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CIRCULAR REARRANGEMENT INEQUALITY
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(Communicated by A. Aglić Aljinović)

Abstract. This paper presents an analogue of the rearrangement inequality, namely the circular
rearrangement inequality. It holds for any finite sequence of real numbers. A volume-invariant
packing problem and a combinatorial isoperimetric problem are addressed, as the geometric
interpretation of the inequality.

1. Introduction

For two real sequences a1 � a2 � · · · � an and b1 � b2 � · · · � bn , the rearrange-
ment inequality (RI) can be stated as [9]

n

∑
i=1

aibn−i+1 �
n

∑
i=1

aibr(i) �
n

∑
i=1

aibi (1)

where r denotes a permutation of (1,2, · · · ,n) .
This inequality is easy to learn and yet a powerful tool. For example, many funda-

mental inequalities, e.g. the AM-GM-HM inequality, the Cauchy-Schwarz inequality,
and the Chebyshev’s Sum inequality, can be generated from the RI [10]. Actually, the
RI has been a result of fundamental importance in mathematics [5, 11] and in practice
[6, 7, 8].

Therefore, it is of interest to study every aspect of the inequality. The obtained
results split into three categories. The first derives the reverse of the RI, where worth
noting the Kantorovich inequality [13], the Cassels inequality [3], and the Bourin in-
equality [1]. The second expands the RI to vectors or matrices, notably including the
von Neumann’s trace inequality [17], the Richter inequality [14], the Mirsky inequality
[12], among some others [4, 16]. The third applies the idea of rearrangement into the
manipulation of function space, e.g. the Hardy-Littlewood inequality [9] and the Riesz
rearrangement inequality [15], thus providing a powerful tool for analysis [2, 5].

Nevertheless, the prosperity of the RI makes it natural to look for something anal-
ogous. The beauty of the RI, due to the author, resides in its symmetry and universality.
It rearranges a sequence of numbers along the line of the other sequence (see Eq. (1)),
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and then calculates their inner product. An analogue of the inequality might exist if we
conduct the rearrangement and the product in a different way.

In particular, we introduce and consider the circular product of two simultaneously
rearranged n -vectors a and b

〈a(r),b(r)〉 de f
= ar(1)br(2) +ar(2)br(3) + · · ·+ar(n−1)br(n) +ar(n)br(1) (2)

where r is a permutation of (1,2, · · · ,n) . We will denote by 〈a(r)〉 the circular product
of a(r) and itself.

This paper shows that there are fixed permutations for which 〈a(r)〉 attains its
minimum and maximum, respectively. Hence, the result is named as the circular rear-
rangement inequality (CRI). The permutations for which extreme is achieved are com-
pletely determined by the ordering of a ’s entries. For example, let n = 9 and denote
the entries of a by round disks in different diameters - the greater the entry, the larger
the disk is. Then the CRI can be illustrated by Fig. 1.
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Figure 1: An illustration of the CRI

This paper consists of four parts. In Section 2, the CRI is presented, proved,
and then applied to the sequence of natural numbers. The geometric interpretation
of the CRI is addressed in Section 3, along with an insight into the case when the
vectors involved in the circular product are not identical. Then, the paper is concluded
in Section 4.

2. The CRI

We will state the CRI in two theorems and then prove them. The numbers and the
vectors considered in this paper are all real. Besides, we need the following conven-
tions.

DEFINITION 1. For a given n -vector a , we call a permutation r the maximal or
minimal circular permutation (maxCP or minCP) of a if 〈a(r)〉 attains its maximum or
minimum over all possible permutations.

DEFINITION 2. Given a permutation r = (r1,r2, · · ·,ri,ri+1, · · ·,rn−1,rn) of (1,2,
· · · ,n) , we call the permutation s = (ri+1, · · · ,rn−1,rn,r1,r2, · · · ,ri) a circular shift of r ,
for some 1 � i � n−1. Similarly, we call a(s) a circular shift of a(r) . In addition, we



CIRCULAR REARRANGEMENT INEQUALITY 637

denote by r′ = (rn,rn−1, · · · ,r2,r1) the reverse of r , and, in consequence, call a(r′) the
reverse of a(r) .

REMARK 1. 〈a(r),b(r)〉 = 〈a(s),b(s)〉 if s is a circular shift of r .

REMARK 2. 〈a(r′)〉 ≡ 〈a(r)〉 .

REMARK 3. For two permutations r and s and two n -vectors a and b , such that
bi ≡ ai + α for 1 � i � n and α ∈ R , if 〈a(r)〉 � 〈a(s)〉 , then 〈b(r)〉 � 〈b(s)〉 .

DEFINITION 3. Given a permutation r=(r1, · · ·,ri−1,ri,ri+1, · · ·,r j−1,r j,r j+1, · · ·,rn)
of (1,2, · · · ,n) , we call the permutation s = (r1, · · · ,ri−1,r j,r j−1, · · · ,ri+1,ri,r j+1, · · · ,rn)
a turnover of r , for some 1 � i < j � n . Similarly, we call a(s) a turnover of a(r) .

REMARK 4. As 〈a(r)〉 is invariant upon circular shifts and the reverse of r , it suf-
fices to consider only one permutation out of the whole class. On the contrary, a partial
turnover of r usually alters the value of 〈a(r)〉 . For example, let r = (1, · · · , p,2, · · · ,q)
and s = (1, · · · , p,q, · · · ,2) be a turnover of r by (2, · · · ,q) . Then

〈a(s)〉 = 〈a(r)〉+a1a2 +apaq−a1aq−a2ap (3)

2.1. The maxCP

THEOREM 1. Suppose a is an n-vector with a1 � a2 � · · · � an , n � 3 , then
(1,3,5, · · · ,n, · · · ,6,4,2) is a ’s maxCP.

Proof. The mathematical induction is adopted. It is trivial to verify Theorem 1
for n = 3 and n = 4. Assume it is valid for n � k . Now let n = k + 1 and a be a
(k+1)-vector with a1 � a2 � · · · � ak � ak+1 .

Firstly, we will prove that (2,1,3) must exist in a ’s maxCP. Otherwise, without
loss of generality, suppose r = (1,t, · · · ,3,q, · · · , p,2, · · · ,s) is a’s maxCP (see Fig. 2).
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Figure 2: Turnovers that outperform a(r)

For u = (1, t, · · · ,3,q, · · · , p,s, · · · ,2) and v = (1,3, · · · ,t,q, · · · , p,s, · · · ,2) , it holds

〈a(u)〉− 〈a(r)〉 = a1a2 +asap−a1as−a2ap = (a1−ap)(a2−as) � 0 (4)

〈a(v)〉− 〈a(u)〉 = a1a3 +ataq−a1at −a3aq = (a1−aq)(a3 −at) � 0 (5)
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This contradicts that r is the maxCP. Hence, a ’s maxCP must contain (2,1,3) .
As (2,1,3) exists in a ’s maxCP, we now focus on the maxCP of b= ([a2,a1,a3],a4,

· · · ,ak+1) , where [.] imposes a2 , a1 , and a3 in order (2,1,3) or (3,1,2) .
Denote by c = ([a2,a3],a4, · · · ,ak+1) , where [.] imposes a2 and a3 in order (2,3)

or (3,2) . The maximum of 〈c(.)〉 is no greater than that of d = (a2,a3,a4, · · · ,ak+1) .
By induction hypothesis, d ’s maxCP is w = (2,4, · · · ,k+1, · · · ,5,3) . In w , a2 and a3

coincide to be in order (2,3) . Thus w is also c’s maxCP.
On the other hand, for any permutation x of ([2,3],4, · · · ,k+1) and y = ([2,1,3],

x(4, · · · ,k+1)) , it holds 〈b(y)〉 ≡ 〈c(x)〉+(a2a1 +a1a3) . That is, they attain maximum
simultaneously. Since c’s maxCP is w , b ’s maxCP (i.e. a ’s maxCP), have to be
(1,3,5, · · · ,k+1, · · · ,6,4,2) . �

2.2. The minCP

THEOREM 2. Suppose a is an n-vector with a1 � a2 � · · · � an , n � 3 , then
(1,n−1,3,n−3,5,n−5, · · ·,n−6,6,n−4,4,n−2,2,n) is a ’s minCP.

Proof. According to Remark 3, we suppose an > 0.
The mathematical induction is adopted. It is trivial to verify Theorem 2 for n = 3

and n = 4. Assume it is valid for n � k . Now let n = k+1 and a be a (k+1)-vector
such that a1 � a2 � · · · � ak � ak+1 > 0.

Firstly, we will prove that a ’s minCP must contain (k+1,1,k) . Otherwise, with-
out lost of generality, suppose a’s minCP is r = (1,t, · · · ,k,q, · · · , p,k + 1, · · · ,s) (see
Fig. 3).
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Figure 3: Turnovers that outperform a(r)

For u = (1, t, · · · ,k,q, · · · , p,s, · · · ,k+1) and v = (1,k, · · · ,t,q, · · · , p,s, · · · ,k+1) ,
it holds

〈a(u)〉− 〈a(r)〉 = a1ak+1 +asap−a1as −ak+1ap = (a1 −ap)(ak+1−as) � 0 (6)

〈a(v)〉− 〈a(u)〉 = a1ak +ataq−a1at −akaq = (a1−aq)(ak −at) � 0 (7)

This contradicts that r is the minCP. Therefore, a ’s minCP must contain (k+1,1,k) .
Secondly, we will prove that a ’s minCP must contain (2,k + 1,1,k) . Otherwise,

without lost of generality, suppose a ’s minCP is w = (k+1,1,k, · · · , p,2, · · · , t) . Then
for x = (k+1,1,k, · · · , p,t, · · · ,2) , it holds

〈a(x)〉− 〈a(w)〉 = a2ak+1 +atap−a2ap−ak+1at = (a2−at)(ak+1 −ap) � 0 (8)
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This contradicts that w is the minCP. Thus, a ’s minCP must have (2,k+1,1,k) .
Now let b = ([a2,ak],a3, · · · ,ak−1) , where [.] imposes a2 and ak in order (2,k) or

(k,2) . The minimum of 〈b(.)〉 is no less than that of c = (a2,a3, · · · ,ak) . By induction
hypothesis, c’s minCP is y = (k,3,k−2,5,k−4, · · · ,k−3,4,k−1,2) . In y , a2 and ak

coincide to be in order (2,k) . Hence, y is also c’s minCP.
On the other hand, for any permutation z of ([2,k],3, · · · ,k−1) and f = ([2,k +

1,1,k],z(3, · · · ,k− 1)) , it holds 〈b( f )〉 ≡ 〈c(z)〉+(a2ak+1 + ak+1a1 + a1ak) . That is,
they attain maximum simultaneously. Since c’s minCP is y , b ’s minCP (i.e. a ’s
minCP), must be (1,k,3,k−2,5,k−4, · · ·,k−3,4,k−1,2,k+1) . �

2.3. The CRI and the RI

For an n -vector a with a1 � a2 � · · · � an , we denote its maxCP and minCP by

rU = (1,3,5, · · · ,n, · · · ,6,4,2) (9)

rL = (1,n−1,3,n−3, · · ·,n−4,4,n−2,2,n) (10)

Then for any permutation r of (1,2, · · · ,n) , the CRI holds

〈a(rL)〉 � 〈a(r)〉 � 〈a(rU )〉 (11)

Nevertheless, a chain inequality is naturally induced by combining the RI and the CRI
(i.e. combining Eq. (1) and Eq. (11)):

n

∑
i=1

aian−i+1 � 〈a(rL)〉 � 〈a(r)〉 � 〈a(rU)〉 �
n

∑
i=1

a2
i (12)

Applying this to the sequence of natural numbers, we obtain the following.

COROLLARY 1. Denote by n = (1,2, · · · ,n) and by |n| = √
∑n

k=1 k2 . It holds
(

1
2

+
3

4n+2

)
�

(
1
2

+
3

4n+2

)
+

n−2+mod(n,2)
2|n|2 � 〈n(r)〉

|n|2 � 1− 2n−3
|n|2 � 1

(13)

Proof. Denote by Fn = ∑n
k=1 k(n−k+1) , Pn = 〈n(rL)〉 , Qn = 〈n(rU )〉 , and Gn =

|n|2 =
n(n+1)(2n+1)

6
. It is easy to see that Fn =

n(n+1)(n+2)
6

=
|n|2
2

+
n(n+1)

4
.

In addition, no matter n is odd or even, we always have Qn+1 −Qn = (n2 + 2n− 1) .
Hence Qn = |n|2 − (2n−3) .

To derive Pn , we need to clarify the middle terms of n(rL) = (1,n− 1,3,n−
3, · · · ,n−4,4,n−2,2,n) . This can be done by arguing on n . It follows that, for k � 1

n(rL) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1,4k−1, · · ·,2k−1,2k+1,2k, · · ·,4k−2,2,4k), n = 4k

(1,4k, · · · ,2k+1,2k, · · · ,4k−1,2,4k+1), n = 4k+1

(1,4k+1, · · ·,2k+1,2k+2,2k, · · ·,4k,2,4k+2), n = 4k+2

(1,4k+2, · · ·,2k+1,2k+2, · · ·,4k+1,2,4k+3), n = 4k+3

(14)
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Consequently, we see

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P4k+1−P4k = 8k2 +6k+2 = (4k+1)(4k+2)/2+1

P4k+2−P4k+1 = 8k2 +10k+3 = (4k+2)(4k+3)/2

P4k+3−P4k+2 = 8k2 +14k+7 = (4k+3)(4k+4)/2+1

P4k+4−P4k+3 = 8k2 +18k+10 = (4k+4)(4k+5)/2

(15)

which implies
Pn−Pn−1 = n(n+1)/2+mod(n,2) (16)

In view of P4 = 21, we obtain

Pn =
n(n+1)(n+2)

6
+

n−2+mod(n,2)
2

(17)

According to Eq. (12), we have

Fn � Pn � 〈n(r)〉 � Qn � Gn (18)

Then Eq. (13) follows from Eq. (18) by dividing by Gn . �

3. Geometric interpretation

3.1. A volume-invariant packing problem

For a 3-vector a, it yields 〈a(r)〉 ≡ a1a2 + a2a3 + a3a1 . Intuitively, it is the total
shadowed areas of the cuboid in Fig. 4.
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�

�
�

Figure 4: 〈a(r)〉 equals to half the surface area of the cuboid

In general, for an n -vector v, its circular product is half of the surface area of a
hyper-rectangle that holds v as its diagonal line. The circular product of the 3-vector
a is invariant upon all permutations. However, the circular product of the n -vector v
for n � 4 depends on permutations. It is the permutation, which circularly sequences
the numbers, that determines the underlying hyper-rectangle. Consequently, the surface
area of the hyper-rectangle varies (upon permutations), whilst its volume and the length
of its diagonal line are invariant. The CRI has specified the extreme hyper-rectangles
that pack up a vector in fixed length.
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3.2. A combinatorial isoperimetric problem

Still, we may add the square of the euclidean norm of the vector to each side of
the CRI (see Eq. (11))

〈a(rL)〉+
n

∑
i=1

a2
i � 〈a(r)〉+

n

∑
i=1

a2
i � 〈a(rU )〉+

n

∑
i=1

a2
i (19)

Equivalently,
⎧⎪⎨
⎪⎩

· · ·+(a2 +an)2 +(an +a1)2 +(a1 +an−1)2 +(an−1 +a3)2 + · · ·
� (ar(1) +ar(2))2 +(ar(2) +ar(3))2 + · · ·+(ar(n) +ar(1))2

� · · ·+(a4 +a2)2 +(a2 +a1)2 +(a1 +a3)2 +(a3 +a5)2 + · · ·
(20)

Multiple by π = 3.1415926 · · · to each term of the above inequality. View each entry
of a(r) as the radius of a circle (see Fig. 5) and arrange these circles as circularly cir-
cumscribed. The CRI has specified the minimal and maximal total areas of the spotted
round disks, the radii of which correspond to the according center distances of exter-
nally tangent circles.

Figure 5: An underlying combinatorial isoperimetric problem

Apparently, the perimeter of the polygon is 2(∑n
i=1 ai) , which is invariant upon

the circular order of the circles, whilst the total area of the spotted round disks varies.
Therefore, the CRI is the solution of a combinatorial isoperimetric problem.

3.3. The general case

For two 3-vectors a and b , their circular product is the total areas of shadowed
rectangles in Fig. 6.
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Figure 6: 2〈a(r),b(r)〉 doesn’t equal to the surface area of neither cuboids

The surface area of neither the cuboid holding a nor the one holding b, equals to
2〈a(r),b(r)〉 . Indeed, the maxCP or minCP of 〈a(r),b(r)〉 seems much more com-
plicated than that of 〈a(r)〉 . For instance, let a = (1,2,3,4,5) and b = sin(a) . The
minCP of 〈a(r),b(r)〉 is (1,2,3,5,4) . Take another vector c all identical to b except
the third entry being −0.5. Although the ordering of c’s entries is identical to that of
b , the minCP of 〈a(r),c(r)〉 is (1,2,4,5,3) . This phenomenon indicates there might
not exist an inequality for the circular product of different vectors.

4. Conclusion

This paper obtained an analogue of the classical rearrangement inequality, namely,
whilst the circular rearrangement inequality. The RI considers the inner product of vec-
tors, the CRI conducts the circular product. Similar to the RI, the extreme permutations
of the CRI are explicit and solely determined by the ordering of the vector’s entries.
The geometric observation on the CRI reveals two combinationally invariant problems.
In the meantime, finding the extreme permutation(s) for the circular product of two
different vectors seems to be quite involved.

Acknowledgement. The author is grateful for the referee(s)’ comments and sug-
gestions, which notably helped in improving the paper.
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