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ON WEIGHTED HARDY INEQUALITIES

FOR NON–INCREASING SEQUENCES

PENG GAO

(Communicated by M. Mursaleen)

Abstract. A result of Bennett and Grosse-Erdmann characterizes the weights for which the cor-
responding weighted Hardy inequality holds on the cone of non-negative, non-increasing se-
quences and a bound for the best constant is given. In this paper, we improve the bound for
1 < p � 2 .

1. Introduction

Throughout this paper, we let p � 1. For p �= 1 we let q be defined by 1
p + 1

q = 1
and we set 1/q = 0 when p = 1. Consider the following weighted Hardy inequality on
the cone of non-negative, non-increasing sequences x = (xn)n�1 :

∞

∑
n=1

bn

(
n

∑
k=1

xk

n

)p

� Up

∞

∑
n=1

bnx
p
n , (1.1)

where (bn)n�1 is a non-negative sequence, Up > 0 a constant independent of x . In
[2, Theorem 1], Bennett and Grosse-Erdmann gave a complete characterization on the
sequence (bn)n�1 such that Up exists. They showed that this is the case if and only if
there exists a constant U ′

p > 0 such that for all n � 1,

∞

∑
k=n

bk

kp �
U ′

p

np

n

∑
k=1

bk.

Moreover, if the constants Up,U ′
p are chosen best possible, then

U ′
p � Up � pp(U ′

p +1)p. (1.2)

Integral inequalities analogous to (1.1) for non-increasing functions have been
studied by Ariño and Muckenhoupt in [1]. They showed that if p � 1 and v is a
non-negative measurable function on (0,∞) then there is a constant Vp > 0 such that

∫ ∞

0
v(x)

(
1
x

∫ x

0
f (t)dt

)p

dx � Vp

∫ ∞

0
v(x) f p(x)dx
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holds for all non-negative non-increasing functions f (x) if and only if there is a con-
stant V ′

p > 0 such that for all x > 0,

∫ ∞

x

v(t)
t p dt �

V ′
p

xp

∫ x

0
v(t)dt.

The argument of Bennett and Grosse-Erdmann also works for the integral case and it
implies that [2, (17)] if the constants Vp,V ′

p are chosen best possible, then

V ′
p � Vp � (V ′

p +1)p.

Comparing the above two results, we see that in the discrete case, the correspond-
ing bounds for the best constants are not as good as what is given in the integral case.
It is then natural to seek for an improvement on the bounds given in (1.2), which is the
goal of this paper. Our result in this paper is the following generalization of the above
mentioned result of Bennett and Grosse-Erdmann:

THEOREM 1.1. Let p � 1 be fixed. Let (bn)n�1 be a non-negative sequence and
let (λn)n�1 be a non-negative, non-increasing sequence with λ1 > 0 . Let Λn = ∑n

k=1 λk .
Then there is a constant Up > 0 such that

∞

∑
n=1

bn

(
n

∑
k=1

λkxk

Λn

)p

� Up

∞

∑
n=1

bnx
p
n (1.3)

holds for all non-negative, non-increasing sequences (xn)n�1 if and only if there is a
constant U ′

p > 0 such that for all n � 1 ,

∞

∑
k=n

bk

Λp
k

�
U ′

p

Λp
n

n

∑
k=1

bk. (1.4)

Moreover, if Up and U ′
p are chosen best-possible then we have

U ′
p � Up �

{(
pU ′

p +1
)p

, 1 � p � 2;

pp(U ′
p +1)p, p > 2.

(1.5)

The case λn = 1 of Theorem 1.1 gives back the result of Bennett and Grosse-
Erdmann except that instead of (1.5), the upper bound given for Up in [2, Theorem
1] is given as in (1.2) for all p � 1. Theorem 1.1 therefore improves upon the result
of Bennett and Grosse-Erdmann for 1 < p � 2 in this sense. We point out here that
this improvement comes from our refinement (see Lemma 2.5) on the so called “Power
Rule” (Lemma 2.1 below), a key lemma used in the proof of [2, Theorem 1] by Bennett
and Grosse-Erdmann.
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2. Lemmas

LEMMA 2.1. ([2, Lemma 3]) Let p � 1 . Then for all non-negative sequences
(ak)k�1 , any integer n � 1 ,

(
n

∑
k=1

ak

)p

� p
n

∑
k=1

ak

(
k

∑
i=1

ai

)p−1

.

LEMMA 2.2. ([2, Lemma 2]) Let (un)n�1,(vn)n�1 be two non-negative sequences
satisfying for any integer n � 1 ,

n

∑
i=1

ui �
n

∑
i=1

vi,

then for all non-negative, non-increasing sequences (an)n�1 ,

n

∑
i=1

uiai �
n

∑
i=1

viai.

LEMMA 2.3. ([3, Lemma 3.1]) Let (Bn)n�1 and (Cn)n�1 be strictly increasing
positive sequences with B1/B2 � C1/C2 . If for any integer n � 1 ,

Bn+1−Bn

Bn+2−Bn+1
� Cn+1−Cn

Cn+2−Cn+1
.

Then Bn/Bn+1 � Cn/Cn+1 for any integer n � 1 .

LEMMA 2.4. Let 1 � p � 2 and let n � 1 be a fixed integer. Let λ = (λk)1�k�n be
a non-negative, non-increasing sequence with λ1 > 0 . For 1 � k � n, let Λk = ∑k

i=1 λi

and

Ck,p,λ =
Λp

k

∑k
i=1 λiΛp−1

i

.

Then the sequence (Ck,p,λ )1�k�n is increasing with respect to k .

Proof. The assertion holds trivially when p = 1, so we may assume p > 1. We
may assume n � 2 and λk > 0 for all 1 � k � n . We extend the sequence λ to be
indexed by all positive integers by defining λi = λn/i for i � n+1. We define similarly
Λk,Ck,p,λ for k > n . It therefore suffices to show that Ck,p,λ � Ck+1,p,λ for all k �
1. Applying Lemma 2.3 with Bk = Λp

k , Ck = ∑k
i=1 λiΛp−1

i , ones checks directly that
B1/B2 � C1/C2 . Thus, it remains to show for that all k � 1,

Λp
k+1 −Λp

k

λk+1Λp−1
k+1

�
Λp

k+2 −Λp
k+1

λk+2Λp−1
k+2

.
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When we regard λk+2 as a variable with 0 � λk+2 � λk+1 , then it is easy to see that the
right-hand side expression above is a decreasing function of λk+2 and hence it suffices
to show that the above inequality holds with λk+2 = λk+1 . In this case, on setting
λk+1 = x,Λk = y with y � x , we can recast the above inequality as

x− (x+ y)p(2x+ y)1−p + yp(x+ y)1−p � 0.

We further set z = x/y to recast the above inequality as

z− (1+ z)p(1+2z)1−p +(1+ z)1−p � 0.

Upon dividing 1+ z on both sides of the above inequality and setting t = z/(1+ z) , we
see that it suffices to show for 0 � t � 1/2,

g(t) := t− (1+ t)1−p +(1− t)p � 0.

It’s easy to see that g(0)= g′(0) = 0 and g′′(t)= p(p−1)((1−t)p−2−(1+t)−p−1) � 0
when 1 < p � 2. This implies that g(t) is an increasing function of 0 � t � 1/2 which
completes the proof. �

LEMMA 2.5. Let p � 1 , λ = (λk)k�1 a non-negative, non-increasing sequence
with λ1 > 0 . Then for all non-negative, non-increasing sequences (ak)k�1 , any integer
n � 1 , (

n

∑
k=1

λkak

)p

� Cn,p,λ

n

∑
k=1

λkak

(
k

∑
i=1

λiai

)p−1

, (2.1)

where Cn,p,λ is defined as in Lemma 2.4 when 1 � p � 2 and Cn,p,λ = p when p > 2 .
Moreover, when 1 � p � 2 , the constant Cn,p,λ is best possible and equality in (2.1)
holds when 1 < p � 2 if and only if a1 = a2 = . . . = an .

Proof. As inequality (2.1) follows from Lemma 2.1 when p > 2 and the assertion
of the lemma follows trivially for p = 1, we only need to consider the case 1 < p � 2.
We define

fn(x1,x2, . . . ,xn) =

(
n

∑
k=1

λkxk

)p

−Cn,p,λ

n

∑
k=1

λkxk

(
k

∑
i=1

λixi

)p−1

.

By homogeneity, it suffices to show fn � 0 on the compact set {(x1, . . . ,xn)|1 � x1 �
x2 � . . . � xn � 0} . We may assume λk > 0 for all k here as discarding the zero terms
and relabeling will not change the expression.

As f1 = 0 holds trivially, we may assume n � 2 here. Assume the maximum of
fn is attained at some x0 = ((x0)1 ,(x0)2 , . . . ,(x0)n) with (x0)1 � (x0)2 � . . . � (x0)n .
If (x0)m+1 = 0 for some 1 � m < n , then as Cm,p,λ � Cn,p,λ by Lemma 2.4, it is easy
to see that we are reduced to the consideration of fm � 0. Thus, we may further assume
(x0)n > 0 here.
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Suppose (x0)m > (x0)m+1 > 0 for some 1 � m < n . In this case we must have
∂ fn/∂xm(x0) � 0 since ∂ fn/∂xm(x0) < 0 means decreasing the value of (x0)m will in-
crease the value of fn , a contradiction. Similar argument implies that ∂ fn/∂xm+1(x0)�
0. Therefore, we conclude that we have

0 � 1
λm

∂ fn
∂xm

(x0)− 1
λm+1

∂ fn
∂xm+1

(x0)

= Cn,p,λ

⎛
⎝
(

m+1

∑
i=1

λi (x0)i

)p−1

−
(

m

∑
i=1

λi (x0)i

)p−1

−(p−1)λm (x0)m

(
m

∑
i=1

λi (x0)i

)p−2
⎞
⎠ .

If p = 2, this would imply λm+1 (x0)m+1 � λm (x0)m , a contradiction. If 1 < p < 2, by
the Mean Value Theorem, we have(

m+1

∑
i=1

λi (x0)i

)p−1

−
(

m

∑
i=1

λi (x0)i

)p−1

=(p−1)λm+1 (x0)m+1 ξ p−2 < (p−1)λm (x0)m

(
m

∑
i=1

λi (x0)i

)p−2

,

as ∑m
i=1 λi (x0)i < ξ < ∑m+1

i=1 λi (x0)i . This again leads to a contradiction. Thus we must
have (x0)1 = (x0)2 = . . . = (x0)n , which implies that fn(x0) = 0 and the assertion of
the lemma follows for 1 < p � 2. �

In what follows we make two remarks about Lemma 2.5. Throughout our remarks,
we let 1 � p � 2, λk = 1 for all k with the function fn being defined as in the proof of
Lemma 2.5 and Cn,p,λ being defined as in Lemma 2.4.

REMARK 1. For any given x=(x1,x2, . . .,xn) , we let x′=(x1,x2, . . .,xi+1,xi, . . . ,xn)
by permuting two adjacent coordinates xi,xi+1 of x for some 1 � i < n , then we have

fn(x)− fn(x′) = −Cn,p,λ
(
xi(a+ xi)p−1 + xi+1(a+ xi + xi+1)p−1

−xi+1(a+ xi+1)p−1− xi(a+ xi + xi+1)p−1) ,
where we set (with empty sum being 0) a = ∑i−1

k=1 xk .
It is easy to check that the function Sr(x,y) = (xr − yr)/(x− y) is an increasing

(respectively, decreasing) function of 0 < y < x for fixed x when r � 1 (respectively,
0 < r � 1). Apply this with r = p− 1, x = a + xi + xi+1 , y = a + xi , y′ = a + xi+1 ,
we see immediately that fn(x) � fn(x′) when xi+1 � xi � 0 and 1 < p � 2 or when
xi � xi+1 � 0 and p � 2.

It follows that when p = 2 and λk = 1 for all k , the maximum of fn on all
non-negative sequences is the same as the maximum of fn on all non-negative, non-
increasing sequences. Thus, when p = 2,λk = 1 for all k , the assertion of Lemma 2.5
holds for all non-negative sequences.
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REMARK 2. Note that when p > 2, n � 2,

∂ fn
∂xn

((1,1, . . . ,1)) = np−2(np−Cn,p,λ (n+ p−1)
)

< 0, (2.2)

where the last inequality is equivalent to

n

∑
k=1

kp−1 <
np−1

p
(n+ p−1), n � 2,

which in turn can be easily established by induction.
Inequality (2.2) implies that in this case 0 = fn ((1,1, . . . ,1))< fn ((1,1, . . . ,1− ε))

for some ε > 0 small enough and this shows that inequality (2.1) does not hold for all
non-negative, non-increasing sequences when p > 2.

3. Proof of Theorem 1.1

We now proceed to the proof of Theorem 1.1. Our approach here follows that
of Bennett and Grosse-Erdmann in their proof of [2, Theorem 1]. By considering the
sequences (1, . . . ,1, 0,0, . . .) , we see first that (1.4) is a necessary condition for the
validity of inequality (1.3) and that U ′

p � Up . Conversely, assume that condition (1.4)
holds. Note first that it follows from Lemma 2.1 and 2.5 that Cn,p,λ � p where Cn,p,λ
is defined as in Lemma 2.5. Further note that for any integer n � 1,

n

∑
k=1

λkΛp−1
k

∞

∑
i=k

Ci,p,λ
bi

Λp
i

�
n

∑
k=1

λkΛp−1
k

n

∑
i=k

Ci,p,λ
bi

Λp
i

+
n

∑
k=1

λkΛp−1
k

∞

∑
i=n

Ci,p,λ
bi

Λp
i

(3.1)

�
n

∑
i=1

Ci,p,λ
bi

Λp
i

i

∑
k=1

λkΛp−1
k + p

n

∑
k=1

λkΛp−1
k

∞

∑
i=n

bi

Λp
i

�
n

∑
i=1

Ci,p,λ
bi

Λp
i

i

∑
k=1

λkΛp−1
k + pU ′

p
1

Λp
n

n

∑
k=1

λkΛp−1
k

n

∑
i=1

bi

� U ′′
p

n

∑
i=1

bi,

where U ′′
p = pU ′

p + 1, 1 � p � 2, U ′′
p = pU ′

p + p , p > 2 and we have used (1.4) in

the third inequality above and the bound ∑n
k=1 λkΛp−1

k � ∑n
k=1 λkΛp−1

n = Λp
n in the last

inequality above.
Now by Lemma 2.5, we have, for any non-negative, non-increasing sequences

(xn)n�1 ,

∞

∑
n=1

bn

(
n

∑
k=1

λkxk

Λn

)p

�
∞

∑
n=1

Cn,p,λ
bn

Λp
n

n

∑
k=1

λkxk

(
k

∑
i=1

λixi

)p−1

=
∞

∑
k=1

λkxk

(
∞

∑
n=k

Cn,p,λ
bn

Λp
n

)(
k

∑
i=1

λixi

)p−1
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=
∞

∑
k=1

(
λkΛp−1

k

∞

∑
n=k

Cn,p,λ
bn

Λp
n

)
xk

(
k

∑
i=1

λixi

Λk

)p−1

� U ′′
p

∞

∑
k=1

bkxk

(
k

∑
i=1

λixi

Λk

)p−1

= U ′′
p

∞

∑
k=1

b1/p
k xkb

1/q
k

(
k

∑
i=1

λixi

Λk

)p−1

,

where the second inequality above follows from Lemma 2.2 and (3.1), the sequence⎛
⎝xk

(
k

∑
i=1

λixi

Λk

)p−1
⎞
⎠

k�1

being non-negative, non-increasing.
By Hölder’s inequality, we then have

∞

∑
n=1

bn

(
n

∑
k=1

λkxk

Λn

)p

� U ′′
p

(
∞

∑
n=1

bnx
p
n

)1/p( ∞

∑
k=1

bk

(
k

∑
i=1

λixi

Λk

)p)1/q

,

which implies (1.3) with Up being replaced by U ′′
p

p and this completes the proof of
Theorem 1.1. �
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