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THE DUAL ORLICZ–BRUNN–MINKOWSKI

INEQUALITY FOR CONCAVE FUNCTIONS
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(Communicated by J. Pečarić)

Abstract. In this paper, we define the Orlicz radial sum and dual Orlicz mixed quermassinte-
gral for concave functions, and then establish the dual Orlicz-Brunn-Minkowski inequality for
concave functions.

1. Introduction

Convex geometry analysis has made great achievement in Orlicz space (see, e.g.,
[4, 7–9, 13, 16, 25, 26, 29, 30, 32, 33, 36]). It is worth mentioning that the (dual)
Orlicz-Brunn-Minkowski theory is an extenuation of the (dual) Brunn-Minkowski the-
ory (see, e.g., [1–3, 5, 10, 11, 14, 15, 17, 21–24, 27, 31, 34, 35]). Recently, Zhu,
Zhou and Xu [32] defined an Orlicz radial sum for convex functions for star bodies,
and established the dual Orlicz-Brunn-Minkowski inequality for convex functions for
star bodies. Let φ : (0,+∞) → (0,+∞) be a convex and strictly decreasing function
such that limt→∞ φ(t) = 0, limt→0 φ(t) = ∞ , and φ(0) = ∞ . Let K and L be two star
bodies about the origin in R

n . The Orlicz radial sum K+̃φ L of two star bodies K and
L is defined by

ρK+̃φ L(u) = sup
{
t > 0 : φ

(ρK(u)
t

)
+ φ

(ρL(u)
t

)
� φ(1)

}
, ∀u ∈ Sn−1. (1.1)

The case φ(t) = t−p(p � 1) of the Orlicz radial sum is the Lp harmonic radial sum
which was defined by Lutwak [20].

Zhu, Zhou and Xu [32] established the dual Orlicz-Brunn-Minkowski inequality
for convex functions.

THEOREM A. ([32]) If K and L are two star bodies about the origin in R
n , then

φ(1) � φ
(( V (K)

V (K+̃φ L)

) 1
n
)+ φ

(( V (L)
V (K+̃φ L)

) 1
n
)
, (1.2)
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with equality if and only if K and L are dilates.

In [18], Ludwig introduced two families of general affine surface areas. One fam-
ily of general affine surface areas is for concave functions, while the other is for convex
functions. Inspired by Ludwig’s work, in this paper, we will define an Orlicz radial sum
for concave functions. Let ψ : [0,+∞) → [0,+∞) be a concave and strictly increasing
function such that ψ(0) = 0 and limt→∞ ψ(t) = ∞ . Let K and L be two star bodies
about the origin in R

n . The Orlicz radial sum K+̃ψL of two star bodies K and L is
defined by

ρK+̃ψL(u) = inf
{
t > 0 : ψ

(ρK(u)
t

)
+ ψ

(ρL(u)
t

)
� ψ(1)

}
, u ∈ Sn−1. (1.3)

Let V + be the set of concave and strictly increasing functions ψ : [0,+∞) →
[0,+∞) such that ψ(0) = 0 and limt→∞ ψ(t) = ∞ . We will establish the following
dual Orlicz-Brunn-Minkowski inequality for concave functions.

THEOREM 1.1. Let K and L be two star bodies about the origin in R
n . If ψ ∈

V + , then

ψ(1) � ψ
(( V (K)

V (K+̃ψL)

) 1
n
)

+ ψ
(( V (L)

V (K+̃ψL)

) 1
n
)
, (1.4)

with equality if and only if K and L are dilates.

2. Notation and background material

The unit ball and its surface in R
n are denoted by B and Sn−1 , respectively. We

write V (K) for the volume of a compact set K in R
n . Let GL(n) denote the general

linear group of degree n . For A ∈ GL(n) write At for the transpose of A and A−t for
the inverse of the transpose of A . The absolute value of the determinant of A is denoted
by |A| .

We say a sequence {ψi} ⊂ V + is such that ψi → ψ0 ∈ V + , provided

|ψi −ψ0|I := max
s∈I

|ψi(s)−ψ0(s)| → 0,

for every compact interval I ∈ [0,∞) .
The radial function ρK(u) : Sn−1 → [0,∞) of a compact star-shaped about the ori-

gin K ∈ R
n is defined, for u ∈ Sn−1 , by

ρK(u) = max{λ � 0 : λu ∈ K}.
If ρK(·) is positive and continuous, then K is called a star body about the origin.

The set of star bodies about the origin in R
n is denoted by S n

0 . Obviously, for K,L ∈
S n

0 ,
K ⊆ L ⇔ ρK(u) � ρL(u), for all u ∈ Sn−1. (2.1)

If
ρK(u)
ρL(u)

is independent of u ∈ Sn−1 , then we say star bodies K and L are dilates. If

s > 0, we have
ρsK(u) = sρK(u), for all u ∈ Sn−1. (2.2)
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More generally, for A ∈ GL(n) , we have

ρAK(u) = ρK(A−1u), for all u ∈ Sn−1. (2.3)

For K ∈ S n
0 , defined the real numbers RK and rK by

RK = max
u∈Sn−1

ρK(u) and rK = min
u∈Sn−1

ρK(u).

Note that 0 < rK � RK < ∞ , for all K ∈ S n
0 .

A sequence {Ki} of star bodies is said to be convergent to K if

δ̃ (Ki,K) → 0, as i → ∞,

where δ̃ (Ki,K) = max
u∈Sn−1

|ρKi(u)−ρK(u)| .
Therefore, a sequence of star bodies Ki converges to K if and only if the sequence

of radial function ρ(Ki, ·) converges uniformly to ρ(K, ·) on Sn−1 .
For p �= 0. If K,L ∈ S n

0 and a,b � 0 (not both 0), the Lp radial sum a ·K+̃pb ·L
is defined by [6]

ρ p
a·K+̃pb·L(u) = aρ p

K(u)+bρ p
L(u), ∀u ∈ Sn−1. (2.4)

Let K,L ∈ S n
0 and 0 � i < n−1, the dual Lp mixed quermassintegral W̃p,i(K,L)

is defined by [28]

W̃p,i(K,L) =
p

n− i
lim

ε→0+

W̃i(K+̃pε ·L)−W̃i(K)
ε

.

The dual Lp mixed quermassintegral W̃p,i(K,L) has the following integral repre-
sentation [28]

W̃p,i(K,L) =
1
n

∫
Sn−1

ρn−i−p
K (u)ρ p

L (u)dS(u). (2.5)

By using the Hölder inequality, we can obtain the dual Lp Minkowski inequality
[28] . Let K,L ∈ S n

0 and 0 � i < n−1. If 0 < p < n− i , then

W̃p,i(K,L) � W̃i(K)
n−i−p

n W̃i(L)
p
n , (2.6)

with equality if and only if K and L are dilates.
By using the Minkowski’s integral inequality, we can obtain the dual Lp Brunn-

Minkowski inequality. Let K,L ∈ S n
0 , 0 � i < n− 1 and a,b � 0. If 0 < p < n− i ,

then
W̃i(a ·K+̃pb ·L)

p
n−i � aW̃i(K)

p
n−i +bW̃i(L)

p
n−i , (2.7)

with equality if and only if K and L are dilates.
The cases p = 1 of the dual Lp Minkowski inequality and the dual Lp Brunn-

Minkowski inequality were established by Lutwak [19].
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Suppose that μ is a probability measure on a space X and g : X → I ⊂ R is a
μ -intergrable function, where I is a possibly infinite interval. Jessen’s inequality states
that if ψ : X → I ⊂ R is a concave function, then

∫
X

ψ(g(x))dμ(x) � ψ(
∫

X
g(x)dμ(x)). (2.8)

If ψ is strictly concave, equality holds if and only if g(x) is a constant for μ -almost
all x ∈ X , (see [12]).

3. Orlicz radial sum for concave functions

DEFINITION 3.1. Let K,L ∈ S n
0 . For a,b � 0 and ψ ∈ V + , define the Orlicz

radial sum a ·K+̃ψb ·L of K and L by

ρa·K+̃ψ b·L(u) = inf
{
t > 0 : aψ

(ρK(u)
t

)
+bψ

(ρL(u)
t

)
� ψ(1)

}
, u ∈ Sn−1. (3.1)

REMARK 3.1. The case ψ(t) = t p (0 < p � 1) of the Orlicz radial sum reduces
to Lp radial sum.

By the assumption that ψ is strictly increasing and concave, the function

t → aψ
(ρK

t

)
+bψ

(ρL

t

)

is strictly decreasing and continuous on [0,∞) . Thus, we have

LEMMA 3.1. Let K,L ∈ S n
0 and u ∈ Sn−1 . If ψ ∈ V + , then

aψ
(ρK(u)

t

)
+bψ

(ρL(u)
t

)
= ψ(1)

if and only if

ρa·K+̃ψb·L(u) = t.

If K,L ∈ S n
0 , let R = max{RK,RL} and r = min{rK ,rL} . For a,b � 0, let c =

a+b . Since ψ is continuous and strictly increasing on [0,∞) , hence the inverse ψ−1

is also continuous and increasing on [0,∞) .

LEMMA 3.2. Let K,L ∈ S n
0 . If ψ ∈ V + , then

r

ψ−1(ψ(1)
c )

� ρa·K+̃ψb·L(u) � R

ψ−1(ψ(1)
c )

.

Proof. Suppose u ∈ Sn−1 and let ρa·K+̃ψb·L(u) = t . By Lemma 3.1 and the fact
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that ψ is strictly increasing on [0,∞) , one can obtain that

ψ(1) = aψ
(ρK(u)

t

)
+bψ

(ρL(u)
t

)

� aψ
(rK(u)

t

)
+bψ

(rL(u)
t

)

� aψ
(r

t

)
+bψ

(r
t

)

= cψ
(r

t

)
.

Since the inverse ψ−1 of ψ is strictly increasing on [0,∞) , we have

t � r

ψ−1(ψ(1)
c )

.

On the other hand, from Lemma 3.1, together with the concavity and the strictly
increasing on [0,∞) of ψ , one can obtain that

ψ(1)
a+b

=
a

a+b
ψ

(ρK(u)
t

)
+

b
a+b

ψ
(ρL(u)

t

)

� a
a+b

ψ
(RK

t

)
+

b
a+b

ψ
(RL

t

)

� ψ
( a

a+bRK + b
a+bRL

t

)

� ψ
(R

t

)
.

Thus we obtain

t � R

ψ−1(ψ(1)
c )

. �

By using the same method in [32], we can prove the following Lemmas.

LEMMA 3.3. Let K,L ∈ S n
0 and a,b � 0 . If ψ ∈ V + , then for A ∈ GL(n) ,

A(a ·K+̃ψb ·L) = a ·AK+̃ψb ·AL.
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Proof. For u ∈ Sn−1 , by (3.1) and (2.3)

ρa·AK+̃ψb·AL(u) = inf
{
t > 0 : aψ

(
ρAK(u)

t

)
+bψ

(
ρAL(u)

t

)
� ψ(1)

}

= inf
{
t > 0 : aψ

(
ρK(A−1u)

t

)
+bψ

(
ρL(A−1u)

t

)
� ψ(1)

}

= ρa·K+̃ψ b·L(A
−1u)

= ρA(a·K+̃ψb·L)(u). �

LEMMA 3.4. Let K,L ∈ S n
0 and a,b � 0 (not both 0). If ψ ∈ V + , then a ·

K+̃ψb ·L ∈ S n
0 .

Proof. Let u ∈ Sn−1 , for any subsequence {ui} ⊂ Sn−1 such that ui → u0 as i →
∞ , we need to show

ρa·K+̃ψ b·L(ui) → ρa·K+̃ψb·L(u0), as i → ∞.

Let ρa·K+̃ψb·L(ui) = ti . By Lemma 3.2, we have

r

ψ−1(ψ(1)
c )

� ti � R

ψ−1(ψ(1)
c )

.

Since K,L ∈S n
0 , it follows that 0 < rK � RK < ∞ , 0 < rL � RL < ∞ . Thus, there

exist λ ,μ such that 0 < λ � ti � μ < ∞ , for all i . To show that the bounded sequence
{ti} converges to ρa·K+̃ψb·L(u0) , we show that every convergent subsequence of {ti}
converges to ρa·K+̃ψ b·L(u0) . Denote an arbitrary convergent subsequence of {ti} by

{ti} as well, and suppose that for this subsequence ti → t0.
It is clear that λ � t0 � μ . From Lemma 3.1 and note the fact ρa·K+̃ψb·L(ui) = ti ,

we have

ψ
(ρK(ui)

ti

)
+bψ

(ρL(ui)
ti

)
= ψ(1).

From the continuities of these functions ψ , ρK , ρL and the fact ti → t0 , we have

ψ
(ρK(u0)

t0

)
+bψ

(ρL(u0)
t0

)
= ψ(1).

By Lemma 3.1, it follows that ρa·K+̃ψb·L(u0) = t0. This means

ρa·K+̃ψb·L(ui) → ρa·K+̃ψb·L(u0).

Therefore, the continuity of ρa·K+̃ψb·L is proved and a ·K+̃ψb ·L ∈ S n
0 . �
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LEMMA 3.5. Let ψ ∈ V + . If Ki,Li ∈ S n
0 and Ki → K ∈ S n

0 , Li → L ∈ S n
0 , as

i → ∞ , then
a ·Ki+̃ψb ·Li → a ·K+̃ψb ·L, as i → ∞

for all a and b.

Proof. We will show that, for u ∈ Sn−1 ,

ρa·Ki+̃ψ b·Li
(u) → ρa·K+̃ψb·L(u), as i → ∞. (3.2)

Let ρa·Ki+̃ψ b·Li
(u) = ti . We set Ri = max{RKi ,RLi} and ri = max{rKi ,rLi} . Then

Lemma 3.2 gives
ri

ψ−1(ψ(1)
c )

� ti � Ri

ψ−1(ψ(1)
c )

.

Since Ki → K ∈ S n
0 and Li → L ∈ S n

0 , it follows that RKi → RK < ∞ , RLi →
RL < ∞ and rKi → rK > 0, rLi → rL > 0. For the functions R = max{RK ,RL} and
r = min{rK ,rL} are continuous, we have Ri → R < ∞ and ri → r > 0. Thus, there
exist λ ,μ such that

0 < λ � μ < ∞, for all i. (3.3)

To show that the bounded sequence {ti} converges to ρa·K+̃ψb·L(u) , we need to

show that every convergent subsequence of {ti} converges to ρa·K+̃ψb·L(u) . Denote
an arbitrary convergent subsequence of {ti} by {ti} as well, and suppose that for this
subsequence we have ti → t0.

It is clear that λ < t0 < μ . We set K̃i = t−1
i Ki and L̃i = t−1

i Li . Since Ki → K0 ,
Li → L0 and ti → t0 , it follows that K̃i → K0 and L̃i → L0 . From Lemma 3.3 and the
fact ρa·Ki+̃ψb·Li

(u) = ti , we have ρa·K̃i+̃ψb·L̃i
(u) = 1. That is

aϕ(ρK̃i
(u))+bϕ(ρL̃i

(u)) = ϕ(1), for all i.

Since K̃i → K0 and L̃i → L0 , together with the continuity of ϕ , and (2.2), it
follows that

aϕ
(ρK(u)

t0

)
+bϕ

(ρL(u)
t0

)
= ϕ(1).

By Lemma 3.1, we have
t0 = ρa·K+̃ψ b·L(u).

This means
ρa·Ki+̃ψ b·Li

(u) → ρa·K+̃ψ b·L(u).

The pointwise convergence (3.2) has been proved.
Next, we will show that the convergence (3.2) is uniform for any u ∈ Sn−1 . As-

sume that ρa·Ki+̃ψb·Li
does not converge uniformly to ρa·K+̃ψb·L . Then, there exists a

δ0 > 0 such that, for i � N0 ∈ N ,

|ρa·Ki+̃ψb·Li
(ui)−ρa·K+̃ψ b·L(ui)| � δ0. (3.4)



494 L. LIU

Since Sn−1 is compact, for some u0 ∈ Sn−1 , there exists a subsequence {ui} ⊂ Sn−1

such that ui → u0 ∈ Sn−1 as i → ∞ .
From Lemma 3.2, there exist an N0 ∈ N and positive λ ,μ such that (3.3) holds

for i � N0 . Then, there exists a positive s0 such that

ρa·Ki+̃ψ b·Li
(ui) → s0.

By (3.4), we have
|s0 −ρa·K+̃ψ b·L(u0)| � δ0.

This implies
s0 �= ρa·K+̃ψb·L(u0). (3.5)

Let si = ρa·Ki+̃ψb·Li
(ui) . By Lemma 3.1, it follows that

aϕ
(ρKi(ui)

si

)
+bϕ

(ρLi(ui)
si

)
= ϕ(1).

Applying with the facts that Ki → K,Li → L and si → s0 , we have

aϕ
(ρK(u0)

s0

)
+bϕ

(ρL(u0)
s0

)
= ϕ(1).

By Lemma 3.1 again, we have

s0 = ρa·K+̃ψb·L(u0).

This contradicts to (3.5). Therefore,

ρa·Ki+̃ψb·Li
→ ρa·K+̃ψb·L

uniformly on Sn−1 and hence

a ·Ki+̃ψb ·Li → a ·K+̃ψb ·L. �

LEMMA 3.6. Let ψ ∈ V + . If ai → a,bi → b, as i → ∞ , then

ai ·K+̃ψbi ·L → a ·K+̃ψb ·L, as i → ∞

for all K,L ∈ S n
0 .

Proof. For u ∈ Sn−1 and K,L ∈ S n
0 , we will show that

ρai·K+̃ψbi·L(u) → ρa·K+̃ψ b·L(u), as i → ∞. (3.6)

Let ρai·K+̃ψbi·L(u) = ti. By Lemma 3.2, one can obtain that

r

ψ−1(ψ(1)
2Ci

)
� ti � R

ψ−1(ψ(1)
ci

)
.



THE DUAL ORLICZ-BRUNN-MINKOWSKI INEQUALITY FOR CONCAVE FUNCTIONS 495

Since ai → a,bi → b and the facts that the functions Ci = max{ai,bi} and ci = ai +bi

are continuous, we have Ci → C and ci → c . Note that the inverse ϕ−1 of ϕ is also
continuous and decreasing in (0,∞) , there exist λ ,μ such that 0 < λ � ti � μ < ∞ , for
all i . To show that the bounded sequence {ti} converges to ρa·K+̃ψb·L(u) , we show that

every convergent subsequence of {ti} converges to ρa·K+̃ψb·L(u) . Denote an arbitrary

convergent subsequence of {ti} by {ti} as well, and suppose that for this subsequence
we have ti → t0.

It is clear that 0 < λ � t0 � μ . By Lemma 3.1 and the fact ρai·K+̃ψbi·L(u) = ti , we
have

aiϕ
(ρK(u)

ti

)
+biϕ

(ρL(u)
ti

)
= ϕ(1).

Applying with the facts that ai → a,bi → b , ti → t0 and the continuity of ψ , one can
obtain that

aϕ
(ρK(u)

t0

)
+bϕ

(ρL(u)
t0

)
= ϕ(1).

By Lemma 3.1, we have
t0 = ρa·K+̃ψ b·L(u).

This means
ρai·K+̃ψbi·L(u) → ρa·K+̃ψb·L(u).

The pointwise convergence (3.6) has been proved.
Next, we will show that the convergence (3.6) is uniform for any u ∈ Sn−1 . As-

sume that ρai·K+̃ψbi·L does not converge uniformly to ρa·K+̃ψ b·L . Then, there exists a
δ0 > 0 such that, for i � N0 ∈ N ,

|ρai·K+̃ψ bi·L(ui)−ρa·K+̃ψb·L(ui)| � δ0. (3.7)

Since Sn−1 is compact, for u0 ∈ Sn−1 , there exists a subsequence {ui} ⊂ Sn−1 such
that ui → u0 ∈ Sn−1 as i → ∞ .

From Lemma 3.2, there exist an N0 ∈ N and positive λ ,μ such that, for i � N0 ,

0 < λ � ρai·K+̃ψbi·L(ui) � μ < ∞.

Then, there exists a positive s0 such that, for i � N0 ,

ρai·K+̃ψbi·L(ui) → s0.

By (3.7), it follows that
|s0 −ρa·K+̃ψ b·L(u0)| � δ0.

This implies
s0 �= ρa·K+̃ψb·L(u0). (3.8)

Let si = ρai·K+̃ψbi·L(ui) . From Lemma 3.1, we have

aiϕ
(ρK(ui)

si

)
+biϕ

(ρL(ui)
si

)
= ϕ(1).
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Applying with the facts that ai → a,bi → b and si → s0 , one can obtain that

aϕ
(ρK(u0)

s0

)
+bϕ

(ρL(u0)
s0

)
= ϕ(1).

By Lemma 3.1 again, we have

s0 = ρa·K+̃ψb·L(u0).

This contradicts to (3.8). Therefore,

ρai·K+̃ψ bi·L → ρa·K+̃ψ b·L

uniformly on Sn−1 and hence

ai ·K+̃ψbi ·L → a ·K+̃ψb ·L. �

We will show that the Orlicz radial sum is monotone with respect to set inclusion.

LEMMA 3.7. Let L1,L2 ∈ S n
0 and ψ ∈ V + . If L1 ⊆ L2 , then

K+̃ψL1 ⊆ K+̃ψL2,

for all K ∈ S n
0 .

Proof. For ∀u ∈ Sn−1 , let ρK+̃ψL1
(u) = t1 and ρK+̃ψL2

(u) = t2 . By Lemma 3.1,
we have

ψ
(ρK(u)

t1

)
+ ψ

(ρL1(u)
t1

)
= ψ(1), (3.9)

and

ψ
(ρK(u)

t2

)
+ ψ

(ρL2(u)
t2

)
= ψ(1). (3.10)

We assume t1 > t2 . Since ψ is strictly increasing on [0,∞) , it follows that

ψ
(ρK(u)

t1

)
< ψ

(ρK(u)
t2

)
. (3.11)

By (3.9), (3.10) and (3.11), we have

ψ
(ρL1(u)

t1

)
> ψ

(ρL2(u)
t2

)
.

Since ψ is strictly increasing on [0,∞) , it follows that

ρL1(u)
t1

>
ρL2(u)

t2
.

Thus,
ρL1(u)
ρL2(u)

>
t1
t2

> 1,

and it means that L1 ⊃ L2 . However, this is a contradiction with the condition. �

We will show that the Orlicz radial sum for concave functions is closely related
with the raidal sum.
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LEMMA 3.8. Let K,L ∈ S n
0 . For 0 < λ < 1 , if ψ ∈ V + , then

(1−λ ) ·K+̃ψλ ·L ⊆ (1−λ )K+̃λL. (3.12)

If ψ is strictly concave, equality holds if and only if K and L are dilates.

Proof. Let Kλ = (1−λ ) ·K+̃ψ λ ·L . By Lemma 3.1 and concavity of ψ , we have

ψ(1) = (1−λ )ψ
(

ρK(u)
ρKλ (u)

)
+ λ ψ

(
ρL(u)

ρKλ (u)

)

� ψ
((1−λ )ρK(u)+ λ ρL(u)

ρKλ (u)

)

= ψ
(ρ(1−λ )K+̃λL(u)

ρKλ (u)

)
.

Since ψ is strictly increasing on [0,∞) , then, for ∀u ∈ Sn−1 we have

ρKλ (u) � ρ(1−λ )K+̃λL(u).

Thus,
Kλ ⊆ (1−λ )K+̃λL.

From the equality condition in Jensen’s inequality (2.7), if ψ is strictly convex, then
equation holds in (3.12) if and only if K and L are dilates. �

4. Dual Orlicz mixed volume for concave functions

DEFINITION 4.1. Let K,L∈S n
0 and ψ ∈V + , for 0 � i < n−1 and 0 < p < n−

i , the dual Orlicz mixed quermassintegral W̃ψ,i(K,L) for concave functions is defined
by

W̃ψ,i(K,L) =
1
n

∫
Sn−1

ψ
( ρL(u)

ρK(u)

)
ρn−i

K (u)dS(u). (4.1)

REMARK 4.1. The case ψ(t) = t p (0 < p � 1) of the dual Orlicz mixed quer-
massintegral W̃ψ,i(K,L) is the dual Lp mixed quermassintegral W̃p,i(K,L) .

We denote the left derivative of a real-valued function f by f ′− . For ψ ∈ V + ,
there is ψ ′−(1) > 0 because ψ is concave and strictly increasing.

LEMMA 4.1. Let K,L ∈ S n
0 and ψ ∈ V + . Then

lim
ε→0+

ρK+̃ψ ε·L(u)−ρK(u)

ε
=

ρK(u)
ψ ′−(1)

ψ
( ρL(u)

ρK(u)

)
, (4.2)

uniformly for all u ∈ Sn−1 .

Proof. Suppose ε > 0, K,L ∈ S n
0 , and u ∈ Sn−1 . Let

tε = ρK+̃ψ ε·L(u).
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Then, by Lemma 3.6, we have

tε → ρK(u) as ε → 0. (4.3)

By Lemma 3.1, we have

ψ
(ρK(u)

tε

)
+ εψ

(ρL(u)
tε

)
= ψ(1).

Then
ρK(u)

tε
= ψ−1

(
ψ(1)− εψ

(ρL(u)
tε

))
.

Let

s = ψ−1
(

ψ(1)− εψ
(ρL(u)

tε

))
. (4.4)

Since the inverse ψ−1 of ψ is strictly increasing on [0,∞) , we have that s → 1− as
ε → 0+ . Thus

tε −ρK(u)
tε

= 1− ρK(u)
tε

= 1− s. (4.5)

Combining (4.3), (4.5) and (4.4), we obtain

lim
ε→0+

ρK+̃ψ ε·L(u)−ρK(u)

ε
= lim

ε→0+

tε
ε
· tε −ρK(u)

tε

= lim
ε→0+

tε ·ψ
(ρL(u)

tε

)
·

tε−ρK(u)
tε

ψ(1)− (ψ(1)− εψ(ρL(u)
tε

))

= ρK(u) ·ψ
( ρL(u)

ρK(u)

)
· lim
s→1−

1− s
ψ(1)−ψ(s)

=
ρK(u)
ψ ′−(1)

ψ
( ρL(u)

ρK(u)

)
.

(4.6)

Then the pointwise limit (4.2) has been proved.
Moreover, the convergence is uniform for any u ∈ Sn−1 . Indeed, by (4.4) and

(4.6), it suffices to recall that by Lemma 3.6,

lim
ε→0+

ρK+̃ψ ε·L(u) = ρK(u), (4.7)

uniformly for u ∈ Sn−1 . �

We are ready to derive the variational formula of volume for the Orlicz radial sum.



THE DUAL ORLICZ-BRUNN-MINKOWSKI INEQUALITY FOR CONCAVE FUNCTIONS 499

THEOREM 4.1. Let K,L ∈ S n
0 , 0 � i < n−1 and ψ ∈ V + . Then

lim
ε→0+

W̃i(K+̃ψε ·L)−W̃i(K)
ε

=
n− i

nψ ′−(1)

∫
Sn−1

ψ
( ρL(u)

ρK(u)

)
ρn−i

K (u)dS(u).

Proof. Suppose ε > 0, K,L ∈ S n
0 , and u ∈ Sn−1 . By Lemma 4.1 and (4.3), it

follows that

lim
ε→0+

ρn−i
K+̃ψ ε·L(u)−ρn−i

K (u)

ε
= (n− i)ρn−i−1

K+̃ψ ε·L(u)|ε=0 · lim
ε→0+

ρK+̃ψ ε·L(u)−ρK(u)

ε

=
(n− i)ρn−i

K (u)
ψ ′−(1)

ψ
( ρL(u)

ρK(u)

)
,

uniformly on Sn−1 .
Hence

lim
ε→0+

W̃i(K+̃ψε ·L)−W̃i(K)
ε

= lim
ε→0+

(1
n

∫
Sn−1

ρn−i
K+̃ψ ε·L(u)−ρn−i

K (u)

ε
dS(u)

)

=
1
n

∫
Sn−1

lim
ε→0+

ρn−i
K+̃ψ ε·L(u)−ρn−i

K (u)

ε
dS(u)

=
n− i

nψ ′−(1)

∫
Sn−1

ψ
( ρL(u)

ρK(u)

)
ρn−i

K (u)dS(u).

We complete the proof of Theorem 4.1. �

From the definition (4.1) and the variational formula of volume in Theorem 4.1,
we have

n− i
ψ ′−(1)

W̃ψ,i(K,L) = lim
ε→0+

W̃i(K+̃ψε ·L)−W̃i(K)
ε

. (4.8)

An immediate consequence of Lemma 3.3 and (4.8) is the invariance of the dual
Orlicz mixed quermassintegral under simultaneous orthogonal transforms.

COROLLARY 4.1. Let K,L ∈ S n
0 , 0 � i < n− 1 and ψ ∈ V + . Then for A ∈

O(n) ,

W̃ψ,i(AK,AL) = W̃ψ,i(K,L).
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Proof. From Lemma 3.3 and (4.8), we have, for A ∈ O(n) ,

W̃ψ,i(AK,AL) =
ψ ′−(1)
n− i

lim
ε→0+

W̃i(AK+̃ψε ·AL)−W̃i(AK)
ε

=
ψ ′−(1)
n− i

lim
ε→0+

W̃i(A(K+̃ψε ·L))−W̃i(K)
ε

=
ψ ′−(1)
n− i

lim
ε→0+

W̃i(K+̃ψε ·L)−W̃i(K)
ε

= W̃ψ,i(K,L). �

5. Dual Orlicz-Brunn-Minkowski inequality for concave functions

For K ∈ S n
0 , since

1
n

∫
Sn−1

ρn−i
K (u)dS(u) = W̃i(K), (5.1)

the measure
ρn−i

K (·)dS(·)
nW̃i(K)

is a probability measure on Sn−1 .

THEOREM 5.1. Let K,L ∈ S n
0 , 0 � i < n−1 and ψ ∈ V + . Then

W̃ψ,i(K,L) � W̃i(K)ψ
(( W̃i(L)

W̃i(K)

) 1
n−i

)
, (5.2)

with equality if and only if K and L are dilates.

Proof. By (4.1), (2.7), (2.5) and the fact that ψ is concave and increasing on
[0,∞) , we obtain

W̃ψ,i(K,L)

W̃i(K)
=

1

nW̃i(K)

∫
Sn−1

ψ
( ρL(u)

ρK(u)

)
ρn−i

K (u)dS(u)

� ψ
( 1

nW̃i(K)

∫
Sn−1

ρL(u)
ρK(u)

ρn−i
K (u)dS(u)

)

= ψ
(W̃i(K,L)

W̃i(K)

)

� ψ
(W̃i(K)

n−i−1
n−i W̃i(L)

1
n−i

W̃i(K)

)

= ψ
(( W̃i(L)

W̃i(K)

) 1
n−i

)
.
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This gives the desired inequality. Since ψ is strictly increasing, from the equality
conditions of the dual Minkowski inequality (2.5), we have that the equality in (5.2)
holds if and only if K and L are dilates.

Conversely, when L = λK , by (4.1), we have

W̃ψ,i(K,L) = W̃i(K)ψ(λ ) = W̃i(K)ψ
(( W̃i(L)

W̃i(K)

) 1
n−i

)
. �

The following uniqueness is a direct consequence of Theorem 5.1.

COROLLARY 5.1. Suppose ψ ∈ V + , 0 � i < n− 1 and M ⊂ S n
0 such that

K,L ∈ M . If
W̃ψ,i(M,K) = W̃ψ,i(M,L), for all M ∈ M , (5.3)

or
W̃ψ,i(K,M)

W̃i(K)
=

W̃ψ,i(L,M)

W̃i(L)
, for all M ∈ M , (5.4)

then K = L.

Proof. Suppose (5.3) holds. If we take K for M , then from (4.1), we obtain

ψ(1)W̃i(K) = W̃ψ,i(K,K) = W̃ψ,i(K,L).

Hence, from the dual Orlicz-Minkowski inequality (5.2), we have

ψ(1) � ψ
(( W̃i(L)

W̃i(K)

) 1
n
)
,

with equality if and only if K and L are dilates. Since ψ is strictly increasing on [0,∞) ,
we have

W̃i(L) � W̃i(K),

with equality if and only if K and L are dilates. If we take L for M , we similarly
have W̃i(L) � W̃i(K ). Hence, W̃i(K) = W̃i(L) and from the equality conditions we can
conclude that K and L are dilates. However, since they have the same volume they
must be equal.

Next, suppose (5.4) holds. If we take K for M , then from (4.1), we obtain

ψ(1) =
W̃ψ,i(K,K)

W̃i(K)
=

W̃ψ,i(L,K)

W̃i(L)
.

Then, from the dual Orlicz-Minkowski inequality (5.2), we have

ψ(1) � ψ
((W̃i(K)

W̃i(L)

) 1
n−i

)
,
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with equality if and only if K and L are dilates. Since ψ is strictly increasing on [0,∞) ,
we have

W̃i(K) � W̃i(L),

with equality if and only if K and L are dilates. If we take L for M , we similarly
have W̃i(K) � W̃i(L) . Hence, W̃i(K) = W̃i(L) and from the equality conditions we can
conclude that K and L are dilates. However, since they have the same volume they
must be equal. �

We define the dual Orlicz mixed surface area S̃ψ,i(K) of K ∈ S n
0 is defined by

S̃ψ,i(K) = lim
ε→0+

W̃i(K+̃ψ ε ·B)−W̃i(K)
ε

. (5.5)

An immediate consequence of Theorem 5.1 is the following dual Orlicz isoperi-
metric inequality.

THEOREM 5.2. Let K ∈ S n
0 , 0 � i < n− 1 and ψ ∈ V + . If W̃i(K) = W̃i(B) ,

then
S̃ψ,i(K) � S̃ψ,i(B),

with equality if and only if K is a ball (centered at the origin).

Proof. By (5.5), (4.8), (5.2) and W̃i(K) = W̃i(B) , it follows that

S̃ψ,i(K) =
n− i

ψ ′−(1)
W̃ψ,i(K,B) � n− i

ψ ′−(1)
W̃i(K)ψ

(( W̃i(B)
W̃i(K)

) 1
n−i

)

=
n− i

ψ ′−(1)
ψ(1)W̃i(B) = S̃ψ,i(B),

and equality holds if and only if K is a ball (centered at the origin). �

Taking i = 0 in Theorem 5.2, one can obtain

COROLLARY 5.2. Let K ∈ S n
0 and ψ ∈ V + . If V (K) = V (B) , then

S̃ψ(K) � S̃ψ(B),

with equality if and only if K is a ball (centered at the origin).

From the dual Orlicz-Minkowski inequality, we will prove the following dual
Orlicz-Brunn-Minkowski inequality which is more general than Theorem 1.1.

THEOREM 5.3. Let K,L ∈ S n
0 , 0 � i < n−1 and a,b > 0 . If ψ ∈ V + , then

ψ(1) � aψ
(( W̃i(K)

W̃i(a ·K+̃ψb ·L)

) 1
n−i

)
+bψ

(( W̃i(L)
W̃i(a ·K+̃ψb ·L)

) 1
n−i

)
, (5.6)
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with equality if and only if K and L are dilates.

Proof. Let Kψ = a ·K+̃ψb ·L . From (2.4), Lemma 3.1 and (5.2), it follows that

ψ(1) =
1

nW̃i(Kψ )

∫
Sn−1

ψ(1)ρn−i
Kψ

(u)dS(u)

=
1

nW̃i(Kψ )

∫
Sn−1

[
aψ

( ρK(u)
ρKψ (u)

)
+bψ

( ρL(u)
ρKψ (u)

)]
ρn−i

Kψ
(u)dS(u)

=
a

nW̃i(Kψ )

∫
Sn−1

ψ
( ρK(u)

ρKψ (u)

)
ρn−i

Kψ
(u)dS(u)

+
b

nW̃i(Kψ )

∫
Sn−1

ψ
( ρL(u)

ρKψ (u)

)
ρn−i

Kψ
(u)dS(u)

=
a

W̃i(Kψ)
W̃ψ,i(Kψ ,K)+

b

W̃i(Kψ )
W̃ψ,i(Kψ ,L)

� aψ
(( W̃i(K)

W̃i(Kψ )

) 1
n−i

)
+bψ

(( W̃i(L)
W̃i(Kψ )

) 1
n−i

)

From the equality conditions of the dual Orlicz-Minkowski inequality (5.2), we have
that equality in (5.6) holds if and only if K and L are dilates. �

REMARK 5.1. The case i = 0 of Theorem 5.3 was established by Gardner, Hug,
Weil and Ye [3].

COROLLARY 5.3. Let K,L ∈ S n
0 , 0 � i < n−1 and 0 < λ < 1 . If ψ ∈ V + and

W̃i(K) = W̃i(L) , then
W̃i((1−λ ) ·K+̃ψλ ·L) � W̃i(K),

with equality if and only if K = L.

Proof. By Lemma 3.8, (2.6) and W̃i(K) = W̃i(L) , we have

W̃i((1−λ ) ·K+̃ψλ ·L)
1

n−i � W̃i((1−λ ) ·K+̃λ ·L)
1

n−i

� (1−λ )W̃i(K)
1

n−i + λW̃i(L)
1

n−i

= W̃i(K)
1

n−i .

The equality condition can be obtained from equality condition of the dual Brunn-
Minkowski inequality (2.6). �

Indeed, we also can prove the dual Orlicz-Minkowski inequality by the dual Orlicz-
Brunn-Minkowski inequality.
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Proof. For ε � 0, let Kε = K+̃ψ ε ·L . From Lemma 3.6, we have

Kε → K, as ε → 0+. (5.7)

By the dual Orlicz-Brunn-Minkowski inequality, the following function

G(ε) = ψ
(( W̃i(K)

W̃i(Kε )

) 1
n−i

)
+ εψ

(( W̃i(L)
W̃i(Kε)

) 1
n
)
−ψ(1) (5.8)

is non-negative. Obviously, G(0) = 0. Thus

lim
ε→0+

G(ε)−G(0)
ε

� 0. (5.9)

On the other hand, by (5.8) and (5.7), we have

lim
ε→0+

G(ε)−G(0)
ε

= lim
ε→0+

ψ(( W̃i(K)
W̃i(Kε )

)
1

n−i )+ εψ
((

W̃i(L)
W̃i(Kε )

) 1
n−i

)
−ψ(1)

ε

= lim
ε→0+

ψ(( W̃i(K)
W̃i(Kε )

)
1

n−i )−ψ(1)

ε
+ ψ

(( W̃i(L)
W̃i(K)

) 1
n−i

)

= lim
ε→0+

ψ(( W̃i(K)
W̃i(Kε )

)
1

n−i )−ψ(1)

( W̃i(K)
W̃i(Kε )

)
1

n−i −1
· lim

ε→0+

( W̃i(K)
W̃i(Kε )

)
1

n−i −1

ε

+ψ
((

W̃i(L)
W̃i(K)

) 1
n−i

)
.

(5.10)

Let s =
( W̃i(K)

W̃i(Kε )

) 1
n−i

and note that s → 1− as ε → 0+ . Consequently,

lim
ε→0+

ψ(( W̃i(K)
W̃i(Kε )

)
1

n−i )−ψ(1)

( W̃i(K)
W̃i(Kε )

)
1

n−i −1
= lim

s→1−
ψ(s)−ψ(1)

s−1
= ψ ′

−(1). (5.11)

By (5.7) and (4.8), we have

lim
ε→0+

(( W̃i(K)
W̃i(Kε )

)
1

n−i −1)

ε
= − lim

ε→0+

W̃i(Kε)
1

n−i −W̃i(K)
1

n−i

ε
· lim

ε→0+
W̃i(Kε )−

1
n−i

= −1
n
W̃i(K)

1
n−i−1 · lim

ε→0+

W̃i(Kε )−W̃i(K)
ε

·W̃i(K)−
1

n−i

= − 1
ψ ′−(1)

W̃ψ,i(K,L)

W̃i(K)
.

(5.12)
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From (5.10), (5.11) and (5.12), it follows that

lim
ε→0+

G(ε)−G(0)
ε

= −W̃ψ,i(K,L)

W̃i(K)
+ ψ

(( W̃i(L)
W̃i(K)

) 1
n−i

)
(5.13)

Combing (5.9) and (5.13), we have

−W̃ψ,i(K,L)

W̃i(K)
+ ψ

(( W̃i(L)
W̃i(K)

) 1
n−i

)
� 0. (5.14)

Therefore, the equality holds in (5.14) if and only if G(ε) = G(0) = 0, this implies that
K and L are dilates. �

Acknowledgement. We are grateful to the referee for the suggested improvement.
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[27] E. LUTWAK, G. ZHANG, Blaschke-Santaló inequalities, J. Differential Geom. 47 (1997), 1–16.
[28] W. D. WANG, Inequalities for dual quermassintegrals of the radial p th Lp mean bodies, J. Inequal.

Appl. 252 (2014).
[29] D. XI, H. JIN, G. LENG, The Orlicz-Brunn-Minkowski inequality, Adv. Math. 260 (2014), 350–374.
[30] G. XIONG, D. ZOU, Orlicz mixed quermassintegrals, Sci. China Math. 57 (2014), 2549–2562.
[31] G. ZHANG, The affine Sobolev inequality, J. Differential Geom. 53 (1999), 183–202.
[32] B. ZHU, J. ZHOU, W. XU, Dual Orlicz-Brunn-Minkowski theory, Adv. Math. 264 (2014), 700–725.
[33] G. ZHU, The Orlicz centroid inequality for star bodies, Adv. Appl. Math. 48 (2012), 432–445.
[34] G. ZHU, The logarithmic Minkowski problem for polytopes, Adv. Math. 262 (2014), 909–931.
[35] G. ZHU, The centro-affine Minkowski problem for polytopes, J. Differential Geom. 101 (2015), 159–

174.
[36] D. ZOU, G. XIONG, Orlicz-John ellipsoids, Adv. Math. 265 (2014), 132–168.

(Received March 31, 2016) Lijuan Liu
School of Mathematics and Computational Science

Hunan University of Science and Technology
Xiangtan, 411201, P. R. China

e-mail: lijuanliu@hnust.edu.cn

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


