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Abstract. Let f(z) be analytic in |z| < R, continuous on |zl =R and f'(z) #0 on |z| =R.
Then holds Ozaki’s inequality that the total variation of arg{f(z)} on |z| =R is not more than
the total variation of arg{df(z)} on |z| = R. Here we consider also Umezawa’s condition that

o 2f"(z)
- 1+R <a <1
200-3 e f(z) i
follows the univalence of f(z) in |z| < 1. In this paper we extended these results for multivalent

functions.

1. Introduction

Let </ (p) be the class of functions of the form :

flz) =2+ i and’, (peN={1,2,...}). (1.1)
n=p+1

which are analytic in the unit disk D = {z € C: |z < 1}. A function f(z) which is
analytic in a domain D € C is called p-valentin D if for every complex number w, the
equation f(z) = w have at most p roots in D and there will be a complex number wy
such that the equation f(z) = wy, has exactly p roots in D. A function f(z) is called
univalent in D if it is 1-valentin D. Recall that the well known Noshiro-Warschawski
univalence condition, (see [3] and [16]) says thatif f(z) is analytic in a convex domain
D CC and

Re{ef'(2)} >0 (zeD), (1.2)

for some real 0, then f(z) is univalentin D. In[11] S. Ozaki extended the above result
by showing that if f(z) of the form (1.1) is analytic in a convex domain D and for some
real 6 we have _
Re{e®fP)(2)} >0 (zeD),
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then f(z) is at most p-valentin D. Applying Ozaki’s theorem for D = D, we find that
if f(z) € &(p) and

Re{e? fP)(2)} >0 (zeD), (1.3)
then f(z) is at most p-valent in . In [5] it was proved that if f(z) € & (p), p > 2,

and 3
jarg{ £ ()} < 5+ (z€D), (14

then f(z) is at most p-valentin D.
Umezawa [14] proved the following theorem.

THEOREM 1.1. Let f(z) € &/ (1) be analytic in D. If f(z) satisfies the following

condition ()
z
<1+%Re
- 3 /'2)
where o is an arbitrary real number not less than 3/2, then f(z) is univalent in D.

Moreover, f(z) maps |z| =r forevery r, 0 <r <1 into a curve which is convex in one
direction and

<o, (zeD), (1.5)

|an| <n for all neN. (1.6)

Now then, let us define the functions convex of order p in one direction as the
following:

Let f(z) be analyticin D, f/(z) #0 on |z] =1 and f(z) is continuouson |z] =1.
Let C be the image curve of |z| = 1. If every straight-line parallel to a direction cuts C
in not more than 2p points and there exists at least such straight-line which cuts C in
2p points. Then we call that f(z) is convex of order p in one direction.

Putting ot =oo, ¢ =3/2, ¢ =2 and or =3, Umezawa [ 14] obtained the following
theorem.

THEOREM 1.2. Let f(z) € &/(1). If f(z) satisfies in D one of the following
conditions

(i) 14+meL H(()) % (i) 1+mezjf,ﬁ((z>) < %
2" (z) . zf"(2)
(iif) 'l—l—% 0 <2, (iv) 'ER 70 <2,

then f(z) is univalent in D.

Theorem 1.2 was initially obtained by Ozaki [11]. Umezawa in [15] proved that

f"(2)
f'(@)
implies the univalence of f(z) in |z] < 1. Notice also here that in [12] Ozaki proved

that if f(z) = z+4 axz> + a3z’ + --- is analytic in D, with f(z)f'(z)/z # O there, and
if either (i) or (ii) holds throughout I, then f is univalent and convex in at least one

<V6 (2 <1), (1.7)
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direction in . It has been generalized in [10], [13]. The number V6 in (1.7), was
improved to 3.05... in [1]. In [7] it was also proved that the condition

zf"(2)

| < V7 (zeD),

‘l-i-

implies the univalence of f € <7 (1). Notice that the condition

<2

, (zeD),

implies that f(z) is starlike in D, [2, Th.4]. In [11] Ozaki proved also the following
fundamental inequality.

LEMMA 1.3. Let f(z) be analytic in |z| <R, continuous on |z| =R and f'(z) #0
on |z] = R. Then the total variation of arg{ f(z)} on |z| = R is not more than the total
variation of arg{df(z)} on |z| = R, namely

[, Jdare{f@Y < [ |dare{df (o)} (18)
|z[=R |z[=R
or by a modification of the above inequality, we have
D o< [T e @
| | e ao.< [ |1+ |06, (19)

where z=Re™® and 0 < 0 < 2r.

Applying Lemma 1.3, we have the following inequalities.

LEMMA 1.4. Let f(z) € o/ (p), f(k)(z) continuous on |zl =R < 1 and a (z) #
0 on |z| =R for k=0,1,2,...,p. Then we have

/ |darg{f(2)}| </ darg{df(z)}|
l|=R |z]=R
S /IZ‘:R|darg{d2f(Z)}| < /IZ‘:R|darg{d3f(Z)}}

NN

[, laarefar @) < [ [darg{as@)}]. (1.10)
|z[=R \

z|=R

Equality in (1.10) holds for f(z) = 2.
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Proof. Applying Lemma 1.3, we have
darg{f(z)
[ Jawetreni= [ | 0o -
|z[=R [z[=R \ZI R

[, Jostar@y - [ =R|darg{ () e}

= /Iz\: |darg {f'(z) } +darg{dz}| :~/|z\=R dargéjeﬂ@} +dar§édz}
zf"(2)

|00 [ Jaarefaare))
= /lz‘=R|darg{d2f(z)}’ </ |darg {d(d*f(2)) }|
— /IZ‘:R|darg{d3f(z)}} < /\ZI:R}darg{d (& f(2)}

< ...
<[ et o= [ e (G2 ) 0|

5)%Zf’(Z)

o |

N

de

1+Re

[z|=R

— darg{f(p_l)(z)}—k(p—l)darg{dz})
[z|=R
B darg {f(pfl)(z)} darg{dz}
BT T — tp-D—1—
- B 2fP)(z) darg{d”f(z)} ’
= Jia=r|” 1+%ef(p‘1)(z) deg/\ZI=R dé 40
B Zf(zﬂrl)(z)
= o oy |0

where z=Re'® and 0 < 0 <27. It completes the proof of Lemma 1.4 [

In [14] Umezawa obtained the following theorem.

LEMMA 1.5. Let f(z) be analytic in |z| < 1 and continuous and f'(z) # 0 on
lz| = 1. If f(2) satisfies the condition
2f"(2)

/027[ f'(2)

where 7= ¢'% and 0 < 0 < 2r, then f(z) is at most p-valent in |z| < 1

1+ Re de <2(p+ 1), (1.11)

COROLLARY 1.6. Let f(z) be analytic in |z| < 1 and continuous and f'(z) # 0
on |z| = 1. If f(z) satisfies the condition

de <2(p+ ), (1.12)
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where z=¢® and 0 < 0 < 2r, then f(z) is at most p-valent in |z < 1.

Proof. From Lemma 1.4 with R = 1, we have

21 21
i o |
0 0

where z = €% and 0 < 0 <27, so Lemma 1.5 and (1.12) follow that f(z) is at most
p-valentin D. []

zf(”“)(z)
f(F) (Z)

z H(Z)

1)

1 4+*Re p+Re de,

Applying the above lemmas, we have the following theorem.

THEOREM 1.7. Let f(z) € o/ (p) and suppose that f¥)(z) # 0 in D\ {0} for
k=0,1,2,...,p and suppose that have

zf(l’“>(z)

f(l’) (Z)

a
ey }<(x (zeD), (1.13)

<p+9‘{e{

where o is an arbitrary real number, o¢ > p+1/2. Then f(z) is at most p-valent in
D.

Proof. Let us put
arg{d’f(z)} =0, z=¢" and 0<6<2m,
then we have

darg{d”’f(2)} ") | de B
T—P—F%Q{W —E on ‘Z|—I"<1. (1.14)

From the hypothesis, we have

O i <t
20— (2p+1) ~dé a=t

Now, let us put by C; the part of |z| = r on which

do
— >0 and put / darg{z} =x
0 ¢,

and by C, the part of |z| = r on which

do
— <0 and so / darg{z} =2m —x. (1.15)
de G

Putting

n=[ do. —y=[ a0
fo foX
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then from (1.14), we have

/d@zyl—y2=2prc. (1.16)
c
On the other hand, we have
de
= —de 1.17
yi T < ox (L.17)
and
doe o 2mwol— ox
= ——)d0 < 27w — = . 1.18
72 /CZ< d9> =) = p D)~ 2a—pt 1) (1.18)

Now, we want to prove that y; < (2p + 1)1 and so, if we suppose
Vi > (2[? + 1)71',

then we must have
n=r, (1.19)

and by (1.17), we have
ox> (2p+1)m. (1.20)

Then from (1.18) and (1.20), we have

2ra—(2p+ 1) (20— (2p+1)
20— (2p+1) _”<2a—(2p+1)>

y2 <

This contradicts (1.19). Therefore, we must have

1 <(2p+ .

zf(p“)(z)
/Cp—l—%e{if(m@ }

where |z| = r and 0 < r < 1. Applying Nunokawa’s result, which is a generalization
of (1.11), [4, Th.3], or from Lemma 1.5, we complete the proof of Theorem 1.7 [J

This shows that

de <2(p+ 1w

Notice that it was proved earlier [4], that if f(z) € <7 (p) and if it satisfies
(p)
%e{u} >0, zeD,

then f(z) is p-valently starlike in D and

0
me{%} >0, z€D,
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for k=1,2,...,(p—1). Furthermore, in [0] it was proved that if f(z) € &/(p), p = 3,
and f(z) is typically real in D, f(*=1)(z)/z# 0 and that

(p+1)
%e{%} < %{a—i—%tanl(a)}

in the unit disc D, where o = 1.2951672353 ..., then

(p—2)

72

and f(z) is p-valentin D. Note here that in [8] it was proved a related result of the
form: if f(z) € #(p), p=22,0<a<1,and

(p) 202 — 1
me{;{;l)((zz)}>_ Z(l_a(;g ; (zeD), (1.21)

then

%e{%}>l+a7 (zeD)

or f(z) is at most p-valentin D.
Putting ¢ =, 0 =p+1/2, a = p+1 and o« =2p+ 1 in Theorem 1.7 gives
the following result.

COROLLARY 1.8. Let f(z) € o/ (p) and suppose that f*)(z) # 0 in D\ {0} for
k=0,1,2,....p. If f(z) satisfies in D one of the following conditions

(p+1) (p+1)
0 e LEO L pem L0

Zf(PH)(Z) Zf(PH)(Z)
p—i—%e{i} %e{if@(z) }

f(F) (Z)
For p =2 Theorem 1.7 becomes the following corollary.

(iif) <p+1, (iv) <p+1,

then f(z) is at most p-valentin D.

COROLLARY 1.9. Let f(z) € o/ (2) and suppose that £ (z) #0 in D\ {0} for
k=0,1,2 and suppose that have

o
200—5

<2+%e{w}<a (zeD), (1.22)

f"(2)

where o is an arbitrary real number, o0 > 5/2. Then f(z) is at most 2-valent in D.
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