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Abstract. In this paper, some Ulam-Hyers stability results for matrix-valued fractional differ-
ential equations are obtained. We also establish some sufficient conditions for the stability of
matrix-valued fractional differential equations.

1. Introduction

Matrix-valued differential equations are very important in various fields which in-
cluding physics, statistics, optimization, economic, linear system and linear differential
system problems [1, 2]. Recently, stability of fractional order system has attracted in-
creasing interest due to its importance in control theory. In [3], Matignon firstly studied
the stability of linear fractional differential systems with applications to control pro-
cessing. Since then, many researchers have studied further on the stability of linear
fractional order linear systems [4, 5]. Li et al. considered the Mittag-Leffler stability
for fractional order nonlinear dynamic systems and proposed Lyapunov direct method
for the stability of fractional order nonlinear systems [6, 7]. By using Bihari’s and
Bellman-Gronwall’s inequality, Delavari et al. introduced an extension of Lyapunov
direct method for fractional order systems [8]. Senol et al. [9] presents numerical
methods for robust stability analysis of nonlinear fractional order systems.

The notion of Ulam-Hyers stability was proposed by Ulam [10]. Hyers firstly
obtained some results on the Ulam stablity in the case of Banach space [11]. Aoki
generalized Hyers’ theorem for approximately additive mappings [12]. Th.M. Rassias
provided a generalized version of Hyers’ result which allows the Cauchy difference
to be unbounded [13]. J. M. Rassias and Xu generalized the Hyers stability result
by introducing two weaker conditions controlled by a product of different powers of
norms and a mixed product-sum of powers of norms, respectively [14, 15, 16, 17].
Furthermore, Jung proved the Ulam–Hyers stability of linear functional equations [18,
19, 20]. By applying a fixed point theorem in a generalized complete metric space,
Wang et al. presented the Hyers–Ulam–Rassias stability, Hyers–Ulam stability and four
types of Mittag–Leffler–Ulam stability for fractional differential equations [21, 22, 23].
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Recently, Wang proved the Hyers–Ulam stability of additive and quadratic func-
tional equations in matrix Banach spaces [24]. By using fixed point method, Lee give
some Hyer-Ulam stablity results for the quadratic functional equation and the Cauchy
additive functional equation in matrix random normed spaces [25, 26]. In this paper, we
consider the Ulam-Hyers stability of some matrix differential equations and give some
Ulam-Hyers stability results for matrix-valued fractional differential equations. And
we also establish some sufficient conditions for the stability of matrix-valued fractional
differential equations.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts that will
be used in the remainder of this paper.

2.1. Fractional differential operators

There are several different definitions of the fractional derivative (see [2]). We will
use the following definitions:

(i) Riemann-Liouville fractional integral and derivative

Iα μ(x) =
1

Γ(α)

∫ x

0
(x− τ)α−1μ(τ)dτ, (1)

Dα μ(x) = DnIn−α μ(x), (2)

where α > 0, n− 1 < α � n (n ∈ N) , D is the differential operator, I is the integral
operator and μ(x) is a suitable function for x > 0.

The Riemann-Liouville derivative has some disadvantage when trying to model
the real-world phenomena. Therefore, we will introduce a modified fractional differen-
tial operator proposed by Caputo on the theory of viscoelasticity[27].

(ii) Caputo fractional differential operators

Dα μ(x) = In−αDnμ(x) =
1

Γ(n−α)

∫ x

0

μ (n)(τ)
(x− τ)α−n+1 dτ, (3)

where α > 0, x > 0 and n−1 < α � n (n ∈ N) .
The fractional derivative of μ(x) in the Caputo sense is defined for 0 < α < 1 as

Dα μ(x) =
1

Γ(1−α)

∫ x

0

μ ′(τ)
(x− τ)α dτ. (4)

2.2. Mittag–Leffler matrix

The exponential function et plays a very important role in the theory of integer-
order differential equations. Its two-parameter generalization is defined as [28]

Eα ,β (z) =
∞

∑
k=0

zk

Γ(kα + β )
, α,β > 0. (5)
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Moreover, when β = 1, we denote by Eα(z) .

DEFINITION 1. [1] Let α > 0 and A ∈ Mm . The Mittag-Leffler matrix Eα(A) is
defined as

Eα(A) =
∞

∑
k=0

Ak

Γ(kα +1)
= Im +

A
Γ(α +1)

+
A2

Γ(2α +1)
+ . . . . (6)

DEFINITION 2. [1] For A ∈ Mm the Mittag-Leffler function Eα(Atα) is defined
as

Eα(Atα) =
∞

∑
k=0

Aktαk

Γ(kα +1)
, α > 0. (7)

Since we make use the spectral decomposition of Eα(A) and Eα(Atα) , then we
get the following representations:

Eα(A) =
∞

∑
k=0

xky
T
k Eα(λk), Eα(Atα) =

∞

∑
k=0

xky
T
k Eα(λkt

α), (8)

where {x1,x2, . . . ,xm} and {y1,y2, . . . ,ym} are the eigenvectors corresponding to the
eigenvalues {λ1,λ2, . . . ,λm} of A and AT , respectively.

The Mittag-Leffler function has the following asymptotic expression.

LEMMA 1. [2] Let 0 < α < 2 and β be an arbitrary complex number. Assume
that μ is an arbitrary real number such that πα

2 < μ < min{π ,πα} . Then, for an
arbitrary integer p � 1 , we have

Eα ,β (z) =
1
α

z(1−β )/αez1/α −
p

∑
k=1

z−k

Γ(β −αk)
+O(|z|−1−p), (9)

when |arg(z)| � μ and |z| → ∞;

Eα ,β (z) = −
p

∑
k=1

z−k

Γ(β −αk)
+O(|z|−1−p), (10)

when μ � |arg(z)| � π and |z| → ∞ .

REMARK 1. In Lemma 1, if β = α , then we have

Eα ,α(z) =
1
α

z(1−α)/αez1/α −
p

∑
k=2

z−k

Γ(α −αk)
+O(|z|−1−p), (11)

when |arg(z)| � μ and |z| → ∞ ;

Eα ,α(z) = −
p

∑
k=2

z−k

Γ(α −αk)
+O(|z|−1−p), (12)

when μ � |arg(z)| � π and |z| → ∞ .
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LEMMA 2. Let A∈Mn , 0 < α < 2 , β > 0 . Assume that μ is such that (πα/2) <
μ < min{π ,πα} and that C1 > 0 is real constant. Then

‖Eα ,β (A)‖ � C1

1+‖A‖ , (13)

where μ � |arg(λ (A))| � π , λ (A) represents the eigenvalues of matrix A and ‖ · ‖ is
the l2 -norm.

2.3. Ulam–Hyers stability

Let (X ,‖ · ‖) be a Banach space, Y be a nonempty subset of X and T : Y →
X be an operator. Let us give the definition of Ulam–Hyers stability of an operator
equation due to Rus [29]. If T : Y → X is an operator, let us consider the operator
equation

T (x) = 0, x ∈ Y (14)

and the inequation
‖T (y)‖ � ε. (15)

DEFINITION 3. The equation (14) is called Ulam–Hyers stable if for each solution
μ of (15) there exists a solution ν of the operator equation (14) such that

‖μ −ν‖ � cε,

where c is a constant depended on T .

DEFINITION 4. The equation (14) is called generalizedUlam–Hyers stable if there
exists ψ : R

+ →R
+ increasing, continuous at 0 and ψ(0) = 0 such that for each ε > 0

and for each solution μ of (15) there exists a solution ν of the operator equation (14)
such that

‖μ −ν‖ � ψ(ε).

3. Ulam–Hyers Stability of Matrix-valued Fractional Equations

In this section, we present our main results for Ulam–Hyers stability of some linear
matrix fractional differential equations. Firstly, we consider the stability of the non-
homogenous vector-valued fractional differential equation:{

Dα μ(t) = Aμ(t)+ f (t),
μ(0) = t0, t ∈ [0,b), (16)

where A ∈ Mn , t0 ∈ Mn,1 .

THEOREM 1. If all the eigenvalues of A satisfy

|arg(λ (A))| > απ
2

(17)

Then, the system (16) is Ulam-Hyers stable.
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Proof. It is easy to verify that the unique solution of the system (16) is

μ(t) = Eα(Atα)t0 +
∫ t

0
(t− s)α−1Eα(A(t − s)α) f (s)ds. (18)

Let us consider the inequation

‖Dα μ(t)−Aμ(t)− f (t)‖� ε. (19)

A function ν ∈ Mn,1 is a solution of (19) if and only if there exists a function
g ∈ Mn,1 (which depend on ν ) such that

(i) ‖g(t)‖ � ε, ∀t ∈ [0,b),
(ii)

Dα ν(t) = Aν(t)+ f (t)+g(t), ∀t ∈ [0,b). (20)

Then, ν is a solution of the following integral inequation∥∥∥∥ν(t)−Eα(Atα)t0 −
∫ t

0
(t− s)α−1Eα(A(t− s)α) f (s)ds

∥∥∥∥� Cε, (21)

where C is a constant.
In fact, by (20) we have

ν(t) = Eα(Atα)t0 +
∫ t

0
(t− s)α−1Eα(A(t− s)α)( f (s)+g(s))ds. (22)

Then, we get ∥∥∥∥ν(t)−Eα(Atα)x0−
∫ t

0
(t− s)α−1Eα(A(t− s)α) f (s)ds

∥∥∥∥
=
∥∥∥∥
∫ t

0
(t − s)α−1Eα(A(t − s)α)g(s)ds

∥∥∥∥
=
∥∥∥∥
∫ t

0
sα−1Eα(Asα)g(t− s)ds

∥∥∥∥
� ε

∫ t

0

∥∥sα−1Eα(Asα)
∥∥ds.

(23)

Assume that all the eigenvalues of A satisfy (17). First, suppose that the matrix A is
diagonalizable, i.e. there exists an invertible matrix T such that

Λ = T−1AT = diag(λ1,λ2, . . . ,λn).

Then,

Eα(Asα ) = TEα(Λsα)T−1 = Tdiag[Eα(λ1s
α),Eα (λ2s

α ), . . . ,Eα(λns
α )]T−1,

and ∫ t

0
‖sα−1Eα(Asα)‖ds

=
∫ t

0
‖Tdiag(sα−1Eα(λ1s

α),sα−1Eα(λ2s
α), . . . ,sα−1Eα(λns

α))T−1‖ds. (24)
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We will show that there exists a positive constant C0 such that

∫ t

0
|sα−1Eα(λis

α)|ds � C0, 1 � i � n.

Indeed, using (12) we find for t > t0(> 0) ,
∫ t

0
|sα−1Eα(λis

α)|ds

=
∫ t0

0
|sα−1Eα(λis

α)|ds+
∫ t

t0
|sα−1Eα(λis

α)|ds

=
∫ t0

0
|sα−1Eα(λis

α)|ds+
∫ t

t0

∣∣∣∣∣sα−1

(
−

p

∑
k=2

(λisα )−k

Γ(1−αk)
+O(|λis

α |−1−p)

)∣∣∣∣∣ds

=
∫ t0

0
|sα−1Eα(λis

α)|ds+
∫ t

t0

∣∣∣∣∣−
p

∑
k=2

(λi)−ks−αk+α−1

Γ(1−αk)
+O(|λi|−1−ps−α p−1)

∣∣∣∣∣ds

�
∫ t0

0
sα−1Eα(|λi|sα)ds+

∫ t

t0

{
p

∑
k=2

|λi|−ks−αk+α−1

|Γ(1−αk)| +O(|λi|−1−ps−α p−1)

}
ds

=
∞

∑
k=0

|λi|k
Γ(αk+1)

∫ t0

0
sαk+α−1ds+

p

∑
k=2

|λi|−k

|Γ(1−αk)|
∫ t

t0
s−αk+α−1ds+O(|λi|−1−pt−α p)

=
∞

∑
k=0

|λi|ktαk+α
0

Γ(αk+2)
+

p

∑
k=2

|λi|−kt−αk+α

(−αk+1)|Γ(1−αk)| −
p

∑
k=2

|λi|−kt−αk+α
0

(−αk+1)|Γ(1−αk)|

+O(|λi|−1−pt−α p) → tα
0 Eα ,2(|λi|tα

0 )+
p

∑
k=2

|λi|−kt−αk+α
0

|Γ(2−αk)| � C0 as t → ∞.

(25)

It immediately follows that
∫ t
0 ‖sα−1Eα(Asα)‖ds � C for any t � 0.

Next, assume that the matrix A is similar to a Jordan canonical form, i.e., there
exists an invertible matrix T such that

J = T−1AT = diag(J1,J2, . . . ,Jr),

where Ji , 1 � i � r has the following form⎡
⎢⎢⎢⎢⎣

λi 1

λi
. . .
. . . 1

λi

⎤
⎥⎥⎥⎥⎦

ni×ni

,

and ∑r
i=1 ni = n . Obviously,

Eα(Asα) = Tdiag[Eα(J1s
α ),Eα(J2s

α), . . . ,Eα(Jrs
α )]T−1, 1 � i � r.



ULAM-HYERS STABILITY 671

Eα(Jis
α) =

∞

∑
k=0

(Jisα)k

Γ(αk+1)
=

∞

∑
k=0

(sα )k

Γ(αk+1)
Jk
i

=
∞

∑
k=0

(sα)k

Γ(αk+1)

⎡
⎢⎢⎢⎢⎣

λ k
i C1

k λ k−1
i · · · Cni−1

k λ k−ni+1
i

λ k
i

. . .
...

. . . C1
k λ k−1

i
λ k

i

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

∑∞
k=0

(λisα )k
Γ(αk+1) ∑∞

k=0
(sα )k

Γ(αk+1)C
1
k λ k−1

i · · · ∑∞
k=0

(sα )k
Γ(αk+1)C

ni−1
k λ k−ni+1

i

∑∞
k=0

(λisα )k

Γ(αk+1)
. . .

...
. . . ∑∞

k=0
(sα )k

Γ(αk+1)C
1
k λ k−1

i

∑∞
k=0

(λisα )k
Γ(αk+1)

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

Eα(λisα) 1
1!

∂
∂λi

Eα(λisα) · · · 1
(ni−1)!

(
∂

∂λi

)ni−1
Eα(λisα )

Eα(λisα )
. . .

...
. . . 1

1!
∂

∂λi
Eα(λisα)

Eα(λisα)

⎤
⎥⎥⎥⎥⎥⎦ ,

where Cj
k , 1 � j � ni−1 are the binomial coefficients.

For t > t0(> 0) , we get

∫ t

0

∣∣∣∣∣sα−1 1
j!

(
∂

∂λi

) j

Eα(λis
α)

∣∣∣∣∣ds

=
∫ t0

0

∣∣∣∣∣sα−1 1
j!

(
∂

∂λi

) j

Eα(λis
α)

∣∣∣∣∣ds+
∫ t

t0

∣∣∣∣∣sα−1 1
j!

(
∂

∂λi

) j

Eα(λis
α )

∣∣∣∣∣ds

�
∫ t0

0

∞

∑
k=0

k(k−1) · · ·(k− j +1)|λ |k− jsαk+α−1

j!Γ(αk+1)
ds

+
∫ t

t0

∣∣∣∣∣sα−1 1
j!

(
∂

∂λi

) j
{
−

p

∑
k=2

(λisα)−k

Γ(1−αk)
+O(|λis

α |−1−p)

}∣∣∣∣∣ds

=
∞

∑
k=0

k(k−1) · · ·(k− j +1)|λ |k− j

j!Γ(αk+1)

∫ t0

0
sαk+α−1ds

+
∫ t

t0

∣∣∣∣∣sα−1

{
−

p

∑
k=2

(−1) j(k+ j−1)!λ−k− j
i s−αk

j!(k−1)!Γ(1−αk)
+O(|λi|−1−p− jsα(−1−p)

}∣∣∣∣∣ds

�
∞

∑
k=0

k(k−1) · · ·(k− j +1)|λ |k− jtαk+α
0

j!Γ(αk+2)

+
∫ t

t0

{
p

∑
k=2

(k+ j−1)!λ−k− j
i s−αk+α−1

j!(k−1)!|Γ(1−αk)| +O(|λi|−1−p− js−α p−1

}
ds
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= tα
0

1
j!

(
∂

∂ |λi|
) j

Eα ,2(|λi|tα
0 )+O(|λi|−1−p− jt−α p)

+
p

∑
k=2

(k+ j−1)!λ−k− j
i

j!(k−1)!|Γ(1−αk)|

(
t−αk+α

−αk+ α
− t−αk+α

0

−αk+ α

)

→ tα
0

1
j!

(
∂

∂ |λi|
) j

Eα ,2(|λi|tα
0 )+

p

∑
k=2

(k+ j−1)!|λi|−k− jt−αk+α
0

j!(k−1)!|Γ(2−αk)| � C0 as t → +∞,

where 1 � j � ni−1. Thus,
∫ t
0

∥∥sα−1Eα(Asα)
∥∥ds is bounded.

Equation (18) and Equation (23) imply that there exists a constant C such that

‖μ(t)−ν(t)‖� Cε. (26)

So the system (16) is Ulam-Hyers stable. The proof is completed. �

THEOREM 2. Consider the initial valued problem{
Dα μ(t) = Aμ(t)+ f (t),
μ(0) = C,

(27)

where A ∈ Mn , C ∈ Mn,m and f (t) , μ(t) ∈ Mn,m are matrix-valued functions. If the
eigenvalues of A satisfy

|arg(λ (A))| > απ
2

, (28)

then the system (27) is Ulam-Hyers stable.

Proof. By using the Vec(·)-notation in linear algebra, it is easy to obtain the solu-
tion of the system

μ(t) = Eα(Atα)C+
∫ t

0
(t− s)α−1Eα(A(t− s)α) f (s)ds. (29)

Consider the inequation
‖μα(t)−Aμ(t)− f (t)‖� ε. (30)

A function ν ∈ Mn,m is a solution of (30) if and only if there exists a function
g ∈ Mn,1 (which depend on ν ) such that

(i) ‖g(t)‖ � ε, ∀t ∈ [0,b)
(ii)

Dα ν(t) = Aν(t)+ f (t)+g(t), ∀t ∈ [0,b). (31)

Then, ν is a solution of the following integral inequation∥∥∥∥ν(t)−Eα(Atα)C−
∫ t

0
(t− s)α−1Eα(A(t− s)α) f (s)ds

∥∥∥∥� C1ε, (32)

where C1 is a constant.
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In fact, by (29) we have

ν(t) = Eα(Atα)C+
∫ t

0
(t − s)α−1Eα(A(t − s)α)( f (s)+g(s))ds. (33)

In view of the proof of Theorem 1, we get∥∥∥∥ν(t)−Eα(Atα)C−
∫ t

0
(t − s)α−1Eα(A(t − s)α) f (s)ds

∥∥∥∥
=
∥∥∥∥
∫ t

0
(t − s)α−1Eα(A(t − s)α)g(s)ds

∥∥∥∥=
∥∥∥∥
∫ t

0
sα−1Eα(Asα )g(t− s)ds

∥∥∥∥
� ε

∫ t

0

∥∥sα−1Eα(Asα)
∥∥ds � C1ε.

(34)

Thus,
‖μ(t)−ν(t)‖� C1ε. (35)

Then, the system (27) is Ulam-Hyers stable. The proof is completed. �

THEOREM 3. Consider the following matrix fractional differential equation

Dα μ(t) = Aμ(t)+ μ(t)B+ f (t), μ(0) = C, t ∈ (0,b), (36)

where A ∈ Mn , B ∈ Mm , C ∈ Mn,m , α ∈ (0,1) , and f (t),μ(t) ∈ Mn,m are both matrix-
valued functions. Assume that b < +∞ and that all the eigenvalues of A and B satisfy

|arg(λ (A))| > απ
2

, π � |arg(λ (B))| � k (απ/2 < k < min{π ,πα}). (37)

The system (36) is Ulam-Hyers stable.

Proof. It is easy to vertify that the general solution of the system (36) is given as

μ(t) = Eα(Atα)CEα(Btα)+
∫ t

0
(t − s)α−1Eα(A(t − s)α) f (s)Eα (B(t− s)α)ds. (38)

Consider the following inequation

‖μα(t)−Aμ(t)− μ(t)B− f (t)‖� ε. (39)

A function ν ∈ Mn,m is a solution of (39) if and only if there exists a function g ∈ Mn,1

(which depend on ν ) such that
(i) ‖g(t)‖ � ε, ∀t ∈ (0,b)
(ii)

να(t) = Aν(t)+ ν(t)B+ f (t)+g(t), ∀t ∈ (0,b). (40)

Then, ν is a solution of the following integral inequation∥∥∥∥ν(t)−Eα(Atα)CEα(Btα)+
∫ t

0
(t− s)α−1Eα(A(t − s)α) f (s)Eα (B(t − s)α)ds

∥∥∥∥�C2ε,

(41)
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where C2 is a constant. In fact, by (38) we have

ν(t) = Eα(Atα)CEα(Btα)+
∫ t

0
(t− s)α−1Eα(A(t − s)α)( f (s)+g(s))Eα (B(t− s)α)ds.

Then, by Lemma 2 we get∥∥∥∥ν(t)−Eα(Atα)CEα(Btα)−
∫ t

0
(t − s)α−1Eα(A(t − s)α) f (s)Eα (B(t− s)α)ds

∥∥∥∥
=
∥∥∥∥
∫ t

0
(t− s)α−1Eα(A(t− s)α)g(s)Eα(B(t− s)α)ds

∥∥∥∥
=
∥∥∥∥
∫ t

0
sα−1Eα(Asα)g(t− s)Eα(Bsα)ds

∥∥∥∥
�
∫ t

0

∥∥sα−1Eα(Asα)g(t− s)Eα(Bsα )
∥∥ds � ε

∫ t

0

∥∥sα−1Eα(Asα)Eα(Bsα )
∥∥ds

� ε
∫ t

0

∥∥sα−1Eα(Asα)‖‖Eα(Bsα )
∥∥ds � C1ε

∫ t

0
‖Eα(Bsα)‖ds � C1C2

1+‖B‖t.

(42)

Thus, if b < +∞
‖μ(t)−ν(t)‖� C3ε. (43)

Then, the system (36) is Ulam-Hyers stable. And if b = +∞ , the system (36) is not
Ulam-Hyers stable. The proof is completed. �
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