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Abstract. In this work, we establish Lyapunov-type inequalities for the fractional boundary value
problems with Hilfer fractional derivative operator, the results of this paper are new and gener-
alize and improve some early results in the literature.

1. Introduction

The well-known result of Lyapunov [10] states that if u(t) is a nontrivial solution
of the differential system

u′′(t)+ r(t)u(t) = 0, t ∈ (a,b),

u(a) = 0 = u(b),
(1.1)

where r(t) is a continuous function defined in [a,b] , then

∫ b

a
|r(t)|dt >

4
b−a

, (1.2)

and the constant 4 cannot be replaced by a larger number.
Since the appearance of Lyapunov’s fundamental paper, there are many improve-

ments and generalizations of (1.2) in some literatures. A thorough literature review of
continuous and discrete Lyapunov-type inequalities and their applications can be found
in the survey articles by Cheng [2], Brown and Hinton [1] and Tiryaki [11].

The study of Lyapunov-type inequalities for the differential equation depends on a
fractional differential operator was initiated by Rui A. C. Ferreira [4]. He first obtained
a Lyapunov-type inequality when the differential equation depends on the Riemann-
Liouville fractional derivative, the main result is as follows.
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THEOREM 1.1. If the following fractional boundary value problem (FBVP)

(Dα
a+u)(t)+q(t)u(t) = 0, a < t < b, 1 < α � 2, (1.3)

u(a) = 0 = u(b), (1.4)

has a nontrivial solution, where q is a real and continuous function, then

∫ b

a
|q(s)|ds > Γ(α)

(
4

b−a

)α−1

. (1.5)

Meanwhile, a Lyapunov-type inequality when the differential equation depends on
the Caputo fractional derivative was also obtained by Rui A. C. Ferreira [5].

THEOREM 1.2. If a nontrivial continuous solution of the fractional boundary
value problem (FBVP)

(CDα
a+u)(t)+q(t)u(t) = 0, a < t < b, 1 < α � 2, (1.6)

u(a) = 0 = u(b), (1.7)

exists, where q is a real and continuous function, then∫ b

a
|q(s)|ds >

Γ(α)αα

[(α −1)(b−a)]α−1 . (1.8)

Recently, M. Jleli and B. Samet [8] investigated Lyapunov-type inequalities for
fractional differential equation involving the Caputo fractional derivative under two
types of mixed boundary conditions. The results are as follows.

THEOREM 1.3. If a nontrivial continuous solution of the fractional boundary
value problem

(CDα
a+u)(t)+q(t)u(t) = 0, a < t < b, 1 < α � 2, (1.9)

u(a) = u′(b) = 0, (1.10)

exists, where q is a real and continuous function in [a,b], then∫ b

a
(b− s)α−2|q(s)|ds � Γ(α)

max{α −1,2−α}(b−a)
. (1.11)

THEOREM 1.4. If a nontrivial continuous solution of the fractional boundary
value problem

(CDα
a+u)(t)+q(t)u(t) = 0, a < t < b, 1 < α � 2, (1.12)

u′(a) = u(b) = 0, (1.13)

exists, where q is a real and continuous function in [a,b], then∫ b

a
(b− s)α−1|q(s)|ds � Γ(α). (1.14)
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Very recently, S. Dhar et al. [3] investigate the equation (1.3) with the following
fractional integral boundary conditions:

(I2−α
a+ u)(a) = 0 = (I2−α

a+ u)(b). (1.15)

They obtain a series of Lyapunov-type inequalities.
Motivated by the above works, we establish in this paper Lyapunov-type inequal-

ities for the fractional differential equation with Hilfer fractional derivative operator,

(Dα ,β
a+ u)(t)+q(t)u(t) = 0, a < t < b, 1 < α � 2, 0 � β � 1, (1.16)

under the boundary condition

(I(2−α)(1−β )
a+ u)(a) = 0 = u′(b). (1.17)

More Cauchy type problems with Hilfer fractional derivative can be found in the
articles [13-16].

2. Preliminaries

In this section, we recall the concepts of the Riemann-Liouville fractional integral,
the Riemann-Liouville fractional derivative, the Caputo fractional derivative of order
α � 0 and the Hilfer fractional derivative of order α (n−1 < α � n , n ∈ N) , and type
0 � β � 1.

DEFINITION 2.1. [9] Let α � 0 and f be a real function defined on [a,b] . The
Riemann-Liouville fractional integral of order α is defined by (I0

a+ f ) ≡ f and

(Iα
a+ f )(t) =

1
Γ(α)

∫ t

a
(t − s)α−1 f (s)ds, α > 0, t ∈ [a,b].

DEFINITION 2.2. [9] The Riemann-Liouville fractional derivative of order α � 0
is defined by (D0

a+ f ) ≡ f and

(Dα
a+ f )(t) = (DmIm−α

a+ f )(t) =
1

Γ(m−α)

( d
dt

)m ∫ t

a
(t− s)m−α−1 f (s)ds,

for α > 0, where m is the smallest integer greater or equal to α .

DEFINITION 2.3. [9] The Caputo fractional derivative of order α � 0 is defined
by (CD0

a+ f ) ≡ f and

(CDα
a+ f )(t) = (Im−α

a+ Dm f )(t) =
1

Γ(m−α)

∫ t

a
(t− s)m−α−1 f (m)(s)ds,

for α > 0, where m is the smallest integer greater or equal to α .
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DEFINITION 2.4. [6, 7] The Hilfer fractional derivative or generalized Riemann-
Liouville fractional derivative of order α (n−1 < α � n , n ∈ N) , and type 0 � β � 1
with respect to t , is defined as

(Dα ,β
a+ f )(t) =

(
Iβ (n−α)
a+

dn

dtn

(
I(1−β )(n−α)
a+ f

))
(t),

whenever the right-hand side exists.

REMARK 2.5. In the above definition, type β allows Dα ,β
a+ to interpolate con-

tinuously between the classical Riemann-Liouville fractional derivative and the Ca-
puto fractional derivative. As in the case β = 0, the definition reduces to the classical
Riemann-Liouville fractional derivative and for β = 1, it gives the Caputo fractional
derivative.

In [12], the compositional property of Riemann-Liouville fractional integral oper-
ator with the Hilfer fractional derivative operator is obtained.

LEMMA 2.6. Let f ∈ L(a,b) , n−1 < α � n, n ∈ N , 0 � β � 1 , I(n−α)(1−β )
a+ f ∈

ACk[a,b] . Then the Riemann-Liouville fractional integral Iα
a+ and the Hilfer fractional

derivative operator Dα ,β
a+ are connected by the relation

(
Iα
a+Dα ,β

a+ f
)

(t) = f (t)−
n−1

∑
k=0

(t−a)k−(n−α)(1−β )

Γ(k− (n−α)(1−β )+1)
lim

t→a+

dk

dtk

(
I(n−α)(1−β )
a+ f

)
(t).

LEMMA 2.7. For 1 < α � 2 , 0 � β � 1 , we have

(I(2−α)(1−β )
a+ (s−a)−(2−α)(1−β ))(t) = Γ(1− (2−α)(1−β )),

(I(2−α)(1−β )
a+ (s−a)1−(2−α)(1−β ))(t) = (t−a)Γ(2− (2−α)(1−β )).

Proof. By definition, we have

(I(2−α)(1−β )
a+ (s−a)−(2−α)(1−β ))(t) =

∫ t

a

(t − s)(2−α)(1−β )−1(s−a)−(2−α)(1−β ))
Γ((2−α)(1−β ))

ds

=
∫ 1

0

γ(2−α)(1−β )−1(1− γ)−(2−α)(1−β )

Γ((2−α)(1−β ))
dγ

=
B((2−α)(1−β ),1− (2−α)(1−β ))

Γ((2−α)(1−β ))
= Γ(1− (2−α)(1−β )).
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Similarly, we also have

(I(2−α)(1−β )
a+ (s−a)1−(2−α)(1−β ))(t) =

∫ t

a

(t − s)(2−α)(1−β )−1(s−a)1−(2−α)(1−β ))
Γ((2−α)(1−β ))

ds

= (t−a)
∫ 1

0

γ(2−α)(1−β )−1(1− γ)1−(2−α)(1−β )

Γ((2−α)(1−β ))
dγ

= (t−a)
B((2−α)(1−β ),2− (2−α)(1−β ))

Γ((2−α)(1−β ))
= (t−a)Γ(2− (2−α)(1−β )). �

3. Main results

We begin by writing problems (1.16)–(1.17) in its equivalent integral form.

LEMMA 3.1. We have that u∈C[a,b] is a solution to the boundary value problem
(1.16)–(1.17) if and only if u satisfies the integral equation

u(t) =
∫ b

a
G(t,s)q(s)u(s)ds,

where G(t,s) = (α−1)(b−s)α−2H(t,s)
(α−1+2β−αβ )Γ(α) and H(t,s) is given by

H(t,s) =

⎧⎪⎪⎨
⎪⎪⎩

(b−a)(2−α)(1−β )(t−a)α−1+2β−αβ−α−1+2β−αβ
α−1 (t−s)α−1(b−s)2−α ,

a � s � t � b,

(b−a)(2−α)(1−β )(t−a)α−1+2β−αβ , a � t � s � b.
(3.1)

Proof. From Lemma 2.6, u ∈C[a,b] is a solution to the boundary value problem
(1.16)–(1.17) if and only if

u(t)= c0
(t −a)−(2−α)(1−β )

Γ(1− (2−α)(1−β ))
+c1

(t−a)1−(2−α)(1−β )

Γ(2− (2−α)(1−β ))
−

∫ t

a

(t − s)α−1

Γ(α)
q(s)u(s)ds,

(3.2)
where c0 and c1 are some real constants. We apply the operator I(2−α)(1−β )

a+ to both
side of (3.2), we obtain

(I(2−α)(1−β )
a+ u)(t) = c0 + c1(t−a)− 1

Γ(2−2β + αβ )

∫ t

a
(t− s)1−2β+αβq(s)u(s)ds.

By the boundary condition (I(2−α)(1−β )
a+ u)(a) = 0, we can obtain that c0 = 0. Thus we

get

u(t) = c1
(t−a)1−(2−α)(1−β )

Γ(2− (2−α)(1−β ))
− 1

Γ(α)

∫ t

a
(t − s)α−1q(s)u(s)ds.
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The time derivative of the above equation gives

u′(t) = c1[1− (2−α)(1−β )]
(t −a)−(2−α)(1−β )

Γ(2− (2−α)(1−β))
− α −1

Γ(α)

∫ t

a
(t− s)α−2q(s)u(s)ds.

The boundary condition u′(b) = 0 yields

c1 =
(α −1)Γ(2− (2−α)(1−β ))(b−a)(2−α)(1−β )

[1− (2−α)(1−β )]Γ(α)

∫ b

a
(b− s)α−2q(s)u(s)ds.

Hence

u(t) =c1
(t−a)1−(2−α)(1−β )

Γ(2− (2−α)(1−β ))
− 1

Γ(α)

∫ t

a
(t − s)α−1q(s)u(s)ds

=
(α −1)(b−a)(2−α)(1−β )(t−a)1−(2−α)(1−β )

[1− (2−α)(1−β )]Γ(α)

∫ b

a
(b− s)α−2q(s)u(s)ds

− 1
Γ(α)

∫ t

a
(t− s)α−1q(s)u(s)ds

=
∫ b

a
G(t,s)q(s)u(s)ds.

which concludes the proof. �

LEMMA 3.2. The function H defined in Lemma 3.1 satisfies the following prop-
erty:

|H(t,s)| � b−a
α −1

max{α −1,2β −αβ} , (3.3)

where (t,s) ∈ [a,b]× [a,b] .

Proof. Obviously, H(t,s) is an increasing function of t for a � t � s � b. For
a � s � t � b , by the relation (b− s)(t − a)− (b− a)(t− s) = (b− t)(s− a) � 0, we
have b−a

t−a � b−s
t−s and

(
b−a
t−a

)(2−α)(1−β )

�
(

b− s
t − s

)(2−α)(1−β )

�
(

b− s
t − s

)2−α
,

therefore,

∂H
∂ t

= (α −1+2β −αβ )

[(
b−a
t −a

)(2−α)(1−β )

−
(

b− s
t− s

)2−α
]

� 0.

So, for a given s , H(t,s) is a decreasing function of t ∈ [s,b] . Hence,

|H(t,s)| � max{H(s,s), |H(b,s)|}.
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While

H(s,s) = (b−a)(2−α)(1−β )(s−a)α−1+2β−αβ � b−a,

|H(b,s)| =
∣∣∣∣(b−a)− α −1+2β −αβ

α −1
(b− s)

∣∣∣∣ � max

{
b−a,

2β −αβ
α −1

(b−a)
}

,

which concludes the proof. �
Now, we are ready to prove our Lyapunov-type inequality.

THEOREM 3.3. If a nontrivial continuous solution of the fractional boundary
value problem

(Dα ,β
a+ u)(t)+q(t)u(t) = 0, a < t < b, 1 < α � 2, 0 � β � 1,

(I(2−α)(1−β )
a+ u)(a) = 0 = u′(b),

exists, where q is a real and continuous function in [a,b] , then

∫ b

a
(b− s)α−2|q(s)|ds � (α −1+2β −αβ )Γ(α)

(b−a)max{α −1,2β −αβ} . (3.4)

Proof. Let B =C[a,b] be the Banach space endowedwith norm ‖u‖= sup
t∈[a,b]

|u(t)| .
It follows from Lemma 3.1 that a solution u to the boundary value problem satisfies the
integral equation

u(t) =
∫ b

a
G(t,s)q(s)u(s)ds, t ∈ [a,b].

Now, an application Lemma 3.2 yields

‖u‖� α −1
(α −1+2β −αβ )Γ(α)

· b−a
α −1

max{α −1,2β −αβ}
∫ b

a
(b−s)α−2|q(s)|ds‖u‖,

which implies that (3.4) holds. �
Let β = 0 in Theorem 3.3, we have the following result.

COROLLARY 3.4. If a nontrivial continuous solution of the fractional boundary
value problem

(Dα
a+u)(t)+q(t)u(t) = 0, a < t < b, 1 < α � 2,

(I2−α
a+ u)(a) = 0 = u′(b),

exists, where q is a real and continuous function in [a,b] , then

∫ b

a
(b− s)α−2|q(s)|ds � Γ(α)

b−a
. (3.5)
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REMARK 3.5. Let β = 1 in Theorem 3.3, then we obtain Theorem 1.3.

REMARK 3.6. In the proof of Lemma 3.1, we find that if the boundary condition

(I(2−α)(1−β )
a+ u)(a) = 0 in (1.17) changed as u(a) = 0, the conclusion is also holds.

THEOREM 3.7. If a nontrivial continuous solution of the fractional boundary
value problem

(Dα ,β
a+ u)(t)+q(t)u(t) = 0, a < t < b, 1 < α � 2, 0 � β � 1,

u(a) = 0 = u′(b),

exists, where q is a real and continuous function in [a,b] , then

∫ b

a
(b− s)α−2|q(s)|ds � (α −1+2β −αβ )Γ(α)

(b−a)max{α −1,2β −αβ} . (3.6)

Let β = 0 in Theorem 3.7, then we obtain

COROLLARY 3.8. If a nontrivial continuous solution of the fractional boundary
value problem

(Dα
a+u)(t)+q(t)u(t) = 0, a < t < b, 1 < α � 2,

u(a) = 0 = u′(b),

exists, where q is a real and continuous function in [a,b] , then

∫ b

a
(b− s)α−2|q(s)|ds � Γ(α)

b−a
. (3.7)
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