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Abstract. In this work, we establish Lyapunov-type inequalities for the fractional boundary value
problems with Hilfer fractional derivative operator, the results of this paper are new and gener-
alize and improve some early results in the literature.

1. Introduction

The well-known result of Lyapunov [10] states that if u(¢) is a nontrivial solution
of the differential system

(1) +r(t)u(t) =0, 1€ (a,b), 0
u(@) =0 =u(b),

where r(r) is a continuous function defined in [a, b], then

/| |dt>—a (1.2)

and the constant 4 cannot be replaced by a larger number.

Since the appearance of Lyapunov’s fundamental paper, there are many improve-
ments and generalizations of (1.2) in some literatures. A thorough literature review of
continuous and discrete Lyapunov-type inequalities and their applications can be found
in the survey articles by Cheng [2], Brown and Hinton [1] and Tiryaki [11].

The study of Lyapunov-type inequalities for the differential equation depends on a
fractional differential operator was initiated by Rui A. C. Ferreira [4]. He first obtained
a Lyapunov-type inequality when the differential equation depends on the Riemann-
Liouville fractional derivative, the main result is as follows.
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THEOREM 1.1. Ifthe following fractional boundary value problem (FBVP)
(D% u)(t)+q(t)u(t)=0, a<t<b,1<o<2, (1.3)
u(a) =0=u(b), (1.4)

has a nontrivial solution, where q is a real and continuous function, then

/ab|q(s)|ds>r(a) (biay_l. (1.5)

Meanwhile, a Lyapunov-type inequality when the differential equation depends on
the Caputo fractional derivative was also obtained by Rui A. C. Ferreira [5].

THEOREM 1.2. If a nontrivial continuous solution of the fractional boundary
value problem (FBVP)

(D% u)(t) +q(t)u(t)=0, a<t<b, 1<a<2, (1.6)

u(a) =0=u(b), (1.7)
exists, where q is a real and continuous function, then
b Io)a®

s)|ds > . 1.8

| talas > o (19)

Recently, M. Jleli and B. Samet [8] investigated Lyapunov-type inequalities for
fractional differential equation involving the Caputo fractional derivative under two
types of mixed boundary conditions. The results are as follows.

THEOREM 1.3. If a nontrivial continuous solution of the fractional boundary
value problem

(D% u)(t) +q()u(t) =0, a<t<b, 1<a<2, (1.9)
u(a) =u'(b) =0, (1.10)

exists, where q is a real and continuous function in [a,b], then

) . INa)
/a(b—s) 2Iq(5)|dS>max{a_l,z—a}(b—a)'

(1.11)

THEOREM 1.4. If a nontrivial continuous solution of the fractional boundary
value problem

(D% u)(t) +q()u(t) =0, a<t<b, 1<a<2, (1.12)
u'(a) =u(b) =0, (1.13)

exists, where q is a real and continuous function in [a,b], then

[ 69 gts)ids > e, (1.14)

a
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Very recently, S. Dhar et al. [3] investigate the equation (1.3) with the following
fractional integral boundary conditions:

(12 %u)(a) = 0 = (L2 “u)(b). (1.15)

They obtain a series of Lyapunov-type inequalities.
Motivated by the above works, we establish in this paper Lyapunov-type inequal-
ities for the fractional differential equation with Hilfer fractional derivative operator,

(D% u) (1) +q)u() =0, a<i<b, 1<a<2, 0<B<I, (1.16)
under the boundary condition
A2 Py (@) = 0 = /(). (1.17)

More Cauchy type problems with Hilfer fractional derivative can be found in the
articles [13-16].

2. Preliminaries

In this section, we recall the concepts of the Riemann-Liouville fractional integral,
the Riemann-Liouville fractional derivative, the Caputo fractional derivative of order
o > 0 and the Hilfer fractional derivative of order o (n—1 < o <n, n € N), and type
0<B<I.

DEFINITION 2.1. [9] Let & > 0 and f be a real function defined on [a,b]. The
Riemann-Liouville fractional integral of order ¢ is defined by (12+ f)=f and

1 i _
(1% 1)(1) = m/ (t— )% L f(s)ds, >0, 1€ ab].
DEFINITION 2.2. [9] The Riemann-Liouville fractional derivative of order o« > 0
is defined by (DY, f) = f and

1 d

05 £)0) = 100 = o ()| (- sy f(s)s,

for oo > 0, where m is the smallest integer greater or equal to o.

DEFINITION 2.3. [9] The Caputo fractional derivative of order o > 0O is defined
by (°DY f) = f and

DL = D" 1)0) = gy | =07 )

I'm—a

for oo > 0, where m is the smallest integer greater or equal to o.



712 Y. WANG AND Q. WANG

DEFINITION 2.4. [6, 7] The Hilfer fractional derivative or generalized Riemann-
Liouville fractional derivative of order x (n— 1 < o <n,n€N), and type 0 < 3 < 1
with respect to 7, is defined as

o n—o dn — n—o
052110 = (B (17 0) Yo,

whenever the right-hand side exists.

REMARK 2.5. In the above definition, type B allows Dgf to interpolate con-
tinuously between the classical Riemann-Liouville fractional derivative and the Ca-
puto fractional derivative. As in the case 3 = 0, the definition reduces to the classical
Riemann-Liouville fractional derivative and for 3 = 1, it gives the Caputo fractional
derivative.

In [12], the compositional property of Riemann-Liouville fractional integral oper-
ator with the Hilfer fractional derivative operator is obtained.

LEMMA 2.6. Let f € L(a,b), n—1<a<n, neN,0<B<1, [Py
ACK [a,b]. Then the Riemann-Liouville fractional integral I%. and the Hilfer fractional

derivative operator Dflﬁﬁ are connected by the relation

n—1 _ Nk—(n—a)(1-B) k
a ryoB o (t—a) A" )1
(0P ) 0 = 1) kg;)l"(k—(n—a)(l BT AW (1 7).

(1P s —a) 0B = T(1 - 2 - o) (1 - B),
(P s a)=C==B)) 1) = (1 — )2~ 2 - &) (1 - B)).

Proof. By definition, we have

1 ([ — S)(zfa)(lfﬁ)fl(s — a)f(zfa)(lfﬁ))

R O F—a)(i-5) »
el (] ) -C-a(1-)
- T Rawaser

_B(2-a)(1=B), 1 -(2=0a)(1-B))
F(2—a)(1-B))
=T(1-2-a)(1-p)).
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Similarly, we also have
1 (1 —s) 2 OU=B)=1 (g _ g)1-(2-)(1-B))

@ s ap et = | F2— )i~ B)
B 1 y(2*0¢)(1*ﬁ)*1(1 _ y)lf(%a)(l*ﬁ)
~i-a) Me-—au-py
P21 =B).2— 2= 0)(1-p)
@ - a) i p))
t—a)’2-2-0)(1-4)). O

ds

3. Main results

We begin by writing problems (1.16)—(1.17) in its equivalent integral form.

LEMMA 3.1. We have that u € Cla,b] is a solution to the boundary value problem
(1.16)—(1.17) if and only if u satisfies the integral equation

b
- [ 6.9)au)as
(0—1)(b—5)*2H(t s

where G(t,s) = W—aﬁ)r(&)) and H(t,s) is given by
(b—a)?~0=B)(r — g)o-1+2p—af _o—1t2p—0p 1;2_/3 O‘ﬁ( —5)% N (b—s)>",
H(t,s): a<s<t<b,
(b_a)(2—a)(1—/3)(t _a)oc—1+2[3—oc[37 a<t<s<b.
3.1

Proof. From Lemma 2.6, u € Cla,b] is a solution to the boundary value problem
(1.16)—(1.17) if and only if

(1 —a)~2-@)(1-B) (t — a)l-@-0)(1-p) _/t (t—s)%!
) Ja

r(l—2-oa)(1-p)) +C1F(2— 2-—a)(1-P (o) q(s)u(s)ds,

(3.2)

where ¢g and ¢ are some real constants. We apply the operator 1 (=0)1=P) 6 both
side of (3.2), we obtain

u(t)=cop

2Py (1) = e+ eyt —a) m / (1= 5)-2B+ B g () u(s)ds.

By the boundary condition (/ (Fo0=p u)(a) =0, we can obtain that ¢y = 0. Thus we
get
(t —a)!~-®)(=B) 1

"= a1 p) Ta

) /at (t —5)* q(s)u(s)ds.
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The time derivative of the above equation gives

(t —a)~ (-0 0-B) o—1
r2-2-ao)(1-p)) T(a)
The boundary condition u'(b) = 0 yields

W) = el -2 o)(1-p) [ =97 2aouisyas

(0 M2~ 2~ )(1-B))(b—a)> 1 H)
- a)(1-B)IT(0)

c] =

b
/a (b—)%2q(s)u(s)ds.

Hence

- (t_a)17(27a)(17ﬁ) 1 t o
u(t) =cy T C—a(-p) /a (t—5)*q(s)u(s)ds
(a— 1)(b—a)?>D0=B)(s —g)!-C-a)(1=B) b o
e prw (e
1

T [ =9 asyuts)as

b
:/ G(1,5)q(s)u(s)ds.
a
which concludes the proof. [

LEMMA 3.2. The function H defined in Lemma 3.1 satisfies the following prop-
erty:

bh—
|H(t,s)|<a—_‘Imax{a—l,Zﬁ—aﬂ}, (3.3)

where (t,s) € [a,b] X [a,b].
Proof. Obviously, H(t,s) is an increasing function of 7 for a <t < s < b. For

a<s<t<b,bytherelation (b—s)(t—a)— (b—a)(t—s)=(b—1)(s—a) >0, we

b—a b—s
have 7= < 7= and

<b_a>(20¢)(1ﬁ) (b_s)@a)(lﬁ) (b_s)2a

< < )
—a t—s t—s
therefore,

oH b—a\ > VU-B) h—s\>¢
2 oo (222) (222 o

So, for a given s, H(t,s) is a decreasing function of 7 € [s,b]. Hence,

~

|H(t,s)| < max{H(s,s),|H(b,s)|}
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While
H(s,s) = (b—a)?®U-B)(s_g)o-1#2B-eb < 4,

H(b,s)| = (b—a)—a_l;—#(b—s)‘ gmax{b—mzﬁa_%.l‘ﬁ(b—a)}

which concludes the proof. [

Now, we are ready to prove our Lyapunov-type inequality.

THEOREM 3.3. If a nontrivial continuous solution of the fractional boundary
value problem

uﬂf@@+qMMﬂ:Q a<t<b, 1<o<2,0<pB<l,
(1 Py (@) =0 = (b),

exists, where q is a real and continuous function in [a,b], then

[ gt > LB ap(e) 64

a (b—a)max{o— 1,28 —af}

Proof. Let B = Cla,b] be the Banach space endowed with norm ||u|| = sup |u(7)].
t€la,b]
It follows from Lemma 3.1 that a solution u to the boundary value problem satisfies the
integral equation

b
u(t) = / G(t,5)q(s)u(s)ds, 1€ [a,b].
Now, an application Lemma 3.2 yields

o—1 b—
o—1+2B—af)(a) o—

which implies that (3.4) holds. [

a b
[l < ( [ max{o— 1,2l3—al3}/u (b—s5)*"2[q(s)|ds]|ull.

Let § =0 in Theorem 3.3, we have the following result.

COROLLARY 3.4. If a nontrivial continuous solution of the fractional boundary
value problem

(D% u)(t)+q(t)u(r) =0, a<r<b, 1<a<2
(12 u) (@) = 0 =i/ (b),
exists, where q is a real and continuous function in [a,b], then

[ -9 lg(s)as > T

a

(3.5)

S
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REMARK 3.5. Let f =1 in Theorem 3.3, then we obtain Theorem 1.3.

EMARK 3.6. In the proof of Lemma 3.1, we find that if the boundary condition
R 3.6. In the proof of L 3.1, we find that if the boundary conditi
(I(i_a)(l_ﬁ)u)(a) =0 in (1.17) changed as u(a) = 0, the conclusion is also holds.

a

THEOREM 3.7. If a nontrivial continuous solution of the fractional boundary
value problem

(DEPuw)(1) +q(0)u(t) =0, a<i<b, 1<a<2, 0<B<L,
u(a) =0=1u'(b),

exists, where q is a real and continuous function in [a,b], then

(a—14+28—-of)T(a)
(b—a)max{o— 1,28 —oaf}

/ (b )" lq(s)lds > (3.6)

Let § =0 in Theorem 3.7, then we obtain

COROLLARY 3.8. If a nontrivial continuous solution of the fractional boundary
value problem

(D% u)(t)+q(t)u(r) =0, a<r<b, 1<o<2,

exists, where q is a real and continuous function in [a,b], then

[(e)

b
[ o= lqts)lds > 3.7

S
|
Q
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