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FABER POLYNOMIAL COEFFICIENTS FOR GENERALIZED

BI–SUBORDINATE FUNCTIONS OF COMPLEX ORDER

ERHAN DENIZ, JAY M. JAHANGIRI, SAMANEH G. HAMIDI AND SIBEL K. KINA

(Communicated by J. Pečarić)

Abstract. In this paper, we obtain the upper bounds for the n -th (n � 3) coefficients for gen-
eralized bi-subordinate functions of complex order by using Faber polynomial expansions. The
results, which are presented in this paper, would generalize those in related works of several
earlier authors.

1. Introduction

Let A be the class of analytic functions in the open unit disk D = {z∈C : |z|< 1}
and let S be the class of function f that are univalent in D and are of the form

f (z) = z+
∞

∑
k=2

akz
k.

A function f ∈ A is said to be subordinate to a function g ∈ A , denoted by
f ≺ g, if there exists a function w ∈ A with w(0) = 0 and |w(z)| < 1 satisfying
f (z) = g(w(z)) . We let S ∗ consist of starlike functions f ∈ A , that is Re z f ′� f > 0
in D and C consist of convex functions f ∈ A , that is 1+ Rez f ′′� f ′ > 0 in D . In
terms of subordination, these conditions are, respectively, equivalent to

S ∗ ≡
{

f ∈ A :
z f ′(z)
f (z)

≺ 1+ z
1− z

}

and

C ≡
{

f ∈ A : 1+
z f ′′(z)
f ′(z)

≺ 1+ z
1− z

}
.

A generalization of the above two classes, according to Ma and Minda [20], are

S ∗(ϕ) ≡
{

f ∈ A :
z f ′(z)
f (z)

≺ ϕ(z)
}
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and

C (ϕ) ≡
{

f ∈ A : 1+
z f ′′(z)
f ′(z)

≺ ϕ(z)
}

where ϕ is a positive real part function normalized by ϕ(0) = 1, ϕ ′(0) > 0 and ϕ
maps D onto a region starlike with respect to 1 and symmetric with respect to the real
axis. Obvious extensions of the above two classes (see [21]) are

S ∗(γ;ϕ) ≡
{

f ∈ A : 1+
1
γ

(
z f ′(z)
f (z)

−1

)
≺ ϕ(z); γ ∈ C\ {0}

}

and

C (γ;ϕ) ≡
{

f ∈ A : 1+
1
γ

(
z f ′′(z)
f ′(z)

)
≺ ϕ(z); γ ∈ C\ {0}

}
.

In literature, the functions belonging to these classes are called Ma-Minda starlike and
convex of complex order γ (γ ∈ C�{0}) , respectively.

Some of the special cases of the above two classes S∗(γ;ϕ) and C(γ;ϕ) are
(1) S ∗ (1,(1+Az)�(1+Bz))= S [A,B] and C (1,(1+Az)�(1+Bz))= C [A,B],

(−1 � B < A � 1) are classes of Janowski starlike and convex functions, respectively,
(2) S ∗((1−β )e−iδ cosδ ,(1+ z)�(1− z))= S ∗[δ ,β ] and C ((1−β )e−iδ cosδ ,

(1+ z)�(1− z)) = C [δ ,β ], (|δ | < π�2, 0 � β < 1) are classes of δ -spirallike and
δ -Robertson univalent functions of order β , respectively,

(3) S ∗(1,(1+(1− 2β )z)�(1− z)) = S ∗(β ) and C (1,(1+(1−2β )z))�(1−
z)) = C (β ) (0 � β < 1) are classes of starlike and convex functions of order β , re-
spectively,

(4) S ∗
(
1,

(
1+z
1−z

)β
)

= S ∗
β and C

(
1,

(
1+z
1−z

)β
)

= Cβ are class of strongly starlike

and convex functions of order β , respectively,

(5) S ∗ (
1,
√

1+ z
)
= S ∗

L =
{

f ∈ A :

∣∣∣∣( z f ′(z)
f (z)

)2−1

∣∣∣∣ < 1

}
is class of lemniscate

starlike functions,
(6) S ∗(γ,(1+z)�(1−z))= S ∗[γ] and C (γ,(1+z)�(1−z))= C [γ] (γ ∈ C�{0})

are classes of starlike and convex functions of complex order, respectively,

(7) S ∗ (1,qk(z)) = k−S ∗
P =

{
f ∈ A : Re

(
z f ′(z)
f (z)

)
> k

∣∣∣ z f ′(z)
f (z) −1

∣∣∣} is class of

k -parabolik starlike functions,

(8) C (1,qk(z)) = k−U CV =
{

f ∈ A : Re
(
1+ z f ′′(z)

f ′(z)

)
> k

∣∣∣ z f ′′(z)
f ′(z)

∣∣∣} is class of

k -uniformly convex functions.
Here, for 0 � k< ∞ the function qk : D →{w= u+ iv∈C : u2 > k2

(
(u−1)2 + v2

)
,

u > 0} has the form qk(z) = 1+Q1z+Q2z2 + . . . , (z ∈D) where

Q1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2B2

1−k2 ; 0 � k < 1,

8
π2 ; k = 1,

π2

4(k2−1)
√

t(1+t)K 2(t) ; k > 1,

, Q2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(B2+2)
3 Q1; 0 � k < 1,

2
3Q1; k = 1,

[4K 2(t)(t2+6t+1)−π2]
24

√
t(1+t)K 2(t) Q1; k > 1,

(1.1)
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with B = 2
π arccosk and K (t) is the complete elliptic integral of first kind (see [18]).

A function f ∈ A is said to be bi-univalent in D if both f and its inverse map
f−1 are univalent in D. Let σ be the class of functions f ∈ S that are bi-univalent
in D . For a brief history and interesting examples of functions which are in (or are
not in) the class σ , including various properties of such functions we refer the reader
to the work of Srivastava et al. [22] and references therein. Bounds for the first few
coefficients of various subclasses of bi-univalent functions were obtained by a variety
of authors including ([4, 5, 6, 7], [10], [19], [23, 24, 25, 26, 27]). Not much was
known about the bounds of the general coefficients an;n � 4 of subclasses of σ up until
the publication of the article [14] by Jahangiri and Hamidi and followed by a number
of related publications (see [11]–[17]). In this paper, we apply the Faber polynomial
expansions to certain subclasses of bi-univalent functions and obtain bounds for their
n− th;(n � 3) coefficients subject to a given gap series condition.

2. Coefficient estimates

In the sequel, it is assumed that ϕ is an analytic function with positive real part in
the unit disk D , satisfying ϕ(0) = 1, ϕ ′(0) > 0, and ϕ(D) is symmetric with respect
to the real axis. Such a function is known to be typically real with the series expansion
ϕ(z) = 1 + B1z + B2z2 + B3z3 + . . . and B1 > 0. Motivated by a class of functions
defined by the first author [7], we define the following comprehensive class of analytic
functions

S (λ ,γ;ϕ) ≡
{

f ∈ A : 1+
1
γ

(
z f ′(z)+ λ z2 f ′′(z)

(1−λ ) f (z)+ λ z f ′(z)
−1

)
≺ ϕ(z);

0 � λ � 1, γ ∈ C\ {0}
}

.

A function f ∈ A is said the be generalized bi-subordinate of complex order γ
and type λ if both f and its inverse map g = f−1 are in S (λ ,γ;ϕ) . As special cases
of the class S (λ ,γ;ϕ) we have S (0,γ;ϕ)≡ S ∗ (γ;ϕ) and S (1,γ;ϕ)≡ C (γ;ϕ) .

In the following theorem we use the Faber polynomials introduced by Faber [9] to
obtain a bound for the general coefficients of the bi-univalent functions in S (λ ,γ;ϕ)
subject to a gap series condition.

THEOREM 2.1. Let 0 � λ � 1 and γ ∈ C�{0}. If both functions f (z) = z +
∑∞

n=2 ρnz
n and its inverse map g = f−1 are in S (λ ,γ;ϕ) and ρm = 0; 2 � m � n−1

then

|ρn| � |γ|B1

(n−1)(1+ λ (n−1))
.

Proof. If we write Λ( f (z)) = λ z f ′(z)+ (1−λ ) f (z) then

f ∈ S (λ ,γ;ϕ) ⇔ 1+
1
γ

(
zΛ′( f (z))
Λ( f (z))

−1

)
≺ ϕ(z)
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g = f−1 ∈ S (λ ,γ;ϕ) ⇔ 1+
1
γ

(
wΛ′(g(w))
Λ(g(w))

−1

)
≺ ϕ(w).

We observe that an = (1+ λ (n−1))ρn for Λ( f (z)) = z+∑∞
n=2 anz

n . Now, an appli-
cation of Faber polynomial expansion to the power series S (λ ,γ;ϕ) (e.g. see [2] or
[3, equation (1.6)]) yields

1+
1
γ

(
zΛ′( f (z))
Λ( f (z))

−1

)
= 1− 1

γ

∞

∑
n=2

Fn−1 (a2,a3,a4, . . . ,an)zn−1 (2.1)

where

Fn−1 (a2,a3, . . . ,an) = ∑
i1+2i2+...+(n−1)in−1=n−1

A(i1, i2, . . . , in−1)
(
ai1

2 ai2
3 . . .ain−1

n

)

and

A(i1, i2, . . . , in−1) := (−1)(n−1)+2i1+...+nin−1
(i1 + i2 + . . .+ in−1−1)!(n−1)

(i1!)(i2!) . . . (in−1!)
.

The first few terms of Fn−1 (a2,a3, . . . ,an) are

F1 = −a2, F2 = a2
2−2a3, F3 = −a3

2 +3a2a3−3a4,

F4 = a4
2−4a2

2a3 +4a2a4 +2a2
3−4a5,

F5 = −a5
2 +5a3

2a3 +5a2
2a4−5

(
a2

3−a5
)
a2 +5a3a4−5a6.

By the same token, the coefficients of the inverse map g = f−1 may be expressed by

g(w) = f−1 (w) = w+
∞

∑
n=2

1
n
K−n

n−1 (a2,a3, . . . ,an)wn = w+
∞

∑
n=2

τnw
n

where

K−n
n−1 =

(−n)!
(−2n+1)!(n−1)!

an−1
2 +

(−n)!
(2(−n+1))!(n−3)!

an−3
2 a3

+
(−n)!

(−2n+3)!(n−4)!
an−4

2 a4+
(−n)!

(2(−n+2))!(n−5)!
an−5

2

[
a5 +(−n+2)a2

3

]
+

(−n)!
(−2n+5)!(n−6)!

an−6
2 [a6 +(−2n+5)a3a4]+ ∑

j�7
an− j

2 Vj

and Vj for 7 � j � n is a homogeneous polynomial in the variables a3,a4, . . . ,an .
Obviously,

1+
1
γ

(
wΛ′(g(w))
Λ(g(w))

−1

)
= 1− 1

γ

∞

∑
n=2

Fn−1 (b2,b3,b4, . . . ,bn)wn−1 (2.2)

where bn = (1+λ (n−1))τn . Since, both functions f and its inverse map g = f−1 are
in S (λ ,γ;ϕ) , by the definition of subordination, there exist two Schwarz functions
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u(z) = c1z+ c2z2 + . . .+ cnzn + . . . , |u(z)| < 1, z ∈ D and v(w) = d1w+d2w2 + . . .+
dnwn + . . . , |v(w)| < 1, w ∈ D , so that

1+
1
γ

(
zΛ′( f (z))
Λ( f (z))

−1

)
= ϕ(u(z)) = 1−

∞

∑
n=1

B1K
−1
n (c1,c2, . . . ,cn,B1,B2, . . . ,Bn)zn

(2.3)
and

1+
1
γ

(
wΛ′(g(w))
Λ(g(w))

−1

)
= ϕ(v(w)) = 1−

∞

∑
n=1

B1K
−1
n (d1,d2, . . . ,dn,B1,B2, . . . ,Bn)wn.

(2.4)
In general (e.g., see [1] and [2, equation (1.6)]), the coefficients Kp

n := Kp
n (k1,k2, . . . ,kn,

B1,B2, . . . ,Bn) are given by

Kp
n =

p!
(p−n)!n!

kn
1
Bn

B1
+

p!
(p−n+1)!(n−2)!

kn−2
1 k2

Bn−1

B1

+
p!

(p−n+2)!(n−4)!
kn−3
1 k3

Bn−2

B1

+
p!

(p−n+3)!(n−4)!
kn−4
1

[
k4

Bn−3

B1
+

p−n+3
2

k2
2
Bn−2

B1

]

+
p!

(p−n+4)!(n−5)!
kn−5
1

[
k5

Bn−4

B1
+(p−n+4)k2k3

Bn−3

B1

]
+ ∑

j�6

kn− j
1 Xj

where Xj is a homogeneous polynomial of degree j in the variables k2,k3, . . . ,kn.
For the coefficients of the Schwarz functions u(z) and v(w) we have |cn| � 1and

|dn| � 1 (e.g., see [8]). Comparing the corresponding coefficients of (2.1) and (2.3)
yields

1
γ
Fn−1 (a2,a3, . . . ,an) = B1K

−1
n (c1,c2, . . . ,cn,B1,B2, . . . ,Bn) (2.5)

which under the assumption am = 0; 2 � m � n−1 we get

− 1
γ
(n−1)an = −1

γ
(n−1)(1+ λ (n−1))ρn = −B1cn−1. (2.6)

Similarly, comparing the corresponding coefficients of (2.2) and (2.4) gives

1
γ
Fn−1 (b2,b3, . . . ,bn) = B1K

−1
n−1 (d1,d2, . . . ,dn−1,B1,B2, . . . ,Bn) (2.7)

which by the hypothesis, we obtain

−1
γ
(n−1)bn = −B1dn−1.

Note that, for am = 0; 2 � m � n−1 we have bn = −an and therefore

1
γ
(n−1)an =

1
γ
(n−1)(1+ λ (n−1))ρn = −B1dn−1. (2.8)
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Taking the absolute values of either of the equations (2.6) or (2.8) we obtain the required
bound. �

To prove our next theorem, we shall need the following well-known lemma (see
[8]).

LEMMA 2.1. ([8]) Let the function p(z)= 1+∑∞
n=1 pnzn be so that Re (p(z)) >

0 for z ∈ D . Then for −∞ < α < ∞,

∣∣p2−α p2
1

∣∣ �
{

2−α |p1|2 ; α < 1
2 ,

2− (1−α) |p1|2 ; α � 1
2

. (2.9)

Let ϕ (z) = ∑∞
n=1 ϕnzn be a Schwarz function so that |ϕ (z)|< 1, z∈D. Set p(z) =

[1 + ϕ (z) ]/[1−ϕ (z)] where p(z) = 1+ ∑∞
n=1 pnzn is so that Re (p(z)) > 0 for z ∈

D . Comparing the corresponding coefficients of powers of z yields p1 = 2ϕ1 and
p2 = 2

(
ϕ2 + ϕ2

1

)
. Now, substituting for p1 and p2 and letting η = 1−2α in (2.9) we

obtain ∣∣ϕ2 + ηϕ2
1

∣∣ �
{

1− (1−η)|ϕ1|2; η > 0,

1− (1+ η)|ϕ1|2; η � 0
. (2.10)

The following theorem gives bounds for the coefficient body (ρ2,ρ3) of the gen-
eralized bi-subordinate functions of complex order γ and type λ .

THEOREM 2.2. Let 0 � λ � 1 and γ ∈ C�{0}. If both functions f (z) = z +
∑∞

n=2 ρnz
n and its inverse map g = f−1 are in S (λ ,γ;ϕ) then

∣∣ρ3−ρ2
2

∣∣ �

⎧⎨
⎩

|γ|B1
2(1+2λ ) ; B1 � |B2| ,
|γB2|

2(1+2λ ) ; B1 < |B2|
.

Proof. For n = 2, (2.5) and (2.7) imply

ρ2 =
γB1c1

1+ λ
and ρ2 = − γB1d1

1+ λ
. (2.11)

For n = 3, the equations (2.5) and (2.7), respectively, imply

2(1+2λ )ρ3− (1+ λ )2ρ2
2

γ
= B1c2 +B2c

2
1 (2.12)

and
−2(1+2λ )ρ3 +(3+6λ −λ 2)ρ2

2

γ
= B1d2 +B2d

2
1 . (2.13)

Considering (2.11) we get c1 =−d1. Also, from (2.12), (2.13) and B1 > 0 we find that

ρ3−ρ2
2 =

γB1

4(1+2λ )

[(
c2+

B2

B1
c2
1

)
−

(
d2 +

B2

B1
d2

1

)]
. (2.14)
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Taking the absolute values of both sides of (2.14) gives

∣∣ρ3−ρ2
2

∣∣ � |γ|B1

4(1+2λ )

[∣∣∣∣c2+
B2

B1
c2
1

∣∣∣∣+
∣∣∣∣d2 +

B2

B1
d2

1

∣∣∣∣
]
. (2.15)

If B2 � 0, then for η = B2/B1 apply (2.10) to (2.15) to get

∣∣ρ3−ρ2
2

∣∣ � |γ|B1

4(1+2λ )

{[
1−

(
B1 +B2

B1

)
|c1|2

]
+

[
1−

(
B1 +B2

B1

)
|d1|2

]}
. (2.16)

If B1 +B2 > 0 then (2.16) yields |ρ3−ρ2
2 | � |γ|B1

2(1+2λ ) .

If B1 +B2 < 0 then for the maximum values |c1| = |d1| = 1 the inequality (2.16)
yields

|ρ3−ρ2
2 | �

|γ|B1

4(1+2λ )

{
2

[
1−

(
B1 +B2

B1

)]}
= − |γ|B2

2(1+2λ )
.

If B2 > 0, then for η = B2/B1 apply (2.10) to (2.15) to get

|ρ3−ρ2
2 | �

|γ|B1

4(1+2λ )

{[
1−

(
B1−B2

B1

)
|c1|2

]
+

[
1−

(
B1−B2

B1

)
|d1|2

]}
. (2.17)

If B1−B2 > 0 then (2.17) yields |ρ3−αρ2
2 | � |γ|B1

2(1+2λ ) .

If B1−B2 < 0 then for the maximum values |c1| = |d1| = 1 the inequality (2.17)
yields

|ρ3−ρ2
2 | �

|γ|B1

4(1+2λ )

{
2

[
1−

(
B1−B2

B1

)]}
=

|γ|B2

2(1+2λ )
.

This concludes the proof of Theorem 2.2. �
For different values of λ and γ, Theorems 2.2 and 2.1 yield the following inter-

esting corollaries.

COROLLARY 2.3. If both functions f and its inverse map g = f−1 are in S ∗(γ;ϕ) ,
then

|ρn| � |γ|B1

(n−1)
, ρm = 0; 2 � m � n−1.

Taking ϕ(z) = (1+Az)�(1+Bz) = 1+(A−B)z−B(A−B)z2 + . . . in Corollary
2.3, we obtain the result of Hamidi and Jahangiri (see [13]).

COROLLARY 2.4. If both functions f and its inverse map g = f−1 are in C (γ;ϕ) ,
then

|ρn| � |γ|B1

(n−1)n
, ρm = 0; 2 � m � n−1.

COROLLARY 2.5. If both functions f and its inverse map g = f−1 are in S ∗[δ ,β ]
and C [δ ,β ] , respectively, then

|ρn| � 2(1−β ) |cosδ |
(n−1)

and |ρn| � 2(1−β ) |cosδ |
n(n−1)

, ρm = 0; 2 � m � n−1.
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COROLLARY 2.6. If both functions f and its inverse map g = f−1 are in k−S ∗
P

and k−U CV , respectively, then for ρm = 0; 2 � m � n−1 we have

|ρn| � Q1

(n−1)
,

∣∣ρ3−ρ2
2

∣∣ �

⎧⎪⎪⎨
⎪⎪⎩

B2

1−k2 ; 0 � k < 1,
4

π2 ; k = 1,

π2

8(k2−1)
√

t(1+t)K 2(t) ; k > 1

and

|ρn| � Q1

(n−1)n
,

∣∣ρ3−ρ2
2

∣∣ �

⎧⎪⎪⎨
⎪⎪⎩

B2

3(1−k2) ; 0 � k < 1,

4
3π2 ; k = 1,

π2

24(k2−1)
√

t(1+t)K 2(t) ; k > 1

where Q1 is given by (1.1).

Proof. Let f and its inverse map g = f−1 be in k−S ∗
P . We will show that

Q1 � |Q2| for k � 0. First suppose 0 � k < 1. Since 0 � arccosk � π
2 we have

|Q2|
Q1

= B2+2
3 � 1. For k = 1 it is clear that |Q2|

Q1
= 2

3 < 1. Finally, for k > 1 we get

|Q2|
Q1

= [4K 2(t)(t2+6t+1)−π2]
24

√
t(1+t)K 2(t) � 1. A similar argument can be used to justify the case for

k−U C V . �
Determination of extremal functions for bi-univalent functions (in general) and for

bi-subordinate functions (in particular) remains a challenge.
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