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ON APPROXIMATION PROPERTIES OF SOME CLASS

POSITIVE LINEAR OPERATORS IN q–ANALYSIS

ERSIN ŞIMŞEK AND TUNCAY TUNÇ

(Communicated by H. M. Srivastava)

Abstract. This paper is concerned with some sequences of the positive linear operators based
on q -Calculus. The approximation properties and the rate of convergence of these sequences
of q -discrete type is established by means of the modulus of continuity. Moreover we give
Voronovskaya-type theorems. Finally we present some applications such as q -Bernstein opera-
tors and q -Meyer-König and Zeller operators.

1. Introduction

First, let us provide some background information regarding what we know about
q -calculus formulae, the study of which was initiated by Euler in the eighteenth century.
Following this, many remarkable results in the field were obtained in the nineteenth
century. In 1908, F. H. Jackson [9] introduced q -functions. He was also the first to
develop q -calculus in a systematic way. Below, we present the outlines of q -integers,
q -factorials, q -binomial coefficients, and q -differentiations. The definitions used in
this study are based on terminology and notations as is seen in [3], [21] and [18].

The required theorems and definitions in q -Calculus are as outlined below, where
q > 0. For n ∈ N , the q -analogue of the integer n , called q -integer, is defined by

[n]q :=
qn−1
q−1

, q �= 1; [n]1 := n.

Also [0]q := 0. Similarly, the q -analogue of the factorial of n is defined by

[n]q! := [n]q[n−1]q · · · [1]q, n = 1,2,3, · · · ; [0]q! := 1

Now, let us obtain the q -analogue of the Gauss binomial formula. The q -analogues of
(a+b)n are given by

(a⊕b)nq :=
n−1

∏
s=0

(a+qsb); (a⊕b)0q := 1.

Mathematics subject classification (2010): 05A30, 41A25, 41A36, 47B38.
Keywords and phrases: q -calculus, generating functions, positive linear operators, rate of conver-

gence.
This study was supported by the Research Fund of Mersin University in Turkey with Project Number: 2017-1-TP3-

2180.

c© � � , Zagreb
Paper JMI-12-42

559

http://dx.doi.org/10.7153/jmi-2018-12-42
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By simple calculations, it follows that

(a⊕b)nq :=
n

∑
k=0

[
n
k

]
q
qk(k−1)/2bkan−k,

where [
n
k

]
q
:=

[n]q!
[k]q![n− k]q!

, 0 � k � n

is the q -binomial formula. All the concepts defined above, become their classical cases
if q tends to 1.

The q -derivative of a function f , denoted by Dq f is given by

(Dq f ) (x) =
f (qx)− f (x)

(q−1)x
, x �= 0

and (Dq f )(0) = f ′(0) provided f ′(0) exists. If f is differentiable at a point x �= 0, we
have

lim
q→1

(Dq f ) (x) = f ′ (x) .

Let us define the q -partial derivatives of a function f (x,y) of two variables. The
q -partial derivative of f (x,y) with respect to x is defined by

∂q f (x,y)
∂qx

=
f (qx,y)− f (x,y)

(q−1)x
, x �= 0.

Likewise, the q -partial derivative of f (x;y) with respect to y can be defined.
The first q -analogue of positive linear operators (actually, Bernstein polynomials)

was adapted by A. Lupas [6] in 1987. In 1997, G. M. Phillips [11] proposed another
q -version of Bernstein polynomials. For interesting properties of q -Bernstein polyno-
mials and their distinct variants refer to [24], [5], [22] and, [12]. In addition to the
information from the studies we have just referenced, there are a great number of math-
ematicians who constructed and investigated the q -analogues of positive linear opera-
tors of the discrete type, which are very important to approximation theory: Some of
these are q -Baskakov operators [4], [25], q -Meyer-König-Zeller operators [19], [23]
and q -Bleimann-Butzer-Hahn operators [1], [15], and [14].

The first general positive linear operators of the discrete type were constructed by
V. A. Baskakov [20] in 1957. In 1966, F. Schurer [10] investigated some approximation
properties of these operators. Our first encounter with a study on q -analogues of the
operators based on generating functions was in C. Radu’s paper [7] in 2009 and then in
[8].

Recently the statistical approximation properties have also been investigated for
q -analogue of several operators. In [29] the authors constructed a new family of op-
erators with the help of q -analogue of Chan-Chyan-Srivastava polynomials, and they
studied the statistical approximation properties via A-statistical convergence. In [31], a
Korovkin type theorem based upon the statistical summability involving the idea of the
generalized de la Vallee Poussin mean of positive linear operators in the space C2π(R)
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have been investigated. In [27] the authors extended the notions of statistical summabil-
ity and statistical convergence by the help of some weighted regular methods and they
established some important approximation theorems related to statistically weighted
B -summability which effectively extend and improve all of the existing results de-
pending on the choice of sequence of infinite matrices. In [26], the authors introduced
a new Λ2 -weighted statistical convergence. Based upon this definition, they proved
some Korovkin type theorems. In the paper [30], a Kantorovich type generalization
of q -Bernstein-Stancu operators was introduced and studied their convergence proper-
ties. It was introduced a family of q -Szász-Mirakjan-Kantorovich type positive linear
operators that are generated by Dunkl’s generalization of the exponential function [28].

In this paper, we present a few approximation theorems concerning with generat-
ing functions for constructing q -analogues of some discrete type positive linear opera-
tors (e.g., q -Lupas, q -Bernstein, q -Meyer-König and Zeller and q -Bleimann-Butzer-
Hahn operators etc.). Finally, through the use of specific generating functions, we are
able to provide some relevant exemplary applications of general operators.

2. Construction of operators

For f ∈C(I) ( I = [0,1] or [0,∞)), q > 0 and each positive integer n , the authors
introduced the following operators on C(I) , in [8]:

Ln,q ( f ;x) =
∞

∑
k=0

1
[k]q!

∂ k
q ϕn,q (x,u)

∂quk

∣∣∣∣∣
u=0

f

(
[k]q

αn,k,q

)
, (1)

where αn,k,q are positive numbers and
{

ϕn,q (x,u)
}

generating real functions defined
on I× [0,∞) , have the following conditions:

(i) ϕn,q (x,0) �= 0 and ϕn,q (x,1) = 1 for all n ∈ N and x ∈ I .

(ii)
∂ k
q ϕn,q(x,u)

∂quk

∣∣∣∣
u=0

exist and are continuous functions of x for all k ∈ N0 and

n ∈ N .
(iii) For all k ∈ N0 , x,u � 0,

∂ k
q ϕn,q (x,u)

∂quk � 0, n ∈ N.

It is clear that the operators are linear and positive in view of (iii) on the space of
bounded functions on I , B(I) .

The test functions er,i are given by

er,i (t) =
(

t
1+(1− i)t

)r

, r ∈ N0, i = 0,1,2.

The functions of er,0 are used as test functions for q -Butzer-Bleimann-Hahn operators,
the functions er,1 are used as test functions for q -Bernstein, q -Szasz-Mirakyan, q -
Lupas and q -Baskakov operators and the functions of er,2 for q -Meyer-König and
Zeller operators.
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In continuation of the relation for the numbers αn,k,q indicated in (1), we assume
the following:

er,i

(
[k]q

αn,k,q

)
=

[k]rq
αr

n,q
, r ∈ N0,

where αn,q are positive numbers independent of k .

THEOREM 1. ([8]) If the sequence
{

ϕn,q (x,u)
}

satisfies the conditions (i)–(iii)
for all r ∈ N0 and n ∈ N , then the following relation is true:

Ln,q (er,i;x) =
1

αr
n,q

r

∑
m=0

q(m
2)Sq (r,m)

∂m
q ϕn,q (x,u)

∂qum

∣∣∣∣
u=1

, (2)

Sq(r,m) appeared in are the q -Stirling numbers of the second kind for detail, see
[13].

COROLLARY 1. By virtue of equality (2), we have

Ln,q (e0,i;x) = 1;

Ln,q (e1,i;x) =
1

αn,q

∂qϕn,q (x,u)
∂qu

∣∣∣∣
u=1

;

Ln,q (e2,i;x) =
1

α2
n,q

{
q

∂ 2
q ϕn,q (x,u)

∂qu2 +
∂qϕn,q (x,u)

∂qu

}∣∣∣∣∣
u=1

.

3. Korovkin type theorem

In this section we will give the theorems on uniform convergence of operators (1).
Let ω be a modulus of continuity, that is

(1) ω is a non-negative increasing function on [0,∞) .
(2) ω(δ1 + δ2) � ω(δ1)+ ω(δ2) .
(3) lim

δ→0
ω(δ ) = 0.

Let IA = [0,A], A > 0, and I∞ = [0,∞) . Let us denote by Hi
ω (IA) the space of

continuous functions f on IA and satisfying the following condition:

| f (t)− f (x)| � ω (|e1,i(t)− e1,i(x)|) (3)

for all x, t ∈ IA .
Let (qn) be a sequence of real numbers in (0,1) such that 1−qn = o( 1

n ) . In the
sequel for j ∈ N0 , n ∈ N , we use notations:

μn,i, j(x,q) := Ln,q((e1,i( ·)− e1,i(x)) j;x), i = 0,1,2.

μ∗
n,i, j(x,q) := Ln,q((e1,i( ·)− e1,i(x)) j

q;x), i = 0,1,2.
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LEMMA 1. If A < 1 , then∣∣Ln,q (er,i;x)− er,i(x)
∣∣� rer−1,i(A)

√
μn,i,2(x,q), r ∈ N0, i = 0,1,2

for all t,x ∈ IA , where e−1,i(A) := 0 . If A > 0 is arbitrary, this inequality holds only
for i = 0,1 .

Proof. For the case r = 0 the assertion is obvious. We assume that r ∈ N . For
t,x ∈ IA with A < 1,

|er,i(t)− er,i(x)| =
∣∣∣∣
(

t
1+(1− i)t

)r

−
(

x
1+(1− i)x

)r∣∣∣∣
=
∣∣∣∣ t
1+(1− i)t

− x
1+(1− i)x

∣∣∣∣
·
∣∣∣∣∣
(

t
1+(1− i)t

)r−1

+ · · ·+
(

x
1+(1− i)x

)r−1
∣∣∣∣∣

� |e1,i(t)− e1,i(x)|

·
∣∣∣∣∣
(

A
1+(1− i)A

)r−1

+ · · ·+
(

A
1+(1− i)A

)r−1
∣∣∣∣∣

= |e1,i(t)− e1,i(x)| rer−1,i(A).

For arbitrary A > 0, by similar arguments, we have same inequality for i = 0,1. By
monotonicity of the operators Ln,q and using the Cauchy-Schwarz inequality, we have∣∣Ln,q (er,i;x)− er,i(x)

∣∣� rer−1,i(A)Ln,q (|e1,i − e1,i(x)| ;x)

� rer−1,i(A)
√

Ln,q

(
(e1,i− e1,i(x))

2 ;x
)
.

for all n ∈ N0 , thus we obtain∣∣Ln,q (er,i;x)− er,i(x)
∣∣� rer−1,i(A)

√
μn,i,2(x,q)

what we wanted to prove. �

COROLLARY 2. If lim
n→∞

μn,i,2(x,qn) = 0 , then

lim
n→∞

Ln,qn (er,i;x) = er,i(x), r = 0,1,2

for all x ∈ IA .

THEOREM 2. If lim
n→∞

μn,i,2(x,qn) = 0 , then

lim
n→∞

Ln,qn ( f ;x) = f (x), x ∈ IA

holds for all f ∈ Hi
ω .
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Proof. For f ∈ Hi
ω , using the property (3) in the definition of the modulus of

continuity ω , we can write | f (t)− f (x)| < ε for |e1,i(t)− e1,i(x)| < δ . Since f is
continuous on IA , for some M > 0 we have | f (t)− f (x)| � 2M , for all x,t ∈ IA . If
|er,i(t)− er,i(x)| � δ then (e1,i(t)− e1,i(x))

2 � δ 2 . Thus for all t,x ∈ IA , we have

| f (t)− f (x)| � ε +
2M
δ 2 (e1,i(t)− e1,i(x))

2 .

Therefore, we obtain∣∣Ln,qn ( f ;x)− f (x)
∣∣� Ln,qn (| f (·)− f (x)| ;x)
� ε +

2M
δ 2 Ln,qn

(
(e1,i(·)− e1,i(x))

2 ;x
)

= ε +
2M
δ 2 μn,i,2(x;qn).

Thus by the condition lim
n→∞

μn,i,2(x,qn) = 0, the proof is completed. �

4. Rate of convergence of Ln,q operators

For f ∈C(IA) and δ > 0, we define the modulus of continuity of f of with step
δ > 0 by

ω( f ;δ ) := sup
t,x∈IA , |t−x|�δ

| f (t)− f (x)|.

For any δ > 0, we have

| f (t)− f (x)| �
(

1+
|t− x|

δ

)
ω( f ,δ ). (4)

THEOREM 3. Let Ln,q be defined by (1).

(i) For i = 0,1,2 and for f ∈ Hi
ω(IA) , we have

∣∣Ln,q ( f ;x)− f (x)
∣∣� (1+

1
δ

√
μn,i,2(x,q)

)
ω (δ ) , δ > 0.

(ii) For i = 1,2 and for f ∈C(IA) , we have

∣∣Ln,q ( f ;x)− f (x)
∣∣� (1+

1
δ

√
μn,i,2(x,q)

)
ω ( f ,δ ) , δ > 0.

Proof. Since Ln,q(e0,i) = 1 (i = 0,1,2) , we can write∣∣Ln,q ( f ;x)− f (x)
∣∣� Ln,q (| f (·)− f (x)| ;x) (5)

for all n ∈ N . Now using (3) in inequality (5) we obtain

| f (t)− f (x)| � ω (|e1,i(t)− e1,i(x)|) �
(

1+
|e1,i(t)− e1,i(x)|

δ

)
ω(δ ), (6)
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for all δ > 0. Applying the Cauchy-Schwartz Inequality it follows from (6) that

∣∣Ln,q ( f ;x)− f (x)
∣∣�
(

1+
1
δ

√
Ln,q

(
(e1,i(·)− e1,i(x))

2;x
))

ω (δ ) .

thus we obtain the statement (i). For the proof (ii) we use the fact that the modulus of
continuity of f ∈C(IA) has the property (3). So that by similar arguments in the proof
of (i) we get (ii). �

As usual, a function f ∈ LipM,iα , (M > 0, i = 0,1,2 and 0 < α � 1) , if the
inequality

| f (t)− f (x)| � M|e1,i(t)− e1,i(x)|α (7)

holds for all t,x ∈ IA . Note that, LipM,1α is usual LipMα .

THEOREM 4. For all f ∈ LipM,iα and x ∈ IA , we have

|Ln,q ( f ;x)− f (x)| � M(μn,i,2(x,q))α/2 .

Proof. Applying Ln,q to the inequality (7), we have∣∣Ln,q ( f ;x)− f (x)
∣∣� Ln,q (| f (·)− f (e1,i(x))| ;x)

� MLn,q
(|e1,i(·)− e1,i (x)|α ;x

)
.

If we consider the Hölder Inequality with p = 2
α , q = 2

2−α we have,

∣∣Ln,q ( f ;x)− f (x)
∣∣� M

(
Ln,q

(
(e1,i(·)− e1,i (x))

2;x
))α/2

� M(μn,i,2(x,q))α/2

thus
|Ln,q ( f ;x)− f (x)| � M(μn,i,2(x,q))α/2 . �

5. A Quantitative Voronovskaya-type theorem

In this section, we obtain a Voronovskaya type estimate of the operators (1) for the
test functions er,i(x) .

THEOREM 5. Let f ∈C2(IA) such that f (er,i(x)) ∈ B(IA) (i = 0,1,2) . Then, we
have∣∣∣∣∣∣Ln,qn ( f (e1,i(t)) ;x)−

2

∑
j=0

(
Dj

qn f
)

(e1,i(x))

[ j]qn !
μ∗

n,i, j(x,qn)

∣∣∣∣∣∣� Fn,i(x)
ω
((

D2
qn

f
)
,δ
)

[2]qn!

for all x ∈ IA with er,i(x) ∈ IA , where

Fn,i(x) = μ∗
n,i,2(x,qn)+

√√√√μn,i,2(x,qn)
2

∑
j=0

(
2
j

)
e j,i(x)(1−qn) jμn,i,4− j(x,qn).



566 E. ŞIMŞEK AND T. TUNÇ

Proof. Let f ∈C2(IA) and x∈ IA with er,i(x)∈ IA be fixed. By q -Taylor’s formula
[17] for s,v ∈ IA , we write

f (s) = f (v)+ (Dqn f ) (v)(s− v)+

(
D2

qn
f
)
(v)

[2]qn!
(s− v)2

qn
+gqn(s;v)

where

gqn(s;v) =

(
D2

qn
f
)
(ξs,v)−

(
D2

qn
f
)
(s)

[2]qn!
(s− v)2

qn

where ξs,v is situated between s and v , therefore, |ξs,v − v| < |s− v| . By taking s =
e1,i(t) and v = e1,i(x) , we have

f (e1,i(t)) = f (e1,i(x))+ (Dqn f ) (e1,i(x))(e1,i(t)− e1,i(x)) (8)

+

(
D2

qn
f
)
(e1,i(x))

[2]qn!
(e1,i(t)− e1,i(x))2

qn
+gqn(e1,i(t);e1,i(x))

Applying the operators (1) to the equality (8), we get

Ln,qn ( f (e1,i(t)) ;x) = f (e1,i(x))+ (Dqn f ) (e1,i(x))Ln,qn ((e1,i(t)− e1,i(x));x)

+

(
D2

qn
f
)
(e1,i(x))

[2]qn!
Ln,qn

(
(e1,i(t)− e1,i(x))2

qn
;x
)

+Ln,qn (gqn(e1,i(t);e1,i(x));x) .

Consequently, we can write

∣∣∣∣∣∣Ln,qn ( f (e1,i(t)) ;x)−
2

∑
j=0

(
Dj

qn f
)

(e1,i(x))

[ j]qn !
μ∗

n,i, j(x,qn)

∣∣∣∣∣∣�
∣∣Ln,qn (gqn(e1,i(t);e1,i(x);x)

∣∣ .
To estimate Ln,qn

(∣∣gqn(e1,i(t);e1,i(x)
∣∣ ;x) , using the properties of modulus of continu-

ity, we have∣∣∣(D2
qn

f
)
(ξe1,i(t),e1,i(x))−

(
D2

qn
f
)
(e1,i(x))

∣∣∣� ω
((

D2
qn

f
)
,
∣∣∣ξe1,i(t),e1,i(x) − e1,i(x)

∣∣∣)
� ω

((
D2

qn
f
)
, |e1,i(t)− e1,i(x)|

)
� ω

((
D2

qn
f
)
,δ
)(

1+
|e1,i(t)− e1,i(x)|

δ

)
,

where δ > 0. Hence, we can write

Ln,qn

(∣∣gqn(e1,i(t);e1,i(x)
∣∣ ;x)

�
ω
((

D2
qn

f
)
,δ
)

[2]qn!

[
μ∗

n,i,2(x,qn)+Ln,qn

(
|e1,i(t)− e1,i(x)|

∣∣∣(e1,i(t)− e1,i(x))
2
qn

∣∣∣ ;x)]
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By the Cauchy-Schwarz inequality, we have

Ln,qn

(
|e1,i(t)− e1,i(x)|

∣∣∣(e1,i(t)− e1,i(x))
2
qn

∣∣∣ ;x)

�
√

Ln,qn ((e1,i(t)− e1,i(x))2;x)

√
Ln,qn

([
(e1,i(t)− e1,i(x))

2
qn

]2
;x

)
,

and using the equality

(e1,i(t)− e1,i(x))
2
qn

= (e1,i(t)− e1,i(x))
2 + e1,i(x)(1−qn)(e1,i(t)− e1,i(x))

and than by simple calculation, the equality[
(e1,i(t)− e1,i(x))

2
qn

]2
= (e1,i(t)− e1,i(x))

4 +2e1,i(x)(1−qn)(e1,i(t)− e1,i(x))
3

+(1−qn)2e2,i(x)(e1,i(t)− e1,i(x))
2

=
2

∑
p=0

(
2
p

)
ep,i(x)(1−qn)p (e1,i(t)− e1,i(x))

4−p .

is obtained. Thus, we have

Ln,qn

(
|e1,i(t)− e1,i(x)|

∣∣∣(e1,i(t)− e1,i(x))
2
qn

∣∣∣ ;x)

�

√√√√μn,i,2(x,qn)
2

∑
j=0

(
2
j

)
e j,i(x)(1−qn) jμn,i,4− j(x,qn)

Consequently, we get∣∣∣∣∣∣Ln,qn ( f (e1,i(t)) ;x)−
2

∑
j=0

(
Dj

qn f
)

(e1,i(x))

[ j]qn !
μ∗

n,i, j(x,qn)

∣∣∣∣∣∣� Fn,i(x)
ω
((

D2
qn

f
)
,δ
)

[2]qn!

where

Fn,i(x) = μ∗
n,i,2(x,qn)+

√√√√μn,i,2(x,qn)
2

∑
j=0

(
2
j

)
e j,i(x)(1−qn) jμn,i,4− j(x,qn). �

6. Examples of Ln,q operators

Firstly, we define the q -analogue of (a+b+ c)n , which we will use to construct
the q -Bernstein operators.

DEFINITION 1. For a,b,c ∈ R , we define

(a�b� c)nq :=
n

∑
k=0

[
n
k

]
q
(a⊕b)n−k

q ck; (a�b� c)0q := 1 (9)
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and

(a�b� c)nq :=
n

∑
k=0

[
n
k

]
q
(a�b)n−k

q ck

where (a�b)nq := (a⊕ (−b))nq .

EXAMPLE 1. (q -Bernstein operators) For n ∈ N and q ∈ (0,1) , we consider the
function

ϕn,q(x,u) := (1� x� xu)nq , x ∈ [0,1]

where

(1� x� xu)nq =
n

∑
k=0

[
n
k

]
q
(1� x)n−k

q (xu)k.

It is easily verified that this sequence has the properties (i-iii). The operators generated
by this sequence of functions have the form

Ln,q ( f ;x) =
∞

∑
k=0

1
[k]q!

∂ k
q ϕn,q (x,u)

∂quk

∣∣∣∣∣
u=0

f

(
[k]q

αn,k,q

)
.

For αn,k,q = [n]q , we have the well-known q -Bernstein operators Bn,q defined by G.
M. Phillips [11]: For f ∈C[0,1] ,

Bn,q( f ;x) =
n

∑
k=0

[
n
k

]
q
xk

n−k−1

∏
s=0

(1−qsx) f

(
[k]q
[n]q

)
.

From Corollary 1 we have

Bn,q (e0,1;x) = 1;

Bn,q (e1,1;x) = x;

Bn,q (e2,1;x) = x2 +
x(1− x)

[n]q
;

μn,1,1(x,q) = 0;

μ∗
n,1,2(x,q) = μn,1,2(x,q) =

x(1− x)
[n]q

.

From Theorem 3 (ii), we have

∣∣Bn,q ( f ;x)− f (x)
∣∣� 3

2
ω

(
f ;

1√
[n]q

)
.

From Theorem 4, we have

|Bn,q ( f ;x)− f (x)| � M

(
1√
[n]q

)α/2

.
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From Theorem 5, we have

lim
n→∞

[n]qn
[Bn,qn ( f ;x)− f (x)] =

x(1− x)
2

f ′′(x).

EXAMPLE 2. (q -Meyer-König and Zeller operators) Let n ∈ N . If we consider
αn,k,q = q−n[k+n]q and

ϕn,q(x,u) :=
(1� x)n+1

q

(1� xu)n+1
q

, x ∈ [0,1), q ∈ [0,1)

in the operators Ln,q as defined by (1), then Ln,q become the q -Meyer-König and Zeller
operators. Mn,q constructed in [16] as follows: For f ∈ B[0,1)

Mn,q ( f ;x) = (1� x)n+1
q

∞

∑
k=0

[
k+n

k

]
q
xk f

(
[k]q

q−n[k+n]q

)
.

From Corollary 1 we have

Mn,q (e0,2;x) = 1;

Mn,q (e1,2;x) =
[n+1]q

[n]q
xqn

(1− xqn+1)
;

Mn,q (e2,2;x) =
[n+1]q[n+2]q

[n]2q

x2q2n+1

(1− xqn+1)(1− xqn+2)
+

[n+1]q
[n]2q

xq2n

(1− xqn+1)
.

From Theorem 3 (ii), we have∣∣Mn,q ( f ;x)− f (x)
∣∣� 2ω ( f ,δ ) .

where
δ = sup

x∈[0,1)

√
μn,2,2(x,q)

From Theorem 4, we have

|Mn,q ( f ;x)− f (x)| � M(μn,2,2(x,q))α/2.

From Theorem 5, we have

lim
n→∞

[n]qn

[
Mn,qn

(
f

(
t

1− t

)
;x

)
− f

(
x

1− x

)]

=
x

1− x
f ′
(

x
1− x

)
+

x

2(1− x)2
f ′′
(

x
1− x

)
.

REMARK 1. By suitable choice of the generating function, one may construct
the q -Durrmeyer type and Kantorovich type of discrete operators which are defined,
for example, in [32], [33], [34], [35] and may investigate their general approximation
properties.
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