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Abstract. Let f (z) be analytic in |z| < R , continuous on |z| = R and f ′(z) �= 0 on |z| = R .
Then holds Ozaki’s inequality that the total variation of arg{ f (z)} on |z| = R is not more than
the total variation of arg{d f (z)} on |z| = R . Here we consider also Umezawa’s condition that

− α
2α −3

< 1+Re
z f ′′(z)
f ′(z)

< α |z| < 1

follows the univalence of f (z) in |z|< 1 . In this paper we extended these results for multivalent
functions.

1. Introduction

Let A (p) be the class of functions of the form :

f (z) = zp +
∞

∑
n=p+1

anz
n, (p ∈ N = {1,2, . . .}). (1.1)

which are analytic in the unit disk D = {z ∈ C : |z| < 1} . A function f (z) which is
analytic in a domain D∈ C is called p -valent in D if for every complex number w , the
equation f (z) = w have at most p roots in D and there will be a complex number w0

such that the equation f (z) = w0 , has exactly p roots in D . A function f (z) is called
univalent in D if it is 1-valent in D . Recall that the well known Noshiro-Warschawski
univalence condition, (see [3] and [16]) says that if f (z) is analytic in a convex domain
D ⊂ C and

Re{eiθ f ′(z)} > 0 (z ∈ D), (1.2)

for some real θ , then f (z) is univalent in D . In [11] S. Ozaki extended the above result
by showing that if f (z) of the form (1.1) is analytic in a convex domain D and for some
real θ we have

Re{eiθ f (p)(z)} > 0 (z ∈ D),
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then f (z) is at most p -valent in D . Applying Ozaki’s theorem for D = D , we find that
if f (z) ∈ A (p) and

Re{eiθ f (p)(z)} > 0 (z ∈ D), (1.3)

then f (z) is at most p -valent in D . In [5] it was proved that if f (z) ∈ A (p) , p � 2,
and

|arg{ f (p)(z)}| < 3π
4

(z ∈ D), (1.4)

then f (z) is at most p -valent in D .
Umezawa [14] proved the following theorem.

THEOREM 1.1. Let f (z) ∈ A (1) be analytic in D . If f (z) satisfies the following
condition

− α
2α −3

< 1+Re
z f ′′(z)
f ′(z)

< α, (z ∈ D), (1.5)

where α is an arbitrary real number not less than 3/2 , then f (z) is univalent in D .
Moreover, f (z) maps |z|= r for every r , 0 < r < 1 into a curve which is convex in one
direction and

|an| � n f or all n ∈ N. (1.6)

Now then, let us define the functions convex of order p in one direction as the
following:

Let f (z) be analytic in D , f ′(z) �= 0 on |z|= 1 and f (z) is continuous on |z|= 1.
Let C be the image curve of |z| = 1. If every straight-line parallel to a direction cuts C
in not more than 2p points and there exists at least such straight-line which cuts C in
2p points. Then we call that f (z) is convex of order p in one direction.

Putting α = ∞ , α = 3/2, α = 2 and α = 3, Umezawa [14] obtained the following
theorem.

THEOREM 1.2. Let f (z) ∈ A (1) . If f (z) satisfies in D one of the following
conditions

(i) 1+Re
z f ′′(z)
f ′(z)

> −1
2
, (ii) 1+Re

z f ′′(z)
f ′(z)

<
3
2
,

(iii)
∣∣∣∣1+Re

z f ′′(z)
f ′(z)

∣∣∣∣ < 2, (iv)
∣∣∣∣Re

z f ′′(z)
f ′(z)

∣∣∣∣ < 2,

then f (z) is univalent in D .

Theorem 1.2 was initially obtained by Ozaki [11]. Umezawa in [15] proved that∣∣∣∣ f ′′(z)
f ′(z)

∣∣∣∣ �
√

6 (|z| � 1), (1.7)

implies the univalence of f (z) in |z| � 1. Notice also here that in [12] Ozaki proved
that if f (z) = z + a2z2 + a3z3 + · · · is analytic in D , with f (z) f ′(z)/z �= 0 there, and
if either (i) or (ii) holds throughout D , then f is univalent and convex in at least one
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direction in D . It has been generalized in [10], [13]. The number
√

6 in (1.7), was
improved to 3.05 . . . in [1]. In [7] it was also proved that the condition

∣∣∣∣1+
z f ′′(z)
f ′(z)

∣∣∣∣ <
√

7 (z ∈ D),

implies the univalence of f ∈ A (1) . Notice that the condition

∣∣∣∣ f ′′(z)
f ′(z)

∣∣∣∣ � 2, (z ∈ D),

implies that f (z) is starlike in D , [2, Th.4]. In [11] Ozaki proved also the following
fundamental inequality.

LEMMA 1.3. Let f (z) be analytic in |z|< R, continuous on |z|= R and f ′(z) �= 0
on |z| = R. Then the total variation of arg{ f (z)} on |z| = R is not more than the total
variation of arg{d f (z)} on |z| = R, namely

∫
|z|=R

|darg{ f (z)}| �
∫
|z|=R

|darg{d f (z)}| (1.8)

or by a modification of the above inequality, we have

∫ 2π

0

∣∣∣∣Re
z f ′(z)
f (z)

∣∣∣∣dθ �
∫ 2π

0

∣∣∣∣1+Re
z f ′′(z)
f ′(z)

∣∣∣∣dθ , (1.9)

where z = Reiθ and 0 � θ � 2π .

Applying Lemma 1.3, we have the following inequalities.

LEMMA 1.4. Let f (z) ∈ A (p) , f (k)(z) continuous on |z| = R � 1 and f (k)(z) �=
0 on |z| = R for k = 0,1,2, . . . , p. Then we have

∫
|z|=R

|darg{ f (z)}| �
∫
|z|=R

|darg{d f (z)}|

�
∫
|z|=R

∣∣darg{d2 f (z)}∣∣ �
∫
|z|=R

∣∣darg{d3 f (z)}∣∣
� · · ·
�

∫
|z|=R

∣∣darg{dp−1 f (z)}∣∣ �
∫
|z|=R

|darg{dp f (z)}| . (1.10)

Equality in (1.10) holds for f (z) = zp .
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Proof. Applying Lemma 1.3, we have∫
|z|=R

|darg{ f (z)}| =
∫
|z|=R

∣∣∣∣darg{ f (z)}
dθ

∣∣∣∣dθ =
∫
|z|=R

∣∣∣∣Re
z f ′(z)
f (z)

∣∣∣∣dθ

�
∫
|z|=R

|darg{d f (z)}| =
∫
|z|=R

∣∣∣∣darg

{(
d f (z)

dz

)
dz

}∣∣∣∣
=

∫
|z|=R

∣∣darg
{

f ′(z)
}

+darg{dz}∣∣ =
∫
|z|=R

∣∣∣∣darg{ f ′(z)}
dθ

+
darg{dz}

dθ

∣∣∣∣dθ

=
∫
|z|=R

∣∣∣∣1+Re
z f ′′(z)
f ′(z)

∣∣∣∣dθ =
∫
|z|=R

|darg{d(d f (z))}|

=
∫
|z|=R

∣∣darg
{
d2 f (z)

}∣∣ �
∫
|z|=R

∣∣darg
{
d(d2 f (z))

}∣∣
=

∫
|z|=R

∣∣darg
{
d3 f (z)

}∣∣ �
∫
|z|=R

∣∣darg
{
d(d3 f (z))

}∣∣
� . . .

�
∫
|z|=R

∣∣darg
{
dp−1 f (z)

}∣∣ =
∫
|z|=R

∣∣∣∣darg

{(
dp−1 f (z)
(dz)p−1

)
(dz)p−1

}∣∣∣∣
=

∫
|z|=R

∣∣∣darg
{

f (p−1)(z)
}

+(p−1)darg{dz}
∣∣∣

=
∫
|z|=R

∣∣∣∣∣∣
darg

{
f (p−1)(z)

}
dθ

+(p−1)
darg{dz}

dθ

∣∣∣∣∣∣dθ

=
∫
|z|=R

∣∣∣∣∣p−1+Re
z f (p)(z)
f (p−1)(z)

∣∣∣∣∣dθ �
∫
|z|=R

∣∣∣∣darg{dp f (z)}
dθ

∣∣∣∣dθ

=
∫
|z|=R

∣∣∣∣∣p+Re
z f (p+1)(z)

f (p)(z)

∣∣∣∣∣dθ ,

where z = Reiθ and 0 � θ � 2π . It completes the proof of Lemma 1.4 �
In [14] Umezawa obtained the following theorem.

LEMMA 1.5. Let f (z) be analytic in |z| � 1 and continuous and f ′(z) �= 0 on
|z| = 1 . If f (z) satisfies the condition∫ 2π

0

∣∣∣∣1+Re
z f ′′(z)
f ′(z)

∣∣∣∣dθ < 2(p+1)π , (1.11)

where z = eiθ and 0 � θ � 2π , then f (z) is at most p-valent in |z| � 1 .

COROLLARY 1.6. Let f (z) be analytic in |z| � 1 and continuous and f ′(z) �= 0
on |z| = 1 . If f (z) satisfies the condition

∫ 2π

0

∣∣∣∣∣p+Re
z f (p+1)(z)

f (p)(z)

∣∣∣∣∣dθ < 2(p+1)π , (1.12)
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where z = eiθ and 0 � θ � 2π , then f (z) is at most p-valent in |z| � 1 .

Proof. From Lemma 1.4 with R = 1, we have

∫ 2π

0

∣∣∣∣1+Re
z f ′′(z)
f ′(z)

∣∣∣∣dθ �
∫ 2π

0

∣∣∣∣∣p+Re
z f (p+1)(z)

f (p)(z)

∣∣∣∣∣dθ ,

where z = eiθ and 0 � θ � 2π , so Lemma 1.5 and (1.12) follow that f (z) is at most
p -valent in D . �

Applying the above lemmas, we have the following theorem.

THEOREM 1.7. Let f (z) ∈ A (p) and suppose that f (k)(z) �= 0 in D \ {0} for
k = 0,1,2, . . . , p and suppose that have

− α
2α − (2p+1)

< p+Re

{
z f (p+1)(z)

f (p)(z)

}
< α (z ∈ D), (1.13)

where α is an arbitrary real number, α � p+ 1/2 . Then f (z) is at most p-valent in
D .

Proof. Let us put

arg{dp f (z)} = Θ, z = eiθ and 0 � θ � 2π ,

then we have

darg{dp f (z)}
dθ

= p+Re

{
z f (p+1)(z)

f (p)(z)

}
=

dΘ
dθ

on |z| = r < 1. (1.14)

From the hypothesis, we have

− α
2α − (2p+1)

<
dΘ
dθ

< α in |z| < 1.

Now, let us put by C1 the part of |z| = r on which

dΘ
dθ

> 0 and put
∫
C1

darg{z} = x

and by C2 the part of |z| = r on which

dΘ
dθ

� 0 and so
∫
C2

darg{z} = 2π − x. (1.15)

Putting

y1 =
∫
C1

dΘ, −y2 =
∫
C2

dΘ
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then from (1.14), we have ∫
C

dΘ = y1 − y2 = 2pπ . (1.16)

On the other hand, we have

y1 =
∫
C1

dΘ
dθ

dθ < αx (1.17)

and

y2 =
∫
C2

(
−dΘ

dθ

)
dθ < (2π − x)

α
2α − (2p+1)

=
2πα −αx

2α − (2p+1)
. (1.18)

Now, we want to prove that y1 < (2p+1)π and so, if we suppose

y1 � (2p+1)π ,

then we must have
y2 � π , (1.19)

and by (1.17), we have
αx > (2p+1)π . (1.20)

Then from (1.18) and (1.20), we have

y2 <
2πα − (2p+1)π
2α − (2p+1)

= π
(

2α − (2p+1)
2α − (2p+1)

)
= π .

This contradicts (1.19). Therefore, we must have

y1 < (2p+1)π .

This shows that ∫
C

∣∣∣∣∣p+Re

{
z f (p+1)(z)

f (p)(z)

}∣∣∣∣∣dθ < 2(p+1)π

where |z| = r and 0 < r < 1. Applying Nunokawa’s result, which is a generalization
of (1.11), [4, Th.3], or from Lemma 1.5, we complete the proof of Theorem 1.7 �

Notice that it was proved earlier [4], that if f (z) ∈ A (p) and if it satisfies

Re

{
z f (p)(z)
f (p−1)(z)

}
> 0, z ∈ D,

then f (z) is p -valently starlike in D and

Re

{
z f (k)(z)
f (k−1)(z)

}
> 0, z ∈ D,
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for k = 1,2, . . . ,(p−1) . Furthermore, in [6] it was proved that if f (z) ∈ A (p) , p � 3,
and f (z) is typically real in D , f (p−1)(z)/z �= 0 and that∣∣∣∣∣Re

{
z f (p+1)(z)

f (p)(z)

}∣∣∣∣∣ <
1
2

{
α +

2
π

tan−1(α)
}

in the unit disc D , where α = 1.2951672353 . . ., then

Re

{
f (p−2)(z)

z2

}
> 0, z ∈ D,

and f (z) is p -valent in D . Note here that in [8] it was proved a related result of the
form: if f (z) ∈ A (p) , p � 2, 0 < α < 1, and

Re

{
z f (p)(z)
f (p−1)(z)

}
> −2α2−α +1

2(1−α)
, (z ∈ D), (1.21)

then

Re

{
z f (p−1)(z)
f (p−2)(z)

}
> 1+ α, (z ∈ D)

or f (z) is at most p -valent in D .
Putting α = ∞ , α = p+ 1/2, α = p+ 1 and α = 2p+ 1 in Theorem 1.7 gives

the following result.

COROLLARY 1.8. Let f (z) ∈ A (p) and suppose that f (k)(z) �= 0 in D\ {0} for
k = 0,1,2, . . . , p. If f (z) satisfies in D one of the following conditions

(i) p+Re

{
z f (p+1)(z)

f (p)(z)

}
> −1

2
, (ii) p+Re

{
z f (p+1)(z)

f (p)(z)

}
< p+

1
2
,

(iii)

∣∣∣∣∣p+Re

{
z f (p+1)(z)

f (p)(z)

}∣∣∣∣∣ < p+1, (iv)

∣∣∣∣∣Re

{
z f (p+1)(z)

f (p)(z)

}∣∣∣∣∣ < p+1,

then f (z) is at most p-valent in D .

For p = 2 Theorem 1.7 becomes the following corollary.

COROLLARY 1.9. Let f (z) ∈ A (2) and suppose that f (k)(z) �= 0 in D\ {0} for
k = 0,1,2 and suppose that have

− α
2α −5

< 2+Re

{
z f ′′′(z)
f ′′(z)

}
< α (z ∈ D), (1.22)

where α is an arbitrary real number, α > 5/2 . Then f (z) is at most 2 -valent in D .
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