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BERRY-ESSEEN TYPE INEQUALITY FOR A POISSON RANDOMLY
INDEXED BRANCHING PROCESS VIA STEIN’S METHOD
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(Communicated by Z. S. Szewczak)

Abstract. A Berry-Esseen type inequality is proved via Stein’s method for the logarithm of a
Poisson randomly indexed branching process {Zy,}, where {Z,} is a supercritical Galton—
Watson process and {N; } is a Poisson process which is independent of {Z,}.

1. Introduction

Consider a classical supercritical Galton-Watson process {Z,,n > 0} with off-
spring distribution {p;,i > 0} and an independent Poisson process with parameter
A > 0. In this paper, we deal with the continuous process {Zy,,7 > 0} which is called
a Poisson randomly indexed branching process (PRIBP). For a PRIBP, we distinguish
between the Shroder case and the Bottcher case depending on whether pg+ p; > 0 or
po+p1=0.

The model of PRIBP was introduced by [4] to study the evolution of stock prices
and its statistical investigation was done in [3]. Recently, PRIBP has been brought to
attention in the following three directions.

In applied direction, a formula for the fair price of an European call option was
derived in [12]. Later on, [16] obtained a formula for the fair price of an up-and-out
call option.

On more theoretical side, [14] and [15] considered a critical branching process
subordinated by a general renewal process. They investigated the probability of non-
extinction, the asymptotic behavior of the moments, and also limiting distributions un-
der normalization. Results on subcritical case were done in [13].

For statistical inference, on the one hand, [17] indicated that R; := ZN,HZ& lisa
reasonable estimator of the offspring mean m. They consider the supercritical PRIBP
(Shroder case) and obtained the exponential rate of decay for the large deviation prob-
ability P(|R; —m| > x) under the condition that the offspring distribution has finite
exponential moments. On the other hand, [8] showed that (A¢)~!log¥; is an estimator
of logm and derived the consistency, asymptotic normality, large deviation and moder-
ate deviation of the estimator when the PRIBP belongs to the Bottcher case. The large
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deviations in the Shréder case were given in [5], where the rate function (x) is defer-
ent from the Bottcher case for small positive x. Similar results for branching process
indexed by a renewal process were done in [6] and [7].

The asymptotic normality for a PRIBP was proved in [8]. Precisely, for any # > 0,
define ¥; = Zy, . Then

logY; — At1
limP<Ogt—t0gm <x) =®(x), xER,
1= VAtlogm

where @(x) is the distribution function of standard normal law. In this paper, we
consider a Berry-Esseen type inequality for this asymptotic normality based on Stein’s
method.

Throughout the paper, we assume the following condition:

Al: po=0, me (1,00), 6> =E(Z —m)?> € (0,00).

THEOREM 1. Under the condition A1, we have

P <loth — Atlogm <x) o)
\/Elogm

where C is a positive constant.

sup
XER

C
< V3 ey

The rest of the paper is organized as follows. In Section 2, we prove a Berry-
Esseen inequality for the normalized Poisson process. Section 3 is devoted to the proof
of the main result of the paper. Basic facts on Stein’s method are given in the Appendix.

In the rest of the paper, we denote by C an absolute and positive constant which
may differ from line to line.

2. Berry-Esseen type inequality for a Poisson process
In this section, we establish a Berry-Esseen type inequality for the normalized

Poisson process with parameter A > 0 based on Stein’s method. The idea comes from
[10].

LEMMA 1. Let {N;},>0 be a Poisson process with parameter A > 0, we have

C

N, — At
P < —d < —. 2
ek ( NGT, ) WS @

Proof. Forany t > 2, there exists an integer n=n(z) suchthat n4+1<r <n+2.
For simplicity, let

N, —An N, — At
U = V,:’W, 0 =Vi—U.
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By (33), we should find a suitable bound of |E(f%(V;) — V. fx(V;))|, where the bound is
independent of x € R and f; is the unique bounded solution of Stein’s equation (30).
For simplicity, we write f for f;. By the triangular inequality, we have
E(f' (Vi) =Vif (V)| < [E(f' (Vi) = Unf(Uh)))]
FEWUS(Ur) = Unf (Vi) + [E(Qef (V1))
=hL+L+1. 3)

By (31) and Holder’s inequality, one has

N,—At N,—An
L <E|Q|=E —
3 ‘Qt‘ ‘ \/37 \/37
1 5\ 1/2
< o= <E|(N,—7Lt)—(Nn—7Ln)\ )
= L(A(:—n))1/2<£. (4)
VAt Y
Using (31) and Holder’s inequality again, we have
L < E|U(f(Vi) = f(Un)| < E|U: Q]
_E<Nn—7tn —lt_Nn—ln>
- VAt || Var VAt
1 P PRENY) v a2
< 5 (EIN, = Anf?) (E\(N, At) — (Np— An)| )
1 C
= . . —_n) < —.
r VAn-\/A(t—n) < 7 (5)
Again, by the triangular inequality, we have
L <|E(f'(U+ Q) = £ (U))+|E(f'(Ur) = Unf(U)| =: la+ 1. (6)

For i =1,2,---, define X; = N; — N;_; . It is obvious that {X;} is an i.i.d. sequence of
Poisson random variables with parameter A > 0. Let g, be the distribution function of
U;. Using (30), (33), the triangular inequality and (34), one gets

Is = |p(x) — @) = |P (N[A_’L <x ;) ~®()
(N —An <x %) _® (x\/§> o) (x\/§> —®(x)
C

7 ( \/;> —D(x)|.

Since (1 —x)""/2=1+x/240(x) (x — 0), we have

1
\/Z=<1—’ ") — 4R,
n t

+

(7
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where 0 < R, < C/+/t. By the mean value theorem and the fact that [x®'(x)| < C, we

have
t , C
D x . —Ox)| = |O(x(1+R,)) — P(x)] < R|x®' (x)| < % ©))
Applying (32) for u =U;,s = Q; and t =0, we get
L <E(|U Q) +E(|Q|) +P(Ur + O < x,U; > x)
+P(U+ Oy = x,U; < x). 9
As for (4) and (5), we have
E(Ullo:) +E(Q]) <C/Vr. (10)
For simplicity, let
N_,2o—At—1t7%) N,—An
H; = — ( )— » L =0, —H,.
Vi VAt
Consequently,
P(U+ 0 <x,U; 2 x) < P(Us +Hy <x+1712U 2 x) + P(|L| > 171/?)
= I+ P(|L;| =17 1/?). (11)

Let &, be the distribution function of H;. By conditioning and using the independence
between U; and H;, we have

I = [ PW+s <t 20 > 08 ()
= [ S UVD @+ =)~ ()8, 9) (12)
Note that |@'(x)| < 1. Thus, by the triangular inequality, (7) and (8), we obtain

(1712 =) — ()| < [+ =) = D(x 12— )|
HO(x+ 1712 —5) — D (x)| + |D(x) — ()]
< C/Vi+sl. (13)
By Holder’s inequality, we have

1

V| = I, =2 —172) ~ (N~ )
€ (B2 =  An))
_ @) _C (14)

Vat G
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Furthermore, by Markov’s inequality and Holder’s inequality, one has

No—At N2 —A(t— 172)

PL| > 17) < VIE|L| = wE‘

Yz VAt
< i E'N,—)u A R
N Vi Vai
=1 <C/\/Z (15)
Thus, (11)~(15) imply
P(U+Q <x,U >x) <C/Vt. (16)

In the same way, we get P(U; + Q; > x,U; < x) < C/+/t. Therefore, (2) follows from
(33), (3)—(16).

3. Proof of the main result

In this section, we use the same method as in Lemma 1 to prove the main result.
For a Galton-Watson process {Z,}, define W, = Z,/m". It is well known that there

exists a nonnegative random variable W such that W, <> W. Our proof depends on
the following lemma.

LEMMA 2. Under condition Al, one has

sup E|logW,|" < +o0, i=1,2
n

and there exists a constant r € (0,1) such that

E|logW, —logW| < Cr".

Proof. Since pg =0, W 1is a positive random variable. Note that for any a > 0,

W= F(a)fl/ e "Wy,
0

where T'(a) = [ x4 le™*dx. According to Lemma 10.7 of [1], we have
EW 4= l"(a)fl/ o (u)u'du < o
0

for all @ > 0 such that pym® < 1, where ¢(u) = E(e~""). Therefore, using the fact
that, for any positive x, |logx|' < C(x+x~%) (i=1,2), one gets

E|logW|' <C(E(W)+E(W ™)) <o, i=1,2.
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For any nonnegative and convex function f, by Jensen’s inequality, one has
E(fW)|F0) =2 F(EW|F0)) = f(Wa) a.s.,

where .%, is the o— field generated by {Zy,Z;,---,Z,}. Thus, sup,E(f(W,)) <
E(f(W)). On the other hand, using Fatou’s lemma, one gets sup, E(f(W,)) = E(f(W)).
Note that |logx|'T(0 <x < 1) (i = 1,2) is a nonnegative and convex function, we
have
sup E|logW,,|'T(W, < )—supE\logW\’ (W) <o, i=1,2.
n

By a standard truncation we obtain sup, E|logW, |’ < e, i=1,2.

Next, define
Wn+1 1 & X;
U, = = — ——1
W, Tz 2w

"il

where {X;} is ani.i.d. sequence and independent of Z,. Then
logW,+1 — logW, = log(1 +U,).

We firstly show that there exists a constant 7 € (0,1) such that [E(U2)]'/> < Cr*. In
fact, by a standard moment inequality (see page 97 of [9]), one gets E(U?) < CE(Z;").
Note that f(x) =x"",x > 0 is a convex function, by Jensen’s inequality,

—1
Z)‘l

E(Z) (Zx) <E<Z,;IZ;12X;1>
i=1

Since {X;} is independent of Z,,
Zn
Bz <E(E(22° X712, ) ) = @ EED,
i=1

By induction, we obtain
E(Z "< (E(z7Y)".

n

Let r=/E(Z') < 1, one gets [E(U2)]'/> < Cr".
Next, for any b € (0,1),

E|logW, 11 —logW,| = E|log(1+ U,)I(U, > —b)| + E|log(1 + U,)I(U, < —b)|
= Ap+ By 17

Using the fact that |log(1 +x)| < Clx| for x > —b and Holder’s inequality, one has
A, <CE|U,| < CE(WUM)' 2 <cr. (18)

Note that E (log(1+4U,))? = E(logW,, | —logW,)? < e, using Holder’s inequality and
Chebyshev’s inequality, we have

B, < C(E(log(1+Un)))" 2 (P(Us < —b)'? <CE(WUN)? <. (19)
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Thus by (17)—(19), one gets
E|logW,.+1 —logW,| < Cr".
Consequently, for any integer £ > 1,
E|logW,4i —logW,| <C(" 4+ oo by <ot /(1 —r).
Letting k — oo, we complete the proof of Lemma 2.
Proof of Theorem 1. Forany t > 1, let

logY; — Atl N; — At
S[:u, V,:[—, T,=S—V,.
VAtlogm VAt

As for (3), we have

[E(f'(St) = Sif(S)| < [E(f/(S) = Vif (V)
HEWVLS(S) = Vif (Vi) + [E(T £ (S))]
= K1+ K +Kj. (20)

It is enough to prove that K; + K, + K3 < C/+/t. For K3, let W,, = Z,/m", by (31) and
Lemma 2, one has

logWy, C
K <E|T;|=E 7"<—. 21)
Iz VAtlogm| Vi

Furthermore, using (31), Lemma 2 and Holder’s inequality, we have

Ky SEWV/(f(S) = f(V)l < EViTi|
1
Atlogm

1/2

< (E|N; — Mt]?)1/2 (E llog Wy, |2) (22)

<&
X \/; .
Finally, by the triangular inequality, we have

Ky <IE(f'(Vi+T) = (V) +|E(f' (Vi) = Vif (Vi) =: Ks + K. (23)

Lemma 1 implies K5 < C/+/t, then it is enough to show that K4 < C/+/t. Applying
(32)foru=V;,s =T, and t =0, we get

L <E(VIT) +E(T])+P(Vi+ T <x,Vi 2 x)
+P(Vi+T: > x,V; <x). (24)

As for (21) and (22), we have E(|V;||T;|) + E(|T;|) < C/+/t. Firstly, we show that
P(Vi+T <x,V; > x) <C/Vh. (25)
For simplicity, let

N —Nj) = A=/
B[:( ! \/;\)/E( )7 Ct:‘/t_Bh pl(x):P(Bt<X)7
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logWy
Dt \[ ’
VAtlogm

E =T —D,.

Consequently,

PVi+ T <x,V; 2x) S PV + D <x+17V2V, > x) + P(E| =177
=K+ P(|E| =17, (26)

Let v; be the joint distribution of (C;,D;). By conditioning and using the independence
between B, and (C;,D;), we have

Ko = /P(Bt +s+v<x+1Y2 B +5>x)vi(ds,dv)
= /I <1V (pi(x 41712 —s—v) = pi(x—5)) Vi (ds,dv). 27
As for (8) and (13), we obtain
lpr(x 41712 —s—v) = p(x— )| <C/Vi+ | (28)
By Lemma 2, one has
E|D,|<C/Vi, P(E|>1"?) <c/vr. (29)

(25) follows from (26)—(29).
One can obtain P(V; +T; > x,V; < x) < C/+/t similarly. By (33), (20)—(25), we
get Theorem 1.

A. Stein’s method

Some basic facts on the Stein’s method are given in this appendix. For more
details, the reader can see the book [2].

Lemma 3 shows that the standard normal distribution can be characterized by the
Stein’s operator which is defined as following,

A fu) = f'(u) —uf(u),

where f: R+— R is an absolutely continuous function.

LEMMA 3. (Characterization of the normal law N(0,1)) A random variable Z is
of normal law N(0,1) if and only if E</ f(Z) = 0 for all absolutely continuous func-
tion f such that E|f'(Z)| < e (see Lemma 2.1 of [2]).

The next lemma gives some facts on the solution of Stein’s equation defined as
follow. For any x € R, define

I(u <x)—®@(x) = f'(u) —uf(u), Yu €R. (30)
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LEMMA 4. (Solution of Stein’s equation) For each x € R, Stein’s equation (30)
has a unique bounded solution f, which satisfies

IAI<L, [IAl<T 31)

and for all real u,s and t,

[fi(uts) = D)l < (el +IsD(lul+ 1) +1(x—1 Su<x—s5)I(s <1)
Hx—s<u<<x—t)I(s>1), (32)

where || - || denotes the infinity norm (see [11] for details).

Substituting # by X in (30), taking expectation and the supremum over x € R, we
obtain

sup|P(X < x) — ®(x)| = sup|E(f{(X) — X fe(X))| = supE.o/ f(X). (33)

XER XER XER

The last result gives the Berry-Esseen bound of a sum of i.i.d. random variables
via Stein’s method.

LEMMA 5. (Berry-Esseen bound via Stein’s method) Consider i.i.d. random vari-
ables Xi,--+,X, with p = E(X;), 6> =Var(X,) and p = E|X;|? < «. Define Y, =
Y (Xi—u)/(o/n). Foreach x € R, the unique bounded solution f, of Stein’s equa-
tion satisfies

|E(f{(Yn) = Yafe(Yn))| < (34)

cp
Vi
The proof of Lemma 5 was given in [11].
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