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BERRY–ESSEEN TYPE INEQUALITY FOR A POISSON RANDOMLY

INDEXED BRANCHING PROCESS VIA STEIN’S METHOD

ZHENLONG GAO

(Communicated by Z. S. Szewczak)

Abstract. A Berry-Esseen type inequality is proved via Stein’s method for the logarithm of a
Poisson randomly indexed branching process {ZNt } , where {Zn} is a supercritical Galton–
Watson process and {Nt} is a Poisson process which is independent of {Zn} .

1. Introduction

Consider a classical supercritical Galton-Watson process {Zn,n � 0} with off-
spring distribution {pi, i � 0} and an independent Poisson process with parameter
λ > 0. In this paper, we deal with the continuous process {ZNt ,t � 0} which is called
a Poisson randomly indexed branching process (PRIBP). For a PRIBP, we distinguish
between the Shröder case and the Böttcher case depending on whether p0 + p1 > 0 or
p0 + p1 = 0.

The model of PRIBP was introduced by [4] to study the evolution of stock prices
and its statistical investigation was done in [3]. Recently, PRIBP has been brought to
attention in the following three directions.

In applied direction, a formula for the fair price of an European call option was
derived in [12]. Later on, [16] obtained a formula for the fair price of an up-and-out
call option.

On more theoretical side, [14] and [15] considered a critical branching process
subordinated by a general renewal process. They investigated the probability of non-
extinction, the asymptotic behavior of the moments, and also limiting distributions un-
der normalization. Results on subcritical case were done in [13].

For statistical inference, on the one hand, [17] indicated that Rt := ZNt+1Z
−1
Nt

is a
reasonable estimator of the offspring mean m . They consider the supercritical PRIBP
(Shröder case) and obtained the exponential rate of decay for the large deviation prob-
ability P(|Rt −m| � x) under the condition that the offspring distribution has finite
exponential moments. On the other hand, [8] showed that (λ t)−1 logYt is an estimator
of logm and derived the consistency, asymptotic normality, large deviation and moder-
ate deviation of the estimator when the PRIBP belongs to the Böttcher case. The large
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deviations in the Shröder case were given in [5], where the rate function I(x) is defer-
ent from the Böttcher case for small positive x . Similar results for branching process
indexed by a renewal process were done in [6] and [7].

The asymptotic normality for a PRIBP was proved in [8]. Precisely, for any t � 0,
define Yt = ZNt . Then

lim
t→∞

P

(
logYt −λ t logm√

λ t logm
� x

)
= Φ(x), x ∈ R,

where Φ(x) is the distribution function of standard normal law. In this paper, we
consider a Berry-Esseen type inequality for this asymptotic normality based on Stein’s
method.

Throughout the paper, we assume the following condition:
A1: p0 = 0, m ∈ (1,∞), σ2 = E(Z1−m)2 ∈ (0,∞) .

THEOREM 1. Under the condition A1, we have

sup
x∈R

∣∣∣∣P
(

logYt −λ t logm√
λ t logm

� x

)
−Φ(x)

∣∣∣∣� C√
t
, (1)

where C is a positive constant.

The rest of the paper is organized as follows. In Section 2, we prove a Berry-
Esseen inequality for the normalized Poisson process. Section 3 is devoted to the proof
of the main result of the paper. Basic facts on Stein’s method are given in the Appendix.

In the rest of the paper, we denote by C an absolute and positive constant which
may differ from line to line.

2. Berry-Esseen type inequality for a Poisson process

In this section, we establish a Berry-Esseen type inequality for the normalized
Poisson process with parameter λ > 0 based on Stein’s method. The idea comes from
[10].

LEMMA 1. Let {Nt}t�0 be a Poisson process with parameter λ > 0 , we have

sup
x∈R

∣∣∣∣P
(

Nt −λ t√
λ t

� x

)
−Φ(x)

∣∣∣∣� C√
t
. (2)

Proof. For any t � 2, there exists an integer n = n(t) such that n+1 � t < n+2.
For simplicity, let

Ut =
Nn −λn√

λ t
, Vt =

Nt −λ t√
λ t

, Qt = Vt −Ut .
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By (33), we should find a suitable bound of |E( f ′x(Vt)−Vt fx(Vt))| , where the bound is
independent of x ∈ R and fx is the unique bounded solution of Stein’s equation (30).
For simplicity, we write f for fx . By the triangular inequality, we have

|E( f ′(Vt)−Vt f (Vt))| � |E( f ′(Vt)−Ut f (Ut))|
+|E(Ut f (Ut )−Ut f (Vt))|+ |E(Qt f (Vt))|

=: I1 + I2 + I3. (3)

By (31) and Hölder’s inequality, one has

I3 � E|Qt | = E

∣∣∣∣Nt −λ t√
λ t

− Nn −λn√
λ t

∣∣∣∣
� 1√

λ t

(
E |(Nt −λ t)− (Nn−λn)|2

)1/2

=
1√
λ t

(λ (t −n))1/2 � C√
t
. (4)

Using (31) and Hölder’s inequality again, we have

I2 � E|Ut( f (Vt)− f (Ut))| � E|UtQt |
= E

(∣∣∣∣Nn −λn√
λ t

∣∣∣∣
∣∣∣∣Nt −λ t√

λ t
− Nn−λn√

λ t

∣∣∣∣
)

� 1
λ t

(E|Nn −λn|2)1/2
(
E |(Nt −λ t)− (Nn−λn)|2

)1/2

=
1
λ t

·
√

λn ·
√

λ (t−n) � C√
t
. (5)

Again, by the triangular inequality, we have

I1 � |E( f ′(Ut +Qt)− f ′(Ut))|+ |E( f ′(Ut)−Ut f (Ut))| =: I4 + I5. (6)

For i = 1,2, · · · , define Xi = Ni −Ni−1 . It is obvious that {Xi} is an i.i.d. sequence of
Poisson random variables with parameter λ > 0. Let μt be the distribution function of
Ut . Using (30), (33), the triangular inequality and (34), one gets

I5 = |μt(x)−Φ(x)| =
∣∣∣∣∣P
(

Nn −λn√
λn

� x

√
t
n

)
−Φ(x)

∣∣∣∣∣
�
∣∣∣∣∣P
(

Nn−λn√
λn

� x

√
t
n

)
−Φ

(
x

√
t
n

)∣∣∣∣∣+
∣∣∣∣∣Φ
(

x

√
t
n

)
−Φ(x)

∣∣∣∣∣
� C√

t
+

∣∣∣∣∣Φ
(

x

√
t
n

)
−Φ(x)

∣∣∣∣∣ . (7)

Since (1− x)−1/2 = 1+ x/2+o(x) (x → 0) , we have√
t
n

=
(

1− t−n
t

)−1/2

=: 1+Rt,
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where 0 � Rt � C/
√

t . By the mean value theorem and the fact that |xΦ′(x)| � C , we
have ∣∣∣∣∣Φ

(
x

√
t
n

)
−Φ(x)

∣∣∣∣∣= |Φ(x(1+Rt))−Φ(x)| � Rt |xΦ′(x)| � C√
t
. (8)

Applying (32) for u = Ut ,s = Qt and t = 0, we get

I4 � E(|Ut ||Qt |)+E(|Qt|)+P(Ut +Qt � x,Ut � x)
+P(Ut +Qt � x,Ut � x). (9)

As for (4) and (5), we have

E(|Ut ||Qt |)+E(|Qt |) � C/
√

t. (10)

For simplicity, let

Ht =
Nt−t−2 −λ (t− t−2)√

λ t
− Nn −λn√

λ t
, Lt = Qt −Ht .

Consequently,

P(Ut +Qt � x,Ut � x) � P(Ut +Ht � x+ t−1/2,Ut � x)+P(|Lt | � t−1/2)

= I6 +P(|Lt | � t−1/2). (11)

Let δt be the distribution function of Ht . By conditioning and using the independence
between Ut and Ht , we have

I6 =
∫

P(Ut + s � x+ t−1/2,Ut � x)dδt(s)

=
∫

I(s � 1/
√

t)(μt(x+ t−1/2− s)− μt(x))dδt(s). (12)

Note that |Φ′(x)| � 1. Thus, by the triangular inequality, (7) and (8), we obtain

|μt(x+ t−1/2− s)− μt(x)| � |μt(x+ t−1/2− s)−Φ(x+ t−1/2− s)|
+|Φ(x+ t−1/2− s)−Φ(x)|+ |Φ(x)− μt(x)|

� C/
√

t + |s|. (13)

By Hölder’s inequality, we have

E|Ht | =
1√
λ t

E|(Nt−t−2 −λ (t− t−2))− (Nn−λn)|

� 1√
λ t

(
E|(Nt−t−2 −λ (t− t−2))− (Nn−λn)|2)1/2

=
(λ (t− t−2−n))1/2

√
λ t

� C√
t
. (14)
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Furthermore, by Markov’s inequality and Hölder’s inequality, one has

P(|Lt | � t−1/2) �
√

tE|Lt | =
√

tE

∣∣∣∣Nt −λ t√
λ t

− Nt−t−2 −λ (t− t−2)√
λ t

∣∣∣∣
�

√
t

(
E

∣∣∣∣Nt −λ t√
λ t

− Nt−t−2 −λ (t− t−2)√
λ t

∣∣∣∣
2)1/2

= t−1 � C/
√

t. (15)

Thus, (11)–(15) imply

P(Ut +Qt � x,Ut � x) � C/
√

t. (16)

In the same way, we get P(Ut +Qt � x,Ut � x) � C/
√

t. Therefore, (2) follows from
(33), (3)–(16).

3. Proof of the main result

In this section, we use the same method as in Lemma 1 to prove the main result.
For a Galton-Watson process {Zn} , define Wn = Zn/mn . It is well known that there
exists a nonnegative random variable W such that Wn

a.s.−−→ W. Our proof depends on
the following lemma.

LEMMA 2. Under condition A1, one has

sup
n

E| logWn|i < +∞, i = 1,2

and there exists a constant r ∈ (0,1) such that

E| logWn − logW | � Crn.

Proof. Since p0 = 0, W is a positive random variable. Note that for any a > 0,

W−a = Γ(a)−1
∫ ∞

0
e−uWua−1du,

where Γ(a) =
∫ ∞
0 xa−1e−xdx . According to Lemma 10.7 of [1], we have

EW−a = Γ(a)−1
∫ ∞

0
φ(u)ua−1du < ∞

for all a > 0 such that p1ma < 1, where φ(u) = E(e−uW ) . Therefore, using the fact
that, for any positive x , | logx|i � C(x+ x−a) (i = 1,2) , one gets

E| logW |i � C(E(W )+E(W−a)) < ∞, i = 1,2.
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For any nonnegative and convex function f , by Jensen’s inequality, one has

E( f (W )|Fn) � f (E(W |Fn)) = f (Wn) a.s.,

where Fn is the σ− field generated by {Z0,Z1, · · · ,Zn} . Thus, supn E( f (Wn)) �
E( f (W )) . On the other hand, using Fatou’s lemma, one gets supn E( f (Wn))� E( f (W )) .

Note that | logx|iI(0 < x � 1) (i = 1,2) is a nonnegative and convex function, we
have

sup
n

E| logWn|iI(Wn � 1) = sup
n

E| logW |iI(W � 1) < +∞, i = 1,2.

By a standard truncation we obtain supn E| logWn|i < ∞ , i = 1,2.
Next, define

Un =
Wn+1

Wn
−1 =

1
Zn

Zn

∑
i=1

(
Xi

m
−1

)
,

where {Xi} is an i.i.d. sequence and independent of Zn . Then

logWn+1− logWn = log(1+Un).

We firstly show that there exists a constant r ∈ (0,1) such that [E(U2
n )]1/2 � Crn . In

fact, by a standard moment inequality (see page 97 of [9]), one gets E(U2
n ) �CE(Z−1

n ) .
Note that f (x) = x−1,x > 0 is a convex function, by Jensen’s inequality,

E(Z−1
n+1) = E

(
Zn

∑
i=1

Xi

)−1

� E

(
Z−1

n Z−1
n

Zn

∑
i=1

X−1
i

)

Since {Xi} is independent of Zn ,

E(Z−1
n+1) � E

(
E

(
Z−1

n Z−1
n

Zn

∑
i=1

X−1
i |Zn

))
= E(Z−1

n )E(Z−1
1 ).

By induction, we obtain
E(Z−1

n ) �
(
E(Z−1

1 )
)n

.

Let r =
√

E(Z−1
1 ) < 1, one gets [E(U2

n )]1/2 � Crn .

Next, for any b ∈ (0,1) ,

E| logWn+1− logWn| = E| log(1+Un)I(Un � −b)|+E| log(1+Un)I(Un < −b)|
= An +Bn. (17)

Using the fact that | log(1+ x)|� C|x| for x � −b and Hölder’s inequality, one has

An � CE|Un| � C(E(U2
n ))1/2 � Crn. (18)

Note that E(log(1+Un))2 = E(logWn+1− logWn)2 < ∞ , using Hölder’s inequality and
Chebyshev’s inequality, we have

Bn � C(E(log(1+Un))2)1/2(P(Un < −b))1/2 � C[E(U2
n )]1/2 � Crn. (19)
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Thus by (17)–(19), one gets

E| logWn+1− logWn| � Crn.

Consequently, for any integer k � 1,

E| logWn+k − logWn| � C(rn + rn+1 + · · ·+ rn+k−1) � Crn/(1− r).

Letting k → ∞ , we complete the proof of Lemma 2.

Proof of Theorem 1. For any t � 1, let

St =
logYt −λ t logm√

λ t logm
, Vt =

Nt −λ t√
λ t

, Tt = St −Vt .

As for (3), we have

|E( f ′(St)−St f (St))| � |E( f ′(St)−Vt f (Vt))|
+|E(Vt f (St)−Vt f (Vt))|+ |E(Tt f (St))|

=: K1 +K2 +K3. (20)

It is enough to prove that K1 +K2 +K3 � C/
√

t . For K3 , let Wn = Zn/mn , by (31) and
Lemma 2, one has

K3 � E|Tt | = E

∣∣∣∣ logWNt√
λ t logm

∣∣∣∣� C√
t
. (21)

Furthermore, using (31), Lemma 2 and Hölder’s inequality, we have

K2 � E|Vt( f (St )− f (Vt))| � E|VtTt |
� 1

λ t logm
(E|Nt −λ t|2)1/2

(
E |logWNt |2

)1/2
� C√

t
. (22)

Finally, by the triangular inequality, we have

K1 � |E( f ′(Vt +Tt)− f ′(Vt))|+ |E( f ′(Vt)−Vt f (Vt))| =: K4 +K5. (23)

Lemma 1 implies K5 � C/
√

t , then it is enough to show that K4 � C/
√

t . Applying
(32) for u = Vt ,s = Tt and t = 0, we get

I4 � E(|Vt ||Tt |)+E(|Tt |)+P(Vt +Tt � x,Vt � x)
+P(Vt +Tt � x,Vt � x). (24)

As for (21) and (22), we have E(|Vt ||Tt |)+E(|Tt |) � C/
√

t . Firstly, we show that

P(Vt +Tt � x,Vt � x) � C/
√

t. (25)

For simplicity, let

Bt =
(Nt −N√

t)−λ (t−√
t)√

λ t
, Ct = Vt −Bt , ρt(x) = P(Bt � x),
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Dt =
logWN√

t√
λ t logm

, Et = Tt −Dt.

Consequently,

P(Vt +Tt � x,Vt � x) � P(Vt +Dt � x+ t−1/2,Vt � x)+P(|Et| � t−1/2)

= K6 +P(|Et| � t−1/2). (26)

Let νt be the joint distribution of (Ct ,Dt) . By conditioning and using the independence
between Bt and (Ct ,Dt) , we have

K6 =
∫

P(Bt + s+ v � x+ t−1/2,Bt + s � x)νt (ds,dv)

=
∫

I(s � 1/
√

t)(ρt(x+ t−1/2− s− v)−ρt(x− s))νt(ds,dv). (27)

As for (8) and (13), we obtain

|ρt(x+ t−1/2− s− v)−ρt(x− s)| � C/
√

t + |v| (28)

By Lemma 2, one has

E|Dt | � C/
√

t, P(|Et | � t−1/2) � C/
√

t. (29)

(25) follows from (26)–(29).
One can obtain P(Vt +Tt � x,Vt � x) � C/

√
t similarly. By (33), (20)–(25), we

get Theorem 1.

A. Stein’s method

Some basic facts on the Stein’s method are given in this appendix. For more
details, the reader can see the book [2].

Lemma 3 shows that the standard normal distribution can be characterized by the
Stein’s operator which is defined as following,

A f (u) = f ′(u)−u f (u),

where f : R �→ R is an absolutely continuous function.

LEMMA 3. (Characterization of the normal law N(0,1)) A random variable Z is
of normal law N(0,1) if and only if EA f (Z) = 0 for all absolutely continuous func-
tion f such that E| f ′(Z)| < ∞ (see Lemma 2.1 of [2]).

The next lemma gives some facts on the solution of Stein’s equation defined as
follow. For any x ∈ R , define

I(u � x)−Φ(x) = f ′(u)−u f (u), ∀u ∈ R. (30)
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LEMMA 4. (Solution of Stein’s equation) For each x ∈ R, Stein’s equation (30)
has a unique bounded solution fx which satisfies

‖ fx‖ � 1, ‖ f ′x‖ � 1 (31)

and for all real u,s and t ,

| f ′x(u+ s)− f ′x(u+ t)| � (|t|+ |s|)(|u|+1)+ I(x− t � u � x− s)I(s � t)
+I(x− s � u � x− t)I(s > t), (32)

where ‖ · ‖ denotes the infinity norm (see [11] for details).

Substituting u by X in (30), taking expectation and the supremum over x ∈ R, we
obtain

sup
x∈R

|P(X � x)−Φ(x)| = sup
x∈R

|E( f ′x(X)−X fx(X))| = sup
x∈R

EA fx(X). (33)

The last result gives the Berry-Esseen bound of a sum of i.i.d. random variables
via Stein’s method.

LEMMA 5. (Berry-Esseen bound via Stein’s method) Consider i.i.d. random vari-
ables X1, · · · ,Xn with μ = E(X1) , σ2 = Var(X1) and ρ = E|X1|3 < ∞ . Define Yn =
∑n

i=1(Xi−μ)/(σ
√

n) . For each x∈ R, the unique bounded solution fx of Stein’s equa-
tion satisfies

|E( f ′x(Yn)−Yn fx(Yn))| � Cρ√
n
. (34)

The proof of Lemma 5 was given in [11].
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