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INEQUALITIES OF THE JENSEN AND EDMUNDSON–LAH–RIBARIČ

TYPE FOR 3–CONVEX FUNCTIONS WITH APPLICATIONS
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(Communicated by M. Krnić)

Abstract. In this paper we derive some Jensen and Edmundson-Lah-Ribarič type inequalities for
positive linear functionals and 3-convex functions. Obtained results are then applied to general-
ized means and power means, as well as to the generalized f -divergence functional. Examples
with Zipf-Mandelbrot law are given.

1. Introduction

The Jensen inequality is perhaps the most important, and certainly the most famous
inequality in modern mathematics, and it has many applications in various branches of
mathematics.

In this paper we refer to a general form of the Jensen inequality for positive linear
functionals. In order to present our result, we first need to introduce the appropriate
setting.

Let E be a nonempty set and let L be a vector space of real-valued functions
f : E →R having the properties:

(L1) f ,g ∈ L⇒ (a f +bg)∈ L for all a,b ∈ R ;

(L2) 1111 ∈ L , i.e., if f (t) = 1 for every t ∈ E , then f ∈ L .

We also consider positive linear functionals A : L→ R . That is, we assume that:

(A1) A(a f +bg) = aA( f )+bA(g) for f ,g ∈ L and a,b ∈ R ;

(A2) f ∈ L , f (t) � 0 for every t ∈ E ⇒ A( f ) � 0 (A is positive).

Since it was proved, the famous Jensen inequality and its converses have been ex-
tensively studied by many authors and have been generalized in numerous directions.
Jessen [17] gave the following generalization of Jensen’s inequality for convex func-
tions (see also [25, p. 47]):
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THEOREM 1. ([17]) Let L satisfy properties (L1) and (L2) on a nonempty set
E , and assume that φ is a continous convex function on an interval I ⊂ R . If A is a
positive linear functional with A(1) = 1 , then for all f ∈ L such that φ( f ) ∈ L we have
A( f ) ∈ I and

φ(A( f )) � A(φ( f )). (1)

The following result is one of the most famous converses of the Jensen inequality
known as the Edmundson-Lah-Ribarič inequality, and it was proved in [2] by Beesack
and Pečarić (see also [25, p. 98]):

THEOREM 2. ([2]) Let φ be convex on the interval I = [m,M] such that −∞ <
m < M < ∞ . Let L satisfy conditions (L1) and (L2) on E and let A be any positive
linear functional on L with A(1) = 1 . Then for every f ∈ L such that φ( f ) ∈ L (so
that m � f (t) � M for all t ∈ E ), we have

A(φ( f )) � M−A( f )
M−m

φ(m)+
A( f )−m
M−m

φ(M). (2)

For some recent results on the converses of the Jensen inequality, the reader is
referred to [6], [12], [13], [14], [15], [16], [19], [20] and [26].

Unlike the results from the above mentioned papers, which require convexity of
the involved functions, the main objective of this paper is to derive a class of inequalities
of the Jensen and Edmundson-Lah-Ribarič type that hold for 3-convex functions.

Definition of the n -convex function is characterized by nth -order divided differ-
ence. The nth -order divided difference of a function f : [a,b]→ R at mutually distinct
points t0, t1, . . . ,tn ∈ [a,b] is defined recursively by

[ti] f = f (ti), i = 0, . . . ,n,

[t0, . . . ,tn] f =
[t1, . . . ,tn] f − [t0, . . . ,tn−1] f

tn− t0
.

The value [t0, . . . ,tn] f is independent of the order of the points t0, . . . ,tn . This definition
may be extended to include the case in which some or all the points coincide (see [25,
p. 14]).

A function f : [a,b]→ R is said to be n -convex (n � 0) if and only if for all
choices of (n+1) distinct points t0,t1, . . . ,tn ∈ [a,b] , we have [t0, . . . ,tn] f � 0.

This paper is organized in the following manner: main results, that are inequalities
of the Jensen and Edmundson-Lah-Ribarič type for 3-convex functions, are given in
Section 2; application of the main results to the generalized means, with examples to the
power means, are given in Section 3; application of the main results to the generalized
f -divergence functional is given in Section 4, and finally in section 5 the results from
the previous section are applied to the Zipf-Mandelbrot law.
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2. Results

Throughout this paper, whenever mentioning the interval [m,M] , we assume that
−∞ < m < M < ∞ holds.

THEOREM 3. Let L satisfy conditions (L1) and (L2) on a non-empty set E and let
A be any positive linear functional on L with A(1111) = 1 . Let φ be a 3-convex function
on an interval of real numbers I whose interior contains the interval [m,M] . Then

A [(M1111− f )( f −m1111)]
M−m

(
φ(M)−φ(m)

M−m
−φ ′+(m)

)

�M−A( f )
M−m

φ(m)+
A( f )−m
M−m

φ(M)−A(φ( f )) (3)

�A [(M1111− f )( f −m1111)]
M−m

(
φ ′−(M)− φ(M)−φ(m)

M−m

)

holds for any f ∈ L such that φ ◦ f ∈ L and m � f (t) � M for t ∈ E . If the function
−φ is 3-convex, then the inequalities are reversed.

Proof. We start with a scalar identity for t ∈ [m,M] :

M− t
M−m

φ(m)+
t−m
M−m

φ(M)−φ(t)

=
M− t
M−m

(φ(m)−φ(t))+
t−m
M−m

(φ(M)−φ(t))

=
(M− t)(t−m)

M−m

(
φ(M)−φ(t)

M− t
− φ(t)−φ(m)

t−m

)

=(M− t)(t−m)[m,t,M]φ .

It follows that

M− t
M−m

φ(m)+
t−m
M−m

φ(M)−φ(t) = (M− t)(t−m)[m,t,M]φ (4)

holds for every t ∈ [m,M] .
Since the function φ is 3-convex, we have [t0,t1,t2,t3]φ � 0 for every choice of

the points t0, t1, t2, t3 ∈ [m,M] . Let t0 = m , t3 = M and t1 < t2 . From the definition and
main properties of the divided differences we get the following relation:

0 � [m, t1,t2,M]φ = [t1,m,M,t2]φ =
[m,M, t2]φ − [t1,m,M]φ

t2− t1

=
[m,t2,M]φ − [m,t1,M]φ

t2− t1
,

so we have obtained that

[m,t2,M]φ − [m,t1,M]φ � 0
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holds for any t1 < t2 , that is, the function [m,t,M]φ is non-decreasing on [m,M] . It
follows that the function [m,t,M]φ attains its minimal and maximal value in the points
m and M respectively. We can calculate those bounds:

[m,m,M]φ =
1

M−m

(
φ(M)−φ(m)

M−m
−φ ′+(m)

)

[m,M,M]φ =
1

M−m

(
φ ′−(M)− φ(M)−φ(m)

M−m

)
(5)

Now, from (4) and (5) we have

(M− t)(t−m)
M−m

(
φ(M)−φ(m)

M−m
−φ ′+(m)

)

� M− t
M−m

φ(m)+
t−m
M−m

φ(M)−φ(t)

� (M− t)(t−m)
M−m

(
φ ′−(M)− φ(M)−φ(m)

M−m

)
(6)

for any t ∈ [m,M] . The function f satisfies the bounds

m � f (t) � M,

so we can replace t with f (t) in (6) and obtain:

(M− f (t))( f (t)−m)
M−m

(
φ(M)−φ(m)

M−m
−φ ′+(m)

)

�M− f (t)
M−m

φ(m)+
f (t)−m
M−m

φ(M)−φ( f (t))

� (M− f (t))( f (t)−m)
M−m

(
φ ′−(M)− φ(M)−φ(m)

M−m

)
.

Functional A is linear and positive, and such that A(1111) = 1, so when we apply it to the
previous inequalities we get the following:

A [(M1111− f )( f −m1111)]
M−m

(
φ(M)−φ(m)

M−m
−φ ′+(m)

)

�M−A( f )
M−m

φ(m)+
A( f )−m
M−m

φ(M)−A(φ( f ))

�A [(M1111− f )( f −m1111)]
M−m

(
φ ′−(M)− φ(M)−φ(m)

M−m

)
,

which concludes the proof. �

Theorem 3 can be utilized for obtaining Jensen-type inequalities for 3-convex
functions.
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THEOREM 4. Let L satisfy conditions (L1) and (L2) on a non-empty set E and let
A be any positive linear functional on L with A(1111) = 1 . Let φ be a 3-convex function
on an interval of real numbers I whose interior contains the interval [m,M] . Then

(M−A( f ))(A( f )−m)
M−m

(
φ(M)−φ(m)

M−m
−φ ′+(m)

)

− A [(M1111− f )( f −m1111)]
M−m

(
φ ′−(M)− φ(M)−φ(m)

M−m

)
(7)

�A(φ( f ))−φ(A( f )) � (M−A( f ))(A( f )−m)
M−m

(
φ ′−(M)− φ(M)−φ(m)

M−m

)

− A [(M1111− f )( f −m1111)]
M−m

(
φ(M)−φ(m)

M−m
−φ ′+(m)

)

holds for any f ∈ L such that φ ◦ f ∈ L and m � f (t) � M for t ∈ E . If the function
−φ is 3-convex, then the inequalities are reversed.

Proof. Function φ ◦ f belongs to L , which means that the function f satisfies the
bounds m � f (t) � M . It follows that m � A( f ) � M , so we can replace t with A( f )
in the relation (6) and obtain

(M−A( f ))(A( f )−m)
M−m

(
φ(M)−φ(m)

M−m
−φ ′+(m)

)

�M−A( f )
M−m

φ(m)+
A( f )−m
M−m

φ(M)−φ(A( f )) (8)

� (M−A( f ))(A( f )−m)
M−m

(
φ ′−(M)− φ(M)−φ(m)

M−m

)
.

When we multiply the relation (3) from Theorem 3 by −1 we get

−A [(M1111− f )( f −m1111)]
M−m

(
φ ′−(M)− φ(M)−φ(m)

M−m

)

�−M−A( f )
M−m

φ(m)− A( f )−m
M−m

φ(M)+A(φ( f )) (9)

�−A [(M1111− f )( f −m1111)]
M−m

(
φ(M)−φ(m)

M−m
−φ ′+(m)

)
.

Inequalities (7) follow by adding (8) to (9). �

3. Applications to generalized means

Let I = 〈a,b〉 , −∞ � a < b � ∞ , and let ψ : I → R be continuous and strictly
monotonic. Suppose that L and A satisfy the conditions L1, L2 and A1, A2 with
A(1111) = 1 on a non-empty set E , and that ψ( f ) ∈ L for some f ∈ L . Generalized mean
for f ∈ L with respect to the operator A and the function ψ is defined by

Mψ ( f ,A) = ψ−1 (A(ψ( f ))) . (10)
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Some inequalities regarding the generalized mean and its special cases can be
found in [1], [4], [16], [19] and [21].

The following results give us inequalities of the Edmundson-Lah-Ribarič and Jensen
type respectively for the generalized means.

THEOREM 5. Let I ⊂R be such that its interior contains the interval [m,M] , and
let ψ ,χ : I→ R be continuous and strictly monotonic. Suppose that L and A satisfy
the conditions L1 , L2 and A1 , A2 with A(1111) = 1 on a non-empty set E , and let f ∈ L
be such that ψ( f ),χ( f ) ∈ L. Let us assume that the function φ = χ ◦ψ−1 is 3-convex.
Then

A
(
[Mψ1111−ψ( f )][ψ( f )−mψ1111]

)
Mψ −mψ

(
χ(M)− χ(m)
ψ(M)−ψ(m)

− [χ ◦ψ−1]′+(mψ )
)

�ψ(M)−A(ψ( f ))
ψ(M)−ψ(m)

χ(m)+
A(ψ( f ))−ψ(m)

ψ(M)−ψ(m)
χ(M)− χ(Mχ( f ,A)) (11)

�
A

(
[Mψ1111−ψ( f )][ψ( f )−mψ1111]

)
Mψ −mψ

(
[χ ◦ψ−1]′−(Mψ )− χ(M)− χ(m)

ψ(M)−ψ(m)

)

for every f ∈ L such that m � f (t) � M for t ∈ [m,M] , where [mψ ,Mψ ] = ψ([m,M]) .
If −φ is 3-convex, then the inequalities in (11) are reversed.

Proof. Function ψ is strictly monotonic. If ψ is increasing, then mψ = ψ(m)
and Mψ = ψ(M) , and if ψ is decreasing, then mψ = ψ(M) and Mψ = ψ(m) . Since
m � f (t) � M for t ∈ [m,M] , we have mψ � ψ( f (t)) � Mψ for every t ∈ [m,M] . We
see that the conditions of Theorem 3 are satisfied, so we can obtain (11) by making
substitutions

m = mψ , M = Mψ , φ = χ ◦ψ−1 and f = ψ ◦ f

in (3). �

THEOREM 6. Let I ⊂R be such that its interior contains the interval [m,M] , and
let ψ ,χ : I→ R be continuous and strictly monotonic. Suppose that L and A satisfy
the conditions L1 , L2 and A1 , A2 with A(1111) = 1 on a non-empty set E , and let f ∈ L
be such that ψ( f ),χ( f ) ∈ L. Let us assume that the function φ = χ ◦ψ−1 is 3-convex.
Then

(Mψ −A(ψ( f )))(A(ψ( f ))−mψ)
Mψ −mψ

(
χ(M)− χ(m)
ψ(M)−ψ(m)

− [χ ◦ψ−1]′+(mψ )
)

− A
[
(Mψ1111−ψ( f ))(ψ( f )−mψ1111)

]
Mψ −mψ

(
[χ ◦ψ−1]′−(Mψ )− χ(M)− χ(m)

ψ(M)−ψ(m)

)

�χ(Mχ( f ,A))− χ(Mψ( f ,A)) (12)

�(Mψ −A(ψ( f )))(A(ψ( f ))−mψ)
Mψ −mψ

(
[χ ◦ψ−1]′−(Mψ )− χ(M)− χ(m)

ψ(M)−ψ(m)

)

− A
(
[Mψ1111−ψ( f )][ψ( f )−mψ1111]

)
Mψ −mψ

(
χ(M)− χ(m)
ψ(M)−ψ(m)

− [χ ◦ψ−1]′+(mψ )
)
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for every f ∈ L such that m � f (t) � M for t ∈ [m,M] , where [mψ ,Mψ ] = ψ([m,M]) .
If −φ is 3-convex, then the inequalities in (12) are reversed.

Proof. The inequalities (12) are obtained by making the same substitutions in the
relation (7) from Theorem 4 as in the proof of the previous theorem. �

REMARK 1. With notations as in Theorems 5 and 6, suppose that the function
χ ◦ψ−1 is differentiable in points ψm and ψM . In this case, expressions ψm and ψM

can respectively be replaced by ψ(m) and ψ(M) , due to the symmetry. In addition,
utilizing the chain rule, the expressions

[χ ◦ψ−1]′−(ψ(M)) and [χ ◦ψ−1]′+(ψ(m))

can be rewritten in a more suitable form, that is,

[χ ◦ψ−1]′−(ψ(M)) =
χ ′(M)
ψ ′(M)

and (χ ◦ψ−1)′+(ψ(m)) =
χ ′(m)
ψ ′(m)

.

Examples with power means

Suppose that L and A satisfy the conditions L1, L2 and A1, A2 with A(1111) = 1,
on a non-empty set E . The power mean of a function f ∈ L with respect to the operator
A is a special case of the generalized mean, and it is defined for r ∈ R with:

M[r]( f ,A) =
{

(A( f r))1/r : r 
= 0
exp(A(log f )) : r = 0

(13)

where f (t) > 0 for t ∈ E , f r ∈ L and log f ∈ L .
Following two results are simple consequences of Theorem 5 and Theorem 6, that

is, the series of inequalities in (11) and (12) with particular choices of functions χ and
ψ respectively. The first result is a Edmundson-Lah-Ribarič type inequality for power
means.

COROLLARY 1. Let I ⊂ R be such that its interior contains the interval [m,M] .
Suppose that L and A satisfy the conditions L1 , L2 and A1 , A2 with A(1111) = 1 on a
non-empty set E , and let f ∈ L be such that 0 < m � f (t) � M for t ∈ E , f r, f s ∈ L
for r,s ∈R and log f ∈ L.

• If any of the relations 0 � s � r or 0 � 2r � s or r < 0 < s or 2r < s < r < 0
hold, then

A([Mr1111− f r][ f r−mr1111])
Mr−mr

(
Ms−ms

Mr−mr −ms−r
)

�Mr−M[r]( f ,A)r

Mr−mr ms +
M[r]( f ,A)r−mr

Mr−mr Ms−M[s]( f ,A)s (14)

�
A

(
[Mψ1111−ψ( f )][ψ( f )−mψ1111]

)
Mr−mr

(
Ms−r− Ms−ms

Mr−mr

)
.
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If r � s � 0 or s � 2r � 0 or s < 0 < r or 0 < r < s < 2r , then the inequalities
in (14) are reversed.

• If r 
= 0 , then

A([Mr1111− f r][ f r−mr1111])
Mr−mr

(
logM− logm

Mr−mr − 1
rmr

)

�Mr−M[r]( f ,A)r

Mr−mr logm+
M[r]( f ,A)r−mr

Mr−mr logM− log[M[0]( f ,A)] (15)

�A([Mr1111− f r][ f r−mr1111])
Mr−mr

(
1

rMr −
logM− logm

Mr−mr

)
.

• If s > 0 , then

A([logM1111− log f ][log f − logm1111])
logM− logm

(
Ms−ms

logM− logm
− sms

)

� logM− log[M[0]( f ,A)]
logM− logm

ms +
log[M[0]( f ,A)]− logm

logM− logm
Ms−M[s]( f ,A)s (16)

�A([logM1111− log f ][log f − logm1111])
logM− logm

(
sMs− Ms−ms

logM− logm

)
,

and if s < 0 , the inequality signs in (16) are reversed.

Proof. Let us set χ(t) = ts and ψ(t) = tr , where s and r are mutually different
real parameters not equal to zero. Then the function

(
χ ◦ψ−1

)
(t) = t

s
r is 3-convex on

R+ if 0 � s
r � 1 or s

r � 2. It is possible in each of the following four cases: 0 � s � r or

r � s � 0 or 0 � 2r � s or s � 2r � 0. We calculate
(
χ ◦ψ−1

)′ (t) = s
r t

s−r
r . Since the

function ψ(t)= tr is increasing for r > 0 we have mψ = ψ(m) and Mψ = ψ(M) . Now,
considering (11) with the above functions χ and ψ on the interval [m,M] , we obtain
(14). For r < 0 the function ψ(t) = tr is decreasing, which means that mψ = ψ(M)
and Mψ = ψ(m) , so those inequalities are reversed.

On the other hand, the function −(
χ ◦ψ−1

)
(t) =−t

s
r is 3-convex on R+ if 0 �

s
r < 0 or 1 < s

r < 2, which is possible in any of the following cases: r < 0 < s or
s < 0 < r or 0 < r < s < 2r or 2r < s < r < 0. Again, if r > 0 the function ψ(t) = tr

is increasing, so we get the inequalities (14) with the reversed sign of inequality by
setting χ(t) = ts and ψ(t) = tr in the reversed inequalities (11), and if r < 0, we get
exactly inequalities (14).

It remains to consider the cases when one of the parameters r and s is equal to
zero. If s = 0, then setting χ(t) = log t and ψ(t) = tr , it follows that

(
χ ◦ψ−1

)
(t) =

1
r logt . Clearly, this function is 3-convex for r > 0, while −χ ◦ψ−1 is 3-convex for

r < 0. Moreover, since
(
χ ◦ψ−1

)′ (t) = 1
rt , after a straightforward computation and

taking into account that the function ψ(t) = tr is increasing for r > 0 and decreasing
for r < 0, we obtain (15).
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Finally, if r = 0, then setting χ(t) = ts and ψ(t) = logt , it follows that the func-
tion

(
χ ◦ψ−1

)
(t) = exp(st) is 3-convex for s > 0. The function ψ(t) = logt is in-

creasing, so after calculating
(
χ ◦ψ−1

)′ (t) = sexp(st) , from (11) we get (16). �
Next result is a Jensen type inequality for power means, and it is obtained from

Theorem 6 in an analogue way as described in the proof of the previous corollary.

COROLLARY 2. Let I ⊂ R be such that its interior contains the interval [m,M] .
Suppose that L and A satisfy the conditions L1 , L2 and A1 , A2 with A(1111) = 1 on a
non-empty set E , and let f ∈ L be such that 0 < m � f (t) � M for t ∈ E , f r, f s ∈ L
for r,s ∈R and log f ∈ L.

• If any of the relations 0 � s � r or 0 � 2r � s or r < 0 < s or 2r < s < r < 0
hold, then

(Mr−M[r]( f ,A)r)(M[r]( f ,A)r−mr)
Mr−mr

(
Ms−ms

Mr−mr −
s
r
ms−r

)

− A [(Mr1111− f r)( f r−mr1111)]
Mr−mr

(
s
r
Ms−r− Ms−ms

Mr−mr

)

�M[s]( f ,A)s−M[r]( f ,A)s (17)

� (Mr−M[r]( f ,A)r)(M[r]( f ,A)r−mr)
Mr−mr

(
s
r
Ms−r− Ms−ms

Mr−mr

)

− A [(Mr1111− f r)( f r−mr1111)]
Mr−mr

(
Ms−ms

Mr−mr −
s
r
ms−r

)

If r � s � 0 or s � 2r � 0 or s < 0 < r or 0 < r < s < 2r , then the inequalities
in (17) are reversed.

• If r 
= 0 , then

(Mr−M[r]( f ,A)r)(M[r]( f ,A)r−mr)
Mr−mr

(
logM− logm

Mr−mr − 1
rmr

)

− A([Mr1111− f r][ f r−mr1111])
Mr−mr

(
1

rMr −
logM− logm

Mr−mr

)

� log[M[0]( f ,A)]− log[M[r]( f ,A)] (18)

� (Mr−M[r]( f ,A)r)(M[r]( f ,A)r−mr)
Mr−mr

(
1

rMr −
logM− logm

Mr−mr

)

− A([Mr1111− f r][ f r−mr1111])
Mr−mr

(
logM− logm

Mr−mr − 1
rmr

)
.

• If s > 0 , then

(logM− log[M[0]( f ,A))(log[M[0]( f ,A)− logm)
logM− logm

(
Ms−ms

logM− logm
− sms

)

− A([logM1111− log f ][log f − logm1111])
logM− logm

(
sMs− Ms−ms

logM− logm

)
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�M[s]( f ,A)s−M[0]( f ,A)s (19)

� (logM− log[M[0]( f ,A))(log[M[0]( f ,A)− logm)
logM− logm

(
sMs− Ms−ms

logM− logm

)

− A([logM1111− log f ][log f − logm1111])
logM− logm

(
Ms−ms

logM− logm
− sms

)

and if s < 0 , the inequality signs in (19) are reversed.

4. Applications to Csiszár f -divergence

Let us denote the set of all probability distributions by P , that is we say pppp =
(p1, . . . , pn) ∈ P if pi ∈ [0,1] for i = 1, . . . ,n and ∑n

i=1 pi = 1.
Many theoretic divergence measures between two probability distributions (such

as Kullback-Leibler divergence,Hellinger divergence, Renyi divergence, Bhattacharyya
divergence, harmonic divergence, Jeffreys divergence, triangular divergence etc.) have
been introduced and extensively studied.

The applications of these measures can be found in the analysis of contingency
tables [11], in approximation of probability distributions [7], [22], in signal processing
[18], and in pattern recognition [3], [5].

Csiszár [8]–[9] introduced the f−divergence functional as

Df (pppp,qqqq) =
n

∑
i=1

qi f

(
pi

qi

)
, (20)

where f : [0,+∞〉 is a convex function, and it represent a “distance function” on the set
of probability distributions P .

All of the mentioned divergences are special cases of Csiszár f -divergence for
different choices of the function f .

As in Csiszár [9], we interpret undefined expressions by

f (0) = lim
t→0+

f (t), 0 · f
(

0
0

)
= 0,

0 · f
(a

0

)
= lim

ε→0+
f
(a

ε

)
= a · lim

t→∞

f (t)
t

.

In this paper we will study a generalization of the f -divergence functional for
a different class of functions. Throughout this section, when mentioning the interval
[m,M] , we assume that [m,M] ⊆ R+ . For a 3-convex function f : [m,M] → R we
define generalized f -divergence functional

D̃ f (pppp,qqqq) =
n

∑
i=1

qi f

(
pi

qi

)
. (21)

As an application of Theorem 3 we get an Edmundson-Lah-Ribarič type inequality
for the above defined generalized f -divergence functional.
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THEOREM 7. Let [m,M]⊂R be an interval such that m � 1 � M and let f : [m,M]
→R be a 3-convex function. Let pppp = (p1, . . . , pn) and pppp = (q1, . . . ,qn) be probability
distributions such that pi/qi ∈ [m,M] for every i = 1, . . . ,n. Then we have

1
M−m

n

∑
i=1

qi

(
M− pi

qi

)(
pi

qi
−m

)(
f (M)− f (m)

M−m
− f ′+(m)

)

� M−1
M−m

f (m)+
1−m
M−m

f (M)− D̃ f (pppp,qqqq) (22)

� 1
M−m

n

∑
i=1

qi

(
M− pi

qi

)(
pi

qi
−m

)(
f ′−(M)− f (M)− f (m)

M−m

)

Proof. Let xxxx = (x1, . . . ,xn) such that xi ∈ [m,M] for i = 1, . . . ,n . For a 3-convex
function φ , in the relation (3) we can replace

f ←→ xxxx, and A(xxxx) =
n

∑
i=1

pixi.

In that way we get

∑n
i=1 pi(M− xi)(xi−m)

M−m

(
φ(M)−φ(m)

M−m
−φ ′+(m)

)

� M− x
M−m

φ(m)+
x−m
M−m

φ(M)−
n

∑
i=1

piφ(xi)

�∑n
i=1 pi(M− xi)(xi−m)

M−m

(
φ ′−(M)− φ(M)−φ(m)

M−m

)
,

where x = ∑n
i=1 pixi . Since the function f is 3-convex, in the previous relation we can

set
φ = f , pi = qi and xi =

pi

qi
,

and after calculating

x =
n

∑
i=1

qi
pi

qi
=

n

∑
i=1

pi = 1

we get (22). �
In a similar way, as an application of Theorem 4, an inequality of the Jensen type

for the generalized f -divergence functional follows.

THEOREM 8. Let [m,M]⊂R be an interval such that m � 1 � M and let f : [m,M]
→R be a 3-convex function. Let pppp = (p1, . . . , pn) and pppp = (q1, . . . ,qn) be probability
distributions such that pi/qi ∈ [m,M] for every i = 1, . . . ,n. Then we have

(M−1)(1−m)
M−m

(
f (M)− f (m)

M−m
− f ′+(m)

)

− 1
M−m

n

∑
i=1

qi

(
M− pi

qi

)(
pi

qi
−m

)(
f ′−(M)− f (M)− f (m)

M−m

)
(23)
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�D̃ f (pppp,qqqq)− f (1) � (M−1)(1−m)
M−m

(
f ′−(M)− f (M)− f (m)

M−m

)

− 1
M−m

n

∑
i=1

qi

(
M− pi

qi

)(
pi

qi
−m

)(
f (M)− f (m)

M−m
− f ′+(m)

)
.

Proof. As in the proof of the previous theorem, let xxxx = (x1, . . . ,xn) such that
xi ∈ [m,M] for i = 1, . . . ,n . For a 3-convex function φ , in the relation (7) we can
replace

f ←→ xxxx, and A(xxxx) =
n

∑
i=1

pixi

and obtain the following discrete sequence of inequalities:

(M− x)(x−m)
M−m

(
φ(M)−φ(m)

M−m
−φ ′+(m)

)

− ∑n
i=1 pi(M− xi)(xi−m)

M−m

(
φ ′−(M)− φ(M)−φ(m)

M−m

)

�
n

∑
i=1

piφ(xi)−φ(x) � (M− x)(x−m)
M−m

(
φ ′−(M)− φ(M)−φ(m)

M−m

)

− ∑n
i=1 pi(M− xi)(xi−m)

M−m

(
φ(M)−φ(m)

M−m
−φ ′+(m)

)
.

The function f is 3-convex, so in the previous relation we can set

φ = f , pi = qi and xi =
pi

qi
,

and after calculating

x =
n

∑
i=1

qi
pi

qi
=

n

∑
i=1

pi = 1

we get (23). �

EXAMPLE 1. Let pppp = (p1, . . . , pn) and pppp = (q1, . . . ,qn) be probability distribu-
tions and let [m,M] ⊂ R be an interval such that m � 1 � M and pi/qi ∈ [m,M] for
every i = 1, . . . ,n .

� Kullback-Leibler divergence of the probability distributions pppp and qqqq is defined
as

DKL(pppp,qqqq) =
n

∑
i=1

qi log
qi

pi
,

and the corresponding generating function is f (t) = t logt , t > 0. We can cal-
culate f ′′′(t) = − 1

t2
< 0, so the function − f (t) = −t log t is 3-convex. Now it

is obvious that for the Kullback-Leibler divergence the inequalities (22) and (23)
hold with reversed signs of inequality, with

f ′+(m) = logm+1 and f ′−(M) = logM +1.
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� Hellinger divergence of the probability distributions pppp and qqqq is defined as

DH(pppp,qqqq) =
1
2

n

∑
i=1

(
√

qi−√pi)2,

and the corresponding generating function is f (t) = 1
2 (1−√t)2 , t > 0. We see

that f ′′′(t) = − 3
8 t
− 5

2 < 0, so the function − f (t) = − 1
2(1−√t)2 is 3-convex. It

is clear that for the Hellinger divergence the inequalities (22) and (23) hold with
reversed signs of inequality, with

f ′+(m) =− 1
2
√

m
+

1
2

and f ′−(M) =− 1

2
√

M
+

1
2
.

� Renyi divergence of the probability distributions pppp and qqqq is defined as

Dα(pppp,qqqq) =
n

∑
i=1

qα−1
i pα

i , α ∈ R,

and the corresponding generating function is f (t) = tα , t > 0. We calculate that
f ′′′(t) = α(α−1)(α−2)tα−3 and see that the function f (t) = tα is 3-convex for
0 � α � 1 and α � 2, and − f (t) =−tα is 3-convex for α � 0 and 1 < α < 2,
and we have

f ′+(m) = αmα−1 and f ′−(M) = αMα−1.

As regards the Renyi divergence, the inequalities (22) and (23) hold for 0� α � 1
and α � 2, and if α � 0 or 1 < α < 2 the signs of inequality are reversed.

� Harmonic divergence of the probability distributions pppp and qqqq is defined as

DHa(pppp,qqqq) =
n

∑
i=1

2piqi

pi +qi
,

and the corresponding generating function is f (t) = 2t
1+t . We can calculate

f ′′′(t) = 12
(1+t)4 > 0, so the function f is 3-convex. Now it is obvious that for

the harmonic divergence the inequalities (22) and (23) hold with

f ′+(m) =
2

(1+m)2 and f ′−(M) =
2

(1+M)2 .

� Jeffreys divergence of the probability distributions pppp and qqqq is defined as

DJ(pppp,qqqq) =
1
2

n

∑
i=1

(qi− pi) log
qi

pi
,

and the corresponding generating function is f (t) = (1− t) log 1
t , t > 0. We see

that f ′′′(t) = − 1
t2
− 2

t3
< 0, so the function − f (t) = (1− t) log t is 3-convex.

Instantly we get that for the Jeffreys divergence the inequalities (22) and (23)
hold with reversed signs of inequality, with

f ′+(m) = logM− 1
M

+1 and f ′−(M) = logm− 1
m

+1.
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5. Applications to Zipf-Mandelbrot law

Benoit Mandelbrot in 1966 gave improvement of Zipf law for the count of the low-
rank words. Various scientific fields use this law for different purposes, for example in-
formation sciences use it for indexing [10, 27], ecological field studies in predictability
of ecosystem [24], in music is used to determine aesthetically pleasing music [23].

Zipf-Mandelbrot law is a discrete probability distribution with parameters N ∈N ,
q,s ∈ R such that q � 0 and s > 0, possible values {1,2, . . . ,N} and probability mass
function

f (i;N,q,s) =
1/(i+q)s

HN,q,s
, where HN,q,s =

N

∑
i=1

1
(i+q)s . (24)

Let pppp and qqqq be Zipf-Mandelbrot laws with parameters N ∈ N , q1,q2 � 0 and
s1,s2 > 0 respectively and let us denote

mpppp,qqqq := min

{
pi

qi

}
=

HN,q2,s2

HN,q1,s1
min

{
(i+q2)s2

(i+q1)s1

}

Mpppp,qqqq := max

{
pi

qi

}
=

HN,q2,s2

HN,q1,s1
max

{
(i+q2)s2

(i+q1)s1

}
(25)

The results from the previous section can be utilized in obtaining different in-
equalities for the Zipf-Mandelbrot law. The first result that follows is a special case of
Theorem 7, and it gives us Edmundson-Lah-Ribarič type inequality for the generalized
f -divergence of the Zipf-Mandelbrot law.

COROLLARY 3. Let pppp and qqqq be Zipf-Mandelbrot laws with parameters N ∈ N ,
q1,q2 � 0 and s1,s2 > 0 respectively, and let mpppp,qqqq and Mpppp,qqqq be defined in (25). Let
f : [mpppp,qqqq,Mpppp,qqqq]→ R be a 3-convex function. Then we have

1
Mpppp,qqqq−mpppp,qqqq

(
f (Mpppp,qqqq)− f (mpppp,qqqq)

Mpppp,qqqq−mpppp,qqqq
− f ′+(mpppp,qqqq)

)

×
n

∑
i=1

1
(i+q2)s2HN,q2,s2

(
Mpppp,qqqq− (i+q2)s2HN,q2,s2

(i+q1)s1HN,q1,s1

)(
(i+q2)s2HN,q2,s2

(i+q1)s1HN,q1,s1
−mpppp,qqqq

)

� Mpppp,qqqq−1
Mpppp,qqqq−mpppp,qqqq

f (mpppp,qqqq)+
1−mpppp,qqqq

Mpppp,qqqq−mpppp,qqqq
f (Mpppp,qqqq)− D̃ f (pppp,qqqq) (26)

� 1
Mpppp,qqqq−mpppp,qqqq

(
f ′−(Mpppp,qqqq)− f (Mpppp,qqqq)− f (mpppp,qqqq)

Mpppp,qqqq−mpppp,qqqq

)

×
n

∑
i=1

1
(i+q2)s2HN,q2,s2

(
Mpppp,qqqq− (i+q2)s2HN,q2,s2

(i+q1)s1HN,q1,s1

)(
(i+q2)s2HN,q2,s2

(i+q1)s1HN,q1,s1
−mpppp,qqqq

)
.

Our next result follows directly from Theorem 8, and it represents a Jensen type
inequality for the generalized f -divergence of the Zipf-Mandelbrot law.
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COROLLARY 4. Let pppp and qqqq be Zipf-Mandelbrot laws with parameters N ∈ N ,
q1,q2 � 0 and s1,s2 > 0 respectively, and let mpppp,qqqq and Mpppp,qqqq be defined in (25). Let
f : [mpppp,qqqq,Mpppp,qqqq]→ R be a 3-convex function. Then we have

(Mpppp,qqqq−1)(1−mpppp,qqqq)
Mpppp,qqqq−mpppp,qqqq

(
f (Mpppp,qqqq)− f (mpppp,qqqq)

Mpppp,qqqq−mpppp,qqqq
− f ′+(mpppp,qqqq)

)

− 1
Mpppp,qqqq−mpppp,qqqq

(
f ′−(Mpppp,qqqq)− f (Mpppp,qqqq)− f (mpppp,qqqq)

Mpppp,qqqq−mpppp,qqqq

)

×
n

∑
i=1

1
(i+q2)s2HN,q2,s2

(
Mpppp,qqqq− (i+q2)s2HN,q2,s2

(i+q1)s1HN,q1,s1

)(
(i+q2)s2HN,q2,s2

(i+q1)s1HN,q1,s1
−mpppp,qqqq

)

�D̃ f (pppp,qqqq)− f (1) (27)

�(Mpppp,qqqq−1)(1−mpppp,qqqq)
Mpppp,qqqq−mpppp,qqqq

(
f ′−(Mpppp,qqqq)− f (Mpppp,qqqq)− f (mpppp,qqqq)

Mpppp,qqqq−mpppp,qqqq

)

− 1
Mpppp,qqqq−mpppp,qqqq

(
f (Mpppp,qqqq)− f (mpppp,qqqq)

Mpppp,qqqq−mpppp,qqqq
− f ′+(mpppp,qqqq)

)

×
n

∑
i=1

1
(i+q2)s2HN,q2,s2

(
Mpppp,qqqq− (i+q2)s2HN,q2,s2

(i+q1)s1HN,q1,s1

)(
(i+q2)s2HN,q2,s2

(i+q1)s1HN,q1,s1
−mpppp,qqqq

)
.

REMARK 2. Corollary 3 and Corollary 4 can easily be applied to Kullback-Leibler
divergence, Hellinger divergence, Renyi divergence, harmonic divergence or Jeffreys
divergence considering Example 1.
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