α(2− p) . Assume that X1,X2, . . . is
weakly mean dominated by the r.v. X for which E|X |pg(|X |1/α) < ∞ . If 0 < p < 1 ,
then assume α p > 1 . If 1 � p < 2 , then assume α p � 1 and EXi = 0 for all i . Then
we have

∞

∑
n=1

nα p−2
P(|Sn| > εnα) < ∞.

Proof. It is a simple consequence of Theorems 4.1 and 5.1. �
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