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(Communicated by A. Witkowski)

Abstract. This paper begins with a rigorous study of convex functions with the goal of develop-
ing the majorization theorems in the form of Taylor representation. In this paper, some new types
of Green functions, introduced by Pečarić-Agarwal-Butt-Mehmood (2017) [11] and Taylor’s for-
mula, are used to obtain the identities related to majorization type inequalities. We present the
monotonicity of the linear functionals deduced from our generalized results by using the family
of (n + 1) -convex functions at a point. We give upper bounds and mean value theorems for
obtained generalized identities. At the end, we explore some applications.

1. Introduction and preliminaries

In [1], Pečarić et al. (2015) gave the results about majorization theorem for the
classical Green function and in this paper, we give the results of majorization theorem
for the newly defined four different Green functions (introduced in [11]) which are
continuous as well as convex. One can see that this is the version-II which is more
generalize version of majorization theorem discussed as in [1].

Today inequalities play a significant role in all fields of mathematics and they
present a very active and attractive field of research. Majorization theorem for convex
functions and the classical concept of majorization, due to Hardy et al. [7], have nu-
merous applications in different fields of applied sciences (see the monograph [10]). In
recent times, Majorization type results has attracted the interest of several mathemati-
cians which resulting with interesting generalizations and applications (see for example
[1]–[3], [12]–[14]). The main purpose of this paper is to extend majorization theorem
to convex function for higher order, i.e. to n -convex functions which are in a special
case convex in the usual sense.

Taylor’s formula may be viewed as being an extended form of the Mean Value
Theorem. The method involving the Taylors’s formula is one of the most widely used
methods for approximating a function by polynomials and provides an estimate of the
error involved in the approximation. The techniques that we use are based on the clas-
sical real analysis and an application of Taylor’s formula with the integral remainder
which we introduce in the sequel.
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THEOREM 1. ([17]) (Taylor’s Formula) Let f : [ϑ1,ϑ2] → R be such that f (n−1)

is absolutely continuous and n be a positive integer. Then for all x ∈ [ϑ1,ϑ2] ,

f (x) = Pn−1( f ;a,x)+Rn−1( f ;a,x), (1)

is called Taylor’s formula at the point a ∈ [ϑ1,ϑ2] . Here Pn−1( f ;a,x) is Taylor’s poly-
nomial of degree n−1 , which is given by

Pn−1( f ;a,x) =
n−1

∑
k=0

f (k)(a)
k!

(x−a)k, (2)

and the remainder is given by the formula

Rn−1( f ;a,x) =
(−1)n−1

(n−1)!

∫ x

a
f (n)(t)(t−x)n−1dt =

1
(n−1)!

∫ x

a
f (n)(t)(x−t)n−1dt. (3)

Due to absolute continuity of f (n−1) on [ϑ1,ϑ2] , its derivative f (n) exists as an
L1 -function. Two other important expressions for the remainder term Rn−1( f ;a,x) are
given by:

Rn−1( f ;a,x) =
f (n)(t)

(n−1)!
(x− t)n−1(x−a), (4)

which is the Cauchy form of the remainder and

Rn−1( f ;a,x) =
f (n)(t)

n!
(x−a)n, (5)

is the Lagrange form of the remainder.

Majorization. For fixed l � 2, let x = (x1, . . . ,xl) , y = (y1, . . . ,yl) be non-increasing
sequences of real numbers. Then [15, p. 319] we say that y is majorized by x or x
majorizes y , in symbol, x � y , if we have

j

∑
i=1

yi �
j

∑
i=1

xi, (6)

for j = 1,2, . . . , l−1 and
l

∑
i=1

xi =
l

∑
i=1

yi. (7)

The following theorem is the Classical Majorization Theorem given in the monograph
by Marshall-Olkin-Arnold [10, p. 11] (see also [15, p. 320]):

THEOREM 2. (Classical Majorization Theorem) Let x= (x1, . . .,xl) , y = (y1, . . .,yl)
be two non-increasing real l -tuples such that xi , yi ∈ [ϑ1,ϑ2] ⊂ R for i = 1, . . . , l .
Then x majorizes y if and only if for every continuous convex function f : [ϑ1,ϑ2]→R ,
the following inequality holds

l

∑
i=1

f (yi) �
l

∑
i=1

f (xi) . (8)
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The following theorem is a generalization of Theorem 2 known as Weighted Ma-
jorization Theorem and is proved by Fuchs in [6] (see also [15, p. 323]):

THEOREM 3. (Weighted Majorization Theorem)Let x= (x1, . . .,xl) , y = (y1, . . .,yl)
be two non-increasing real l -tuples such that xi , yi ∈ [ϑ1,ϑ2] for i = 1, . . . , l . Let
p = (p1, . . . , pl) be a real l -tuple such that

j

∑
i=1

pi yi �
j

∑
i=1

pi xi, (9)

for j = 1,2, . . . , l−1 and
l

∑
i=1

pi yi =
l

∑
i=1

pi xi. (10)

Then for every continuous convex function f : [ϑ1,ϑ2] → R , we have the following
inequality

l

∑
i=1

pi f (yi) �
l

∑
i=1

pi f (xi) . (11)

REMARK 1. If the assumptions of the Theorem 3 are satisfied, then

M(x,y,p, f (.)) :=
l

∑
i=1

pi f (xi)−
l

∑
i=1

pi f (yi) � 0, (12)

for f be continuous and convex function. Also M(x,y,p, f (.)) = 0 when f (x) =
constant or f (x) is a linear function.

This paper arrange in this manner: in Section 2, we present some technical lem-
mas. In Section 3, we give several generalized majorization type identities via using
Taylor’s formula and newly defined Green functions. In Section 4, we present the
monotonicity of the linear functionals deduced from our generalized results by using
the family of (n+1)-convex functions at a point. In Section 5, we give upper bounds
like Grüss and Ostrowski-type inequalities for obtained generalized identities. In Sec-
tion 6, we present the Cauchy mean value theorems and n -exponential convexity for
positive linear functionals deduced from our results. At the end in Section 7, we give
some applications for Ostrowski-type upper bounds.

2. Some technical lemmas

In this section we present two technical lemmas, first lemma gives us identities
which will be very useful for us to obtain main results and the second one gives the
equivalent statements of majorization inequality between continuous convex functions
and newly defined Green functions.
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Let [ϑ1,ϑ2] ⊂ R and d = 1,2,3,4. Recently (2017), Pečarić et al. introduce
some new types of Green functions, Gd : [ϑ1,ϑ2]× [ϑ1,ϑ2] → R , which are defined as
follows:

G1(u,v) =

{
(ϑ1 − v) , ϑ1 � v � u,

(ϑ1 −u), u � v � ϑ2.
(13)

G2(u,v) =

{
(u−ϑ2) , ϑ1 � v � u,

(v−ϑ2), u � v � ϑ2.
(14)

G3(u,v) =

{
(u−ϑ1) , ϑ1 � v � u,

(v−ϑ1), u � v � ϑ2.
(15)

G4(u,v) =

{
(ϑ2 − v) , ϑ1 � v � u,

(ϑ2 −u), u � v � ϑ2.
(16)

LEMMA 1. Let f : [ϑ1,ϑ2]→R such that f ∈C2([ϑ1,ϑ2]) and Gd (d = 1,2,3,4)
be Green functions as defined in (13) , (14) , (15) and (16) . Then we have the follow-
ing identities.

f (u) = f (ϑ1)+ (u−ϑ1) f ′(ϑ2)+
∫ ϑ2

ϑ1

G1(u,v) f ′′(v)dv, (17)

f (u) = f (ϑ2)+ (u−ϑ2) f ′(ϑ1)+
∫ ϑ2

ϑ1

G2(u,v) f ′′(v)dv, (18)

f (u) = f (ϑ2)− (ϑ2−ϑ1) f ′(ϑ2)+ (u−ϑ1) f ′(ϑ1)+
∫ ϑ2

ϑ1

G3(u,v) f ′′(v)dv, (19)

f (u) = f (ϑ1)+ (ϑ2−ϑ1) f ′(ϑ1)− (ϑ2−u) f ′(ϑ2)+
∫ ϑ2

ϑ1

G4(u,v) f ′′(v)dv. (20)

LEMMA 2. Let f : [ϑ1,ϑ2] → R be a continuous convex function on the interval
[ϑ1,ϑ2] and x = (x1, . . . ,xl) , y = (y1, . . . ,yl) and p = (p1, . . . , pl) be l-tuples such that
xi,yi ∈ [ϑ1,ϑ2] and pi ∈ R for i = 1,2, . . . , l, which satisfy the condition

l

∑
i=1

pi yi =
l

∑
i=1

pi xi. (21)

If we define Gd (d = 1,2,3,4) as in (13) , (14) , (15) and (16) , then we have following
equivalent statements.

(i) For every continuous convex function f : [ϑ1,ϑ2] → R , we have

l

∑
i=1

pi f (yi) �
l

∑
i=1

pi f (xi). (22)
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(ii) For all v ∈ [ϑ1,ϑ2] , we have

l

∑
i=1

piGd (yi,v) �
l

∑
i=1

piGd(xi,v). (23)

Moreover, if we change the sign of inequality in both inequalities (22) and (23) , then
the above result still holds.

Proof. The scheme of proof is similar for each d = 1,2,3,4, therefore we will
only give the proof for d = 4.

(i) ⇒ (ii) : Let statement (i) holds. As the function G4 : [ϑ1,ϑ2]× [ϑ1,ϑ2] → R

is convex and continuous, so it will satisfy the condition (22) , i.e.,

l

∑
i=1

piG4 (yi,v) �
l

∑
i=1

piG4(xi,v). (24)

(ii) ⇒ (i) : Let f : [ϑ1,ϑ2] → R be a convex function such that f ∈C2([ϑ1,ϑ2]) .
Further, assume that the statement (ii) holds. Then by Lemma 1, we have

f (xi) = f (ϑ1)+ (ϑ2−ϑ1) f ′(ϑ1)− (ϑ2− xi) f ′(ϑ2)+
∫ ϑ2

ϑ1

G4(xi,v) f ′′(v)dv, (25)

f (yi) = f (ϑ1)+ (ϑ2−ϑ1) f ′(ϑ1)− (ϑ2− yi) f ′(ϑ2)+
∫ ϑ2

ϑ1

G4(yi,v) f ′′(v)dv. (26)

From (25) and (26) , we get

l

∑
i=1

pi f (xi)−
l

∑
i=1

pi f (yi) = −
l

∑
i=1

pi(ϑ2 − xi) f ′(ϑ2)+
l

∑
i=1

pi(ϑ2 − yi) f ′(ϑ2)

+
∫ ϑ2

ϑ1

[
l

∑
i=1

piG4(xi,v)−
l

∑
i=1

piG4(yi,v)

]
f ′′(v)dv. (27)

Using (21) , we have

l

∑
i=1

pi f (xi)−
l

∑
i=1

pi f (yi) =
∫ ϑ2

ϑ1

[
l

∑
i=1

piG4(xi,v)−
l

∑
i=1

piG4(yi,v)

]
f ′′(v)dv. (28)

As f is convex function, therefore f ′′(v) � 0 for all v ∈ [ϑ1,ϑ2] . Hence using (23) in
(28) , we get (22) .

Note that the condition for the existence of second derivative of f is not necessary
([15, p. 172]). As it is possible to approximate uniformly a continuous convex function
by convex polynomials, so we can directly eliminate this differentiablity condition. �
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3. Majorized identities via Taylor’s formula

We start this section with generalization of majorization theorem in the sense of
Taylor representation which seem interesting and useful:

THEOREM 4. Let f : [ϑ1,ϑ2] → R be such that f (n−1) is absolutely continuous
for some n � 3 and let x = (x1, . . . ,xl) , y = (y1, . . . ,yl) and p = (p1, . . . , pl) be l-tuples
such that xi,yi ∈ [ϑ1,ϑ2] and pi ∈ R for i = 1,2, . . . , l . If we define Gd (d = 1,2,3,4)
as in (13) , (14) , (15) and (16) , then

M(x,y,p, f (.))

= f ′(ξd)
l

∑
i=1

pi(xi− yi)+
n−3

∑
k=0

f (k+2)(ϑ1)
k!

∫ ϑ2

ϑ1

M(x,y,p,Gd (.,v))(v−ϑ1)kdv

+
1

(n−3)!

∫ ϑ2

ϑ1

(∫ ϑ2

u
M(x,y,p,Gd (.,v))(v−u)n−3dv

)
f (n)(u)du, (29)

and

M(x,y,p, f (.))

= f ′(ξd)
l

∑
i=1

pi(xi − yi)+
n−3

∑
k=0

(−1)k f (k+2)(ϑ2)
k!

∫ ϑ2

ϑ1

M(x,y,p,Gd (.,v)) (ϑ2 − v)kdv

− 1
(n−3)!

∫ ϑ2

ϑ1

(∫ u

ϑ1

M(x,y,p,Gd (.,v))(v−u)n−3dv

)
f (n)(u)du, (30)

where ξ1,ξ4 = ϑ2 , ξ2,ξ3 = ϑ1 and Gd (d = 1,2,3,4) .

Proof. The scheme of proof is similar for each d = 1,2,3,4, therefore we will
only give the proof for d = 4. From (27) , we have

M(x,y,p, f (.)) =
l

∑
i=1

pi(xi − yi) f ′(ϑ2)+
∫ ϑ2

ϑ1

M(x,y,p,G4 (.,v)) f ′′(v)dv. (31)

Now using Taylor’s formula (1) for the function f ′′ at point ϑ1 and replacing n
by n−2 (n � 3) , we have

f ′′(v) =
n−3

∑
k=0

f (k+2)(ϑ1)
k!

(v−ϑ1)k +
1

(n−3)!

∫ v

ϑ1

f (n)(u)(v−u)n−3du. (32)

Similarly, Taylor’s formula on the function f ′′ at point ϑ2 and replacing n by n− 2
(n � 3) , we get

f ′′(v) =
n−3

∑
k=0

f (k+2)(ϑ2)
k!

(v−ϑ2)k − 1
(n−3)!

∫ ϑ2

v
f (n)(u)(v−u)n−3du. (33)
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Using (32) in (31) , we have

M(x,y,p, f (.))

= f ′(ϑ2)
l

∑
i=1

pi(xi − yi)+
n−3

∑
k=0

f (k+2)(ϑ1)
k!

∫ ϑ2

ϑ1

M(x,y,p,G4 (.,v))(v−ϑ1)kdv

+
1

(n−3)!

∫ ϑ1

ϑ1

M(x,y,p,G4 (.,v))
(∫ v

ϑ1

f (n)(u)(v−u)n−3du

)
dv. (34)

Now by using Fubini’s theorem in (34) , we get (29) . In similar way, we can find (30) ,
by using (33) in (31) . �

The following is an application of the previous theorem which is in fact general-
ization of majorization inequality for n -convex functions.

COROLLARY 1. Let f : [ϑ1,ϑ2]→R be such that f (n−1) is absolutely continuous
for some n � 3 and let x = (x1, . . . ,xl) , y = (y1, . . . ,yl) and p = (p1, . . . , pl) be l-tuples
such that xi,yi ∈ [ϑ1,ϑ2] and pi ∈ R for i = 1,2, . . . , l . Define Gd (d = 1,2,3,4) as in
(13) , (14) , (15) and (16) .

(i) If f is n-convex and

∫ ϑ2

u
M(x,y,p,Gd (.,v)) (v−u)n−3dv � 0, u ∈ [ϑ1,ϑ2], (35)

then

M(x,y,p, f (.))− f ′(ξd)
l

∑
i=1

pi(xi − yi)

�
n−3

∑
k=0

f (k+2)(ϑ2)
k!

∫ ϑ2

ϑ1

M(x,y,p,Gd (.,v)) (v−ϑ1)kdv. (36)

(ii) If f is n-convex and

∫ u

ϑ1

M(x,y,p,Gd (.,v))(v−u)n−3dv � 0, u ∈ [ϑ1,ϑ2], (37)

then

M(x,y,p, f (.))− f ′(ξd)
l

∑
i=1

pi(xi − yi)

�
n−3

∑
k=0

(−1)k f (k+2)(ϑ2)
k!

∫ ϑ2

ϑ1

M(x,y,p,Gd (.,v))(ϑ2 − v)kdv, (38)

where ξ1,ξ4 = ϑ2 and ξ2,ξ3 = ϑ1 .
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Proof. By the n -convexity of the function f , we can assume without loss of gen-
erality that f is n -times differentiable and f (n) � 0 (see [15, p. 16 and p. 293]). So
using (29) and (30), we can have (36) and (38) respectively. �

The following corollary gives the generalization of classical majorization theorem.

COROLLARY 2. Let f : [ϑ1,ϑ2]→R be such that f (n−1) is absolutely continuous
for some n � 3 and let x = (x1, . . . ,xl) , y = (y1, . . . ,yl) be l-tuples such that xi,yi ∈
[ϑ1,ϑ2] for i = 1,2, . . . , l and x � y . Define Gd (d = 1,2,3,4) as in (13) , (14) , (15)
and (16) .

(i) If f is n-convex and then

M(x,y,1, f (.)) �
n−3

∑
k=0

f (k+2)(ϑ1)
k!

∫ ϑ2

ϑ1

M(x,y,1,Gd (.,v)) (v−ϑ1)kdv.

(39)

(ii) If inequality (39) is satisfied and

�1(.) =
n−3

∑
k=0

f (k+2)(ϑ1)
k!

∫ ϑ2

ϑ1

Gd(.,v)(v−ϑ1)kdv, (40)

is convex then the right hand side of (39) is non negative, i.e., (8) is satisfied.

(iii) If f is n-convex, where n is even, then

M(x,y,1, f (.)) �
n−3

∑
k=0

(−1)k f (k+2)(ϑ2)
k!

∫ ϑ2

ϑ1

M(x,y,1,Gd (.,v))(ϑ2 − v)kdv.

(41)

(iv) If inequality (41) is satisfied and

�2(.) =
n−3

∑
k=0

(−1)k f (k+2)(ϑ2)
k!

∫ ϑ2

ϑ1

Gd(.,v)(ϑ2 − v)kdv, (42)

is convex then the right hand side of (41) is non negative, i.e., (8) is satisfied.

(v) If f is n-convex, where n is odd, then

M(x,y,1, f (.)) �
n−3

∑
k=0

(−1)k f (k+2)(ϑ2)
k!

∫ ϑ2

ϑ1

M(x,y,1,Gd (.,v))(ϑ2 − v)kdv.

(43)

(vi) If the function �2 which is defined in (42) , is concave and the inequality (43) is
satisfied, then the right hand side of (43) is non positive, i.e., reverse inequality
in (8) is satisfied.
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where 1 = (1,1, . . . ,1) is l-tuple.

Proof. (i) : Note that for v ∈ [u,ϑ2], we have (v− u)n−3 � 0. Given that x ma-
jorizes y , so (7) holds. Moreover Gd is continuous as well as convex, for d = 1,2,3,4,
therefore by using Theorem 2, we can write

M(x,y,1,Gd (.,v)) � 0.

Thus (35) holds for pi = 1(i = 1,2, . . . , l) . Hence by using Theorem 1, we can deduce
inequality (39) .

(ii) : Right hand side of the inequality (39) can be written as

l

∑
i=1

�1 (xi)−
l

∑
i=1

�1 (yi) .

As �1 is convex, so by applying majorization theorem we note that the right hand side
of (39) is non negative.

Remaining parts can also be proved in similar way. �

The following corollary gives the generalization of Fuchs’s majorization theorem.

COROLLARY 3. Let f : [ϑ1,ϑ2]→R be such that f (n−1) is absolutely continuous
for some n � 3 . Let x = (x1, . . . ,xl) , y = (y1, . . . ,yl) be non increasing l-tuples and
p = (p1, . . . , pl) be l-tuple such that xi,yi ∈ [ϑ1,ϑ2] and pi ∈R for i = 1,2, . . . , l , which
satisfy conditions (9) and (10) . Define Gd (d = 1,2,3,4) as in (13) , (14) , (15) and
(16) .

(i) If f is n-convex and then

M(x,y,p, f (.)) �
n−3

∑
k=0

f (k+2)(ϑ1)
k!

∫ ϑ2

ϑ1

M(x,y,p,Gd (.,v)) (v−ϑ1)kdv.

(44)

(ii) If the inequality (44) is satisfied and the function �1 which defined in (40) , is
convex then the right hand side of (44) is non negative, i.e., (11) is satisfied.

(iii) If f is n-convex, where n is even, then

M(x,y,p, f (.)) �
n−3

∑
k=0

(−1)k f (k+2)(ϑ2)
k!

∫ ϑ2

ϑ1

M(x,y,p,Gd (.,v))(ϑ2 − v)kdv.

(45)

(iv) If the inequality (45) is satisfied and the function �2 which defined in (42) , is
convex then the right hand side of (45) is non negative, i.e., (11) is satisfied.
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(v) If f is n-convex, where n is odd, then

M(x,y,p, f (.)) �
n−3

∑
k=0

(−1)k f (k+2)(ϑ2)
k!

∫ ϑ2

ϑ1

M(x,y,p,Gd (.,v))(ϑ2 − v)kdv.

(46)

(vi) If the function �2 which is defined in (42) , is concave and the inequality (46) is
satisfied, then the right hand side of (46) is non positive, i.e., reverse inequality
in (11) is satisfied.

Proof. Following the proof of Corollary 2, one can prove the result easily. �
We are ending this section with the following remark:

REMARK 2. We can give the majorization theorems in the integral version of The-
orem 4, Corollary 1, Corollary 2 and Corolary 3 like as given in [1].

4. Applications to (n+1)-convex functions at a point

In this section, we prove that the linear functionals deduce from the generalized
identity (36) in the previous section constructed in two different intervals are mono-
tonic by using the family of (n+1)-convex functions at a point, recently introduced by
Pe ĉarić-Praljok-Witkowski (2015) in [16].

DEFINITION 1. Let J ⊆R be an interval, τ ∈ J0 and n∈N . A function f : J →R

is said to be (n+1)-convex at point τ if there exits a constant Wτ such that the function

F(w) = f (w)− Wτ
n!

wn (47)

is n -concave on I ∩ (−∞,τ] and n -convex on I ∩ [τ,∞) . A function f is said to be
(n+1)-concave at a point τ if the function − f is (n+1)-convex at a point τ .

It is the usual sense that a function is (n+1)-convex on an interval iff it is (n+1)-
convex at every point of the interval (see [16, 11]). Pe ĉarić et al. in [16] described
necessary and sufficient conditions on two linear functionals Ψ : C([ϑ1,τ]) → R and
Ω : C([τ,ϑ2]) → R so that the inequality Ψ( f ) � Ω( f ) holds for every function f that
is (n+1)-convex at point τ .

Now we define linear functionals Ψd( f ) and Ωd( f ) for fix d = 1,2,3,4 whose are
deduced from the difference of left and right sides of identity (36), constructed on the

intervals [ϑ1,τ] and [τ,ϑ2] respectively, i.e., for x,y ∈ [ϑ1,τ]l , p ∈ Rl , r,s ∈ [τ,ϑ2] l

and p ∈ R l let

Ψd( f ) := M(x,y,p, f (.))− f ′(ξd)
l

∑
i=1

pi(xi − yi)

−
n−3

∑
k=0

f (k+2)(ϑ1)
k!

∫ τ

ϑ1

M(x,y,p,Gd (.,v)) (v−ϑ1)kdv, (48)
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where ξ1,ξ4 = τ and ξ2,ξ3 = ϑ1 and

Ωd( f ) := M(r,s,p, f (.))− f ′(ξd)
l

∑
i=1

pi(ri − si)

−
n−3

∑
k=0

f (k+2)(τ)
k!

∫ ϑ2

τ
M(r,s,p,Gd (.,v)) (v− τ)kdv, (49)

where ξ1,ξ4 = ϑ2 and ξ2,ξ3 = τ .
When we apply identity (29) to the linear functionals Ψd( f ) and Ωd( f ) for fix

d = 1,2,3,4 on the intervals [ϑ1,τ] and [τ,ϑ2] respectively, we get

Ψd( f ) =
1

(n−3)!

∫ τ

ϑ1

(∫ τ

u
M(x,y,p,Gd (.,v)) (v−u)n−3dv

)
f (n)(u)du,

(50)

and

Ωd( f ) =
1

(n−3)!

∫ ϑ2

τ

(∫ ϑ2

u
M(r,s,p,Gd (.,v)) (v−u)n−3dv

)
f (n)(u)du.

(51)

Now, we are in that position to state the monotonicity of linear functionals Ψp( f ) and
Ωp( f ) involving (n+1)-convex function at a point:

THEOREM 5. Let x,y∈ [ϑ1,τ]l , p∈Rl , r,s∈ [τ,ϑ2] l and p ∈R l in such a way
that for d = 1,2,3,4∫ τ

u
M(x,y,p,Gd (.,v))(v−u)n−3 dv � 0, u ∈ [ϑ1,τ], (52)

∫ ϑ2

u
M(r,s,p,Gd (.,v))(v−u)n−3 dv � 0, u ∈ [τ,ϑ2], (53)

∫ τ

ϑ1

(∫ τ

u
M(x,y,p,Gd (.,v))(v−u)n−3 dv

)
du

=
∫ ϑ2

τ

(∫ ϑ2

u
M(r,s,p,Gd (.,v)) (v−u)n−3 dv

)
du, (54)

where Gd (d = 1,2,3,4) defined as in (13) , (14) , (15) and (16) respectively and let
linear functionals Ψd( f ) and Ωd( f ) be defined in (48) and (49) . If f : [ϑ1,ϑ2] → R

is (n+1)-convex at point τ , then the monotonicity of these linear functionals is

Ψd( f ) � Ωd( f ), for d = 1,2,3,4. (55)

If the inequalities in (52) and (53) are reversed, then the reverse inequality in (55)
holds.
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Proof. From Definition 1, we can define a function F(w) in such manner that
F(w) is n -concave on [ϑ1,τ] and n -convex on [τ,ϑ2] . Now by using Theorem 1 to
the function F(w) on [ϑ1,τ] and [τ,ϑ2] respectively, we get

Ψd(F) = Ψd( f )− Wτ
n!

Ψd(wn) � 0 and Ωd(F) = Ωd(f)− Wτ
n!

Ωd(wn) � 0, (56)

by fixing d = 1,2,3,4. By putting f = wn in the identities (50) and (51) we have

Ψd(wn) =
(
n3−3n2 +2n

)∫ τ

ϑ1

(∫ τ

u
M(x,y,p,Gd (.,v)) (v−u)n−3 dv

)
du

(57)

and

Ωd(wn) =
(
n3−3n2 +2n

)∫ ϑ2

τ

(∫ ϑ2

u
M(r,s,p,Gd (.,v))(v−u)n−3 dv

)
du.

(58)

So (54) implies that

Ψd(wn) = Ωd(wn).

Therefore the required result follows from (56). �

REMARK 3. As in [11], in the proof of above theorem we have shown that for
d = 1,2,3,4

Ψd( f ) � Wτ
n!

Ψd(wn) =
Wτ
n!

Ωd(wn) � Ωd( f ).

Moreover, if we replace condition (54) with the weaker condition that is Wτ(Ωd(wn)
−Ψd(wn)) � 0, the inequality (55) still holds.

Finally, we are ending this section with the following remark:

REMARK 4. We can also give the results of this section by defining the linear
functionals via using inequality (38) and the newly defined Green functions Gd for
d = 1,2,3,4.

We can also give the results of this section by defining the linear functionals via
using the identities deduced from the integral version of the theorems in the previous
section and the newly defined Green functions Gd for d = 1,2,3,4.

5. Grüss and Ostrowski-type inequalities as new upper bounds

Consider the Čebyšev functional

Λ( f ,h) =
1

β −α

∫ β

α
f (t)h(t)dt− 1

β −α

∫ β

α
f (t)dt · 1

β −α

∫ β

α
h(t)dt,

where f ,h : [α,β ] → R are two Lebesgue integrable functions.
Following theorems are proved by Cerone and Dragomir in [5].
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THEOREM 6. Let f : [α,β ]→R be Lebesgue integrable function and h : [α,β ]→
R be an absolutely continuous function such that (·−α)(β − ·)[h′]2 ∈ L[α,β ] . Then
we have

|Λ( f ,h)| � 1√
2

[Λ( f , f )]
1
2

1√
β −α

(∫ β

α
(x−α)(β − x)[h′(x)]2dx

) 1
2

. (59)

The constant 1√
2

in (59) is the best possible.

THEOREM 7. Let f : [α,β ] → R be an absolutely continuous function with f ′ ∈
L∞[α,β ] and h : [α,β ] → R be monotonic nondecreasing function on [α,β ] . Then we
have

|Λ( f ,h)| � 1
2(β −α)

‖ f ′‖∞

∫ β

α
(x−α)(β − x)dh(x). (60)

The constant 1
2 in (60) is the best possible.

In this section, we give the upper bounds like Grüss-type and Ostrowski-type for
our generalized results.

Let x = (x1, . . . ,xl) , y = (y1, . . . ,yl) and p = (p1, . . . , pl) be l-tuples such that
xi,yi ∈ [ϑ1,ϑ2] and pi ∈R for i = 1,2, . . . , l . Let Gd (d = 1,2,3,4) be Green functions
as defined in (13) , (14) , (15) and (16) . For d = 1,2,3,4, we define

Θd(u) =
∫ ϑ2

u
M(x,y,p,Gd (.,v))(v−u)n−3dv, u ∈ [ϑ1,ϑ2], (61)

ϒd(u) =
∫ u

ϑ1

M(x,y,p,Gd (.,v)) (v−u)n−3dv, u ∈ [ϑ1,ϑ2]. (62)

Now consider the following Čebyšev functionals for d = 1,2,3,4

Λ(Θd,Θd) =
1

ϑ2−ϑ1

∫ ϑ2

ϑ1

Θ2
d(u)du−

(
1

ϑ2 −ϑ1

∫ ϑ2

ϑ1

Θd(u)du

)2

, (63)

Λ(ϒd ,ϒd) =
1

ϑ2−ϑ1

∫ ϑ2

ϑ1

ϒ2
d(u)du−

(
1

ϑ2 −ϑ1

∫ ϑ2

ϑ1

ϒd(u)du

)2

. (64)

THEOREM 8. Consider that all the suppositions of Theorem 4 are true. Let f :
[ϑ1,ϑ2] → R be such that f (n−1) is absolutely continuous for some n � 3 and (· −
ϑ1)(ϑ2−·)[ f (n+1)]2 ∈ L[ϑ1,ϑ2] . If Θd and ϒd are functions, defined in (61) and (62)
respectively, then the following identities hold for d = 1,2,3,4 .
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(i)

M(x,y,p, f (.))

= f ′(ξd)
l

∑
i=1

pi(xi − yi)+
n−3

∑
k=0

f (k+2)(ϑ1)
k!

∫ ϑ2

ϑ1

M(x,y,p,Gd (.,v)) (v−ϑ1)kdv

+
f (n−1)(ϑ2)− f (n−1)(ϑ1)

(ϑ2 −ϑ1)(n−3)!

∫ ϑ2

ϑ1

Θd(u)du+REM( f (n),Θd ,ϑ1,ϑ2), (65)

where REM( f (n),Θd ,ϑ1,ϑ2) is the remainder which satisfies the following inequality∣∣∣REM( f (n),Θd ,ϑ1,ϑ2)
∣∣∣

�
√

ϑ2 −ϑ1√
2(n−3)!

[Λ(Θd,Θd)]
1
2

∣∣∣∣
∫ ϑ2

ϑ1

(u−ϑ1)(ϑ2 −u)[ f (n+1)(u)]2du

∣∣∣∣
1
2

. (66)

(ii)

M(x,y,p, f (.))

= f ′(ξd)
l

∑
i=1

pi(xi− yi)+
n−3

∑
k=0

(−1)k f (k+2)(ϑ2)
k!

∫ ϑ2

ϑ1

M(x,y,p,Gd (.,v))(ϑ2 − v)kdv

+
f (n−1)(ϑ2)− f (n−1)(ϑ1)

(ϑ1 −ϑ2)(n−3)!

∫ ϑ2

ϑ1

ϒ(u)du−REM( f (n),ϒd ,ϑ1,ϑ2), (67)

where REM( f (n),ϒd ,ϑ1,ϑ2) is the remainder which satisfies the following inequality∣∣∣REM( f (n),ϒd ,ϑ1,ϑ2)
∣∣∣

�
√

ϑ2−ϑ1√
2(n−3)!

[Λ(ϒd ,ϒd)]
1
2

∣∣∣∣
∫ ϑ2

ϑ1

(u−ϑ1)(ϑ2 −u)[ f (n+1)(u)]2du

∣∣∣∣
1
2

. (68)

Moreover, ξ1 , ξ4 = ϑ2 and ξ2 , ξ3 = ϑ1 .

Proof. (i) : From (29) and (65) , we have for fix d = 1,2,3,4,

1
(n−3)!

∫ ϑ2

ϑ1

Θd(u) f (n)(u)du

=
f (n−1)(ϑ2)− f (n−1)(ϑ1)

(ϑ2 −ϑ1)(n−3)!

∫ ϑ2

ϑ1

Θd(u)du+REM( f (n),Θd ,ϑ1,ϑ2).

This implies

REM( f (n),Θd ,ϑ1,ϑ2)

=
1

(n−3)!

∫ ϑ2

ϑ1

Θd(u) f (n)(u)du− 1
(ϑ2 −ϑ1)(n−3)!

∫ ϑ2

ϑ1

Θd(u)du
∫ ϑ2

ϑ1

f (n)(u)du,
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which can be written in terms of Čebyšev functional as

REM( f (n),Θd ,ϑ1,ϑ2) =
(ϑ2 −ϑ1)
(n−3)!

Λ(Θd , f (n)). (69)

Using Theorem 6, we get (66) .
(ii) : Similarly, we can prove the part (ii) by comparing (30) and (67) . �
Following theorem gives Grüss-type inequalities.

THEOREM 9. Let f : [ϑ1,ϑ2] → R be such that f (n) is absolutely continuous for
some n � 3 and f (n+1) � 0 on [ϑ1,ϑ2] . If Θd and ϒd are functions, defined in (61)
and (62) respectively, then for d = 1,2,3,4 ,

(i) the remainder REM( f (n),Θd,ϑ1,ϑ2) in (65) is satisfied the following bound

∣∣∣REM( f (n),Θd ,ϑ1,ϑ2)
∣∣∣

� 1
(n−3)!

‖Θ′
d‖∞

{
f (n−1)(ϑ2)+ f (n−1)(ϑ1)

2
− f (n−2)(ϑ2)− f (n−2)(ϑ1)

ϑ2 −ϑ1

}
. (70)

(ii) the remainder REM( f (n),ϒd ,ϑ1,ϑ2) in (67) is satisfied the following bound

∣∣∣REM( f (n),ϒd ,ϑ1,ϑ2)
∣∣∣

� 1
(n−3)!

‖ϒ′
d‖∞

{
f (n−1)(ϑ2)+ φ (n−1)(ϑ1)

2
− f (n−2)(ϑ2)− f (n−2)(ϑ1)

ϑ2 −ϑ1

}
. (71)

Proof. From (69) , we have for fix d = 1,2,3,4,

REM( f (n),Θd ,ϑ1,ϑ2) =
(ϑ2 −ϑ1)
(n−3)!

Λ(Θd , f (n)). (72)

Using Theorem 7 on right hand side, we deduce (70) . �
We now define q -norm of a function f : [ϑ1,ϑ2] → R by:

‖ f‖q =

{
(
∫ ϑ2

ϑ1
| f (u)|qdu)

1
q , for 1 � q < ∞, if | f |q is R-integrable function,

essential supremum of f , for q = ∞, if φ is essential bounded.

Next theorem gives the Ostrowski-type inequalities related to generalized ma-
jorization inequality.

THEOREM 10. Consider that all the suppositions of Theorem 4 are true. Let f :
[ϑ1,ϑ2] → R be such that f (n−1) is absolutely continuous for some n � 3 . Let (q,q′)
be a pair of conjugate exponents, that is 1 � q,q′ � ∞ and 1

q + 1
q′ = 1 . If | f n|q :

[ϑ1,ϑ2]→ R(n � 3) is R-integrable function, then we have the following identities for
d = 1,2,3,4.
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(i)

∣∣∣∣M(x,y,p, f (.))− f ′(ξd)
l

∑
i=1

pi(xi − yi)

−
n−3

∑
k=0

f (k+2)(ϑ1)
k!

∫ ϑ2

ϑ1

M(x,y,p,Gd(.,v)) (v−ϑ1)kdv

∣∣∣∣
� 1

(n−3)!
‖ f (n)‖q‖ f‖q′ , (73)

where

f (u) =
∫ ϑ2

u
M(x,y,p,Gd(.,v)) (v−u)n−3dv.

Right hand side of (73) is constant which is sharp for 1 < q � ∞ and the best
possible for q = 1 .

(ii)

∣∣∣∣M(x,y,p, f (.))− f ′(ξd)
l

∑
i=1

pi(xi − yi)

−
n−3

∑
k=0

(−1)k f (k+2)(ϑ2)
k!

∫ ϑ2

ϑ1

M(x,y,p,Gd(.,v)) (ϑ2 − v)kdv

∣∣∣∣
� 1

(n−3)!
‖ f (n)‖q‖ f ‖q′ , (74)

where

f (u) =
∫ u

ϑ1

M(x,y,p,Gd(.,v)) (v−u)n−3dv.

Right hand side of (74) is constant which is sharp for 1 < q � ∞ and the best
possible for q = 1 .

Moreover, ξ1,ξ4 = ϑ2 and ξ2,ξ3 = ϑ1 .

Proof. By the arrangement of identity (29) for fix d = 1,2,3,4, we have the fol-
lowing identity:

∣∣∣∣M(x,y,p, f (.))− f ′(ξd)
l

∑
i=1

pi(xi− yi)

−
n−3

∑
k=0

f (k+2)(ϑ1)
k!

∫ ϑ2

ϑ1

M(x,y,p,Gd(.,v))(v−ϑ1)kdv

∣∣∣∣
=

1
(n−3)!

∣∣∣∣
∫ ϑ2

ϑ1

Θd(u) f (n)(u)du

∣∣∣∣, (75)
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classical Hölder’s inequality apply to the right hand side of (75) implies (73). For the
proof of the sharpness of the constant ‖ f‖q′ is analog to one in proof of Theorem 19 in
[1]. �

We are ending this section with the following remark:

REMARK 5. We can give the integral version of the upper bound theorems like
Theorem 6, Theorem 9 and Theorem 10 as given in [1].

6. Mean value theorems and n -exponential convexity

Since the general convex functions are defined by a functional inequality, it is
not surprising that this notion will lead to a number of interesting and fundamental
inequalities. Now we give some essential results for general convex functions.

Supppose all the assumptions of Corollary 1 are satisfied. Making use of inequal-
ities (36) and (38) we now define following linear functionals:

ℜ1( f ) = M(x,y,p, f (.))− f ′(ξd)
l

∑
i=1

pi(xi − yi)

−
n−3

∑
k=0

f (k+2)(ϑ1)
k!

∫ ϑ2

ϑ1

M(x,y,p,Gd(.,v)) (v−α)kdv,

(76)

and

ℜ2( f ) = M(x,y,p, f (.))− f ′(ξd)
l

∑
i=1

pi(xi − yi)

−
n−3

∑
k=0

(−1)k f (k+2)(ϑ2)
k!

∫ ϑ2

ϑ1

M(x,y,p,Gd(.,v)) (β − v)kdv,

(77)

where ξ1,ξ4 = ϑ2 and ξ2,ξ3 = ϑ1 .

REMARK 6. Let all the assumptions of Corollary 1 are satisfied. Then ℜi( f ) � 0,
i = 1,2 for all n -convex functions f .

Following theorems give the Lagrange and Cauchy type mean value theorems for
the functionals defined in (76) and (77) .

THEOREM 11. Let f : [ϑ1,ϑ2] → R be such that f ∈ Cn[ϑ1,ϑ2] . Consider the
inequalities (35) and (37) hold. Let ℜi( f ), i = 1,2 be functionals defined in (76)
and (77) and also ψ(x) = xn

n! . Then there exists λi ∈ [ϑ1,ϑ2] such that

ℜi( f ) = f (n)(λi)ℜi(ψ), i = 1,2. (78)
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Proof. Since f (n) is continuous on [ϑ1,ϑ2] , so m � f (n)(x) � M for x ∈ [ϑ1,ϑ2],
where m = minx∈[ϑ1,ϑ2] f (n)(x) and M = maxx∈[ϑ1,ϑ2] f (n)(x) (see for example Theorem
4.1 in [8] and also in [2, 4]). Consider the functions f1 and f2 defined on I as

f1(x) =
Mxn

n!
− f (x) and f2(x) = f (x)− mxn

n!
for x ∈ [ϑ1,ϑ2].

It is easily seen that

f (n)
1 (x) = M− f (n)(x) and f (n)

2 (x) = f (n)(x)−m for x ∈ I.

So, f1 and f2 are n -convex functions.
Now by applying f1 for f in Corollary 1, we have

M(x,y,p, f1(.))− f ′(ξd)
l

∑
i=1

pi(xi − yi)

�
n−3

∑
k=0

f (k+2)
1 (ϑ2)

k!

∫ ϑ2

ϑ1

M(x,y,p,Gd (.,v)) (v−ϑ1)kdv, (79)

where ξ1 , ξ4 = ϑ2 , ξ2 , ξ3 = ϑ1 and d = 1,2,3,4. Hence, we get after some simplifi-
cation

ℜ1( f ) � Mℜ1(ψ). (80)

Now by applying f2 for f in Corollary 1 and some simplification we get

mℜ1(ψ) � ℜ1( f ). (81)

If ℜ1(ψ) = 0, then from (80) and (81) follow that for any λ1 ∈ [ϑ1,ϑ2] , (78) is satisfied.
If ℜ1(ψ) > 0, it follows from (80) and (81) that

m � ℜ1( f )
ℜ1(ψ)

� M. (82)

Now using the fact that for m � ρ � M there exists λ1 ∈ [ϑ1,ϑ2] such that f (n)(λ1) =
ρ , we get (78). �

COROLLARY 4. Let f ,g : [ϑ1,ϑ2] → R be such that f ,g ∈Cn[ϑ1,ϑ2] . Consider
the inequalities (35) and (37) hold. Let ℜi( f ), i = 1,2 be functionals defined in (76)
and (77) . Then there exists λi ∈ [ϑ1,ϑ2] such that

ℜi( f )
ℜi(g)

=
f (n)(λi)
g(n)(λi)

, i = 1,2, (83)

provided that the denominators are non-zero.
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Proof. See Corollary 4.2 in [8] (see also in [2, 4]). �
We can define Cauchy means for i = 1,2 by using generalized Cauchy second

mean value theorem i.e., Corollary 4 as

λi =

(
f (n)

g(n)

)−1
ℜi( f )
ℜi(g)

,

which shows that λi is a mean of ϑ1 , ϑ2 for given functions f and g .

REMARK 7. We can give the n -exponential convexity, exponential convexity as
well as log-convexity from the above defined positive linear functionals ℜi( f ), i = 1,2
for both discrete as well as continuous case by using the interesting method introduced
by Pečarć et al. (2013) [8, 9] (see also [1, 11]). We can also construct a large families of
functions which are exponentially convex as given in [1]. From the log-convexity, we
can get the Dresher’s inequality from which we find the Cauchy means and investigate
their monotonicity.

7. Applications

The purpose of this section will be to explore applications of our generalized iden-
tities. We will obtain the Ostrowski-type upper bounds for the generalized identity in
discrete case for different well-known convex functions. In fact, in first two applica-
tions we will discuss the relationship between the components of both vectors x and y .
We can also give the beautiful examples of our generalized result like as n -exponential
convexity method in [9] (one can also see examples in [1]).

APPLICATION 1. Let f : (0,∞) → R be function defined by f (x) = − logx . Let
us consider that x = (x1,x2, . . . ,xl) and y = (y1,y2, . . . ,yl) be positive l -tuples. Then
the Ostrowski-type inequality (73) for n = 3 as an upper bound of our generalized result
becomes ∣∣∣∣∣

l

∑
i=1

pi (−logxi)−
l

∑
i=1

pi (− logyi)+
1

ϑ2

l

∑
i=1

pi (xi − yi)− 1

ϑ 2
1

Gd

∣∣∣∣∣
� 2

(1−3q)
1
q

(
ϑ 1−3q

2 −ϑ 1−3q
1

) 1
q ‖ f‖q′ ,

if the majorization condition ∑l
i=1 pixi = ∑l

i=1 piyi holds and pi = 1, (i = 1,2, . . . , l)
then∣∣∣∣log

(
x−1
1 · x−1

2 · · · x−1
l

)
+ log(y1 · y2 · · · yl)− 1

ϑ 2
1

G̃d

∣∣∣∣� 2

(1−3q)
1
q

(
ϑ 1−3q

2 −ϑ 1−3q
1

) 1
q ‖ f‖q′ ,

⇒
∣∣∣∣log

(
Πl

i=1yi

Πl
i=1xi

)
− 1

ϑ 2
1

G̃d

∣∣∣∣� 2

(1−3q)
1
q

(
ϑ 1−3q

2 −ϑ 1−3q
1

) 1
q ‖ f‖q′ ,
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if

∣∣∣∣log

(
Πl

i=1yi

Πl
i=1xi

)∣∣∣∣�
∣∣∣ 1

ϑ2
1
G̃d

∣∣∣ , then

⇒
∣∣∣∣log

(
Πl

i=1yi

Πl
i=1xi

)∣∣∣∣−
∣∣∣∣ 1
x2 G̃d

∣∣∣∣ �
∣∣∣∣ln
(

Πl
i=1yi

Πl
i=1xi

)
− 1

ϑ 2
1

G̃d

∣∣∣∣
� 2

(1−3q)
1
q

(
ϑ 1−3q

2 −ϑ 1−3q
1

) 1
q ‖ f‖q′ ,

⇒ 0 �
∣∣∣∣log

(
Πl

i=1yi

Πl
i=1xi

)∣∣∣∣ � 2

(1−3q)
1
q

(
ϑ 1−3q

2 −ϑ 1−3q
1

) 1
q ‖ f‖q′ +

1

ϑ 2
1

G̃d ,

if the quotient in the L. H. S. is greater than equal to 1, then

0 � Πl
i=1yi � e

2

(1−3q)
1
q

(
ϑ1−3q

2 −ϑ1−3q
1

) 1
q ‖ f‖q′+

1
ϑ2
1

G̃d

Πl
i=1xi,

is the relation between the elements of y and the elements of x , here

Gd :=
∫ ϑ2

ϑ1

(
l

∑
i=1

piGd(xi,v)−
l

∑
i=1

piGd(yi,v)

)
dv,

G̃d :=
∫ ϑ2

ϑ1

(
l

∑
i=1

Gd(xi,v)−
l

∑
i=1

Gd(yi,v)

)
dv,

f (t) =
∫ ϑ2

u

(
l

∑
i=1

piGd(xi,v)−
l

∑
i=1

piGd(yi,v)

)
(v−u)n−3dv.

APPLICATION 2. Let f : (0,∞)→R be function defined by f (x) = x logx . Let us
consider that x = (x1,x2, . . . ,xl) and y = (y1,y2, . . . ,yl) be positive l -tuples. Then the
Ostrowski-type inequality (73) for n = 3 as an upper bound of our generalized result
becomes ∣∣∣∣∣

l

∑
i=1

pixilogxi−
l

∑
i=1

piyi logyi +(logϑ2 +1)
l

∑
i=1

pi (xi − yi)+
1

ϑ 2
1

Gd

∣∣∣∣∣
� 1

(2q−1)
1
q

(
ϑ 1−2q

2 −ϑ 1−2q
1

) 1
q ‖ f‖q′ ,

if the majorization condition ∑l
i=1 pixi = ∑l

i=1 piyi holds and pi = 1, (i = 1,2, . . . , l)
then ∣∣∣∣log

(
xx1
1 · xx2

2 · · · xxl
l

)
+ log

(
y−y1
1 · y−y2

2 · · · y−yl
l

)
+

1

ϑ 2
1

G̃d

∣∣∣∣
� 1

(2q−1)
1
q

(
ϑ 1−2q

2 −ϑ 1−2q
1

) 1
q ‖ f‖q′ ,

⇒
∣∣∣∣log

(
Πl

i=1x
xi
i

Πl
i=1y

yi
i

)
+

1

ϑ 2
1

G̃d

∣∣∣∣� 1

(2q−1)
1
q

(
ϑ 1−2q

2 −ϑ 1−2q
1

) 1
q ‖ f‖q′ ,
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if

∣∣∣∣log

(
Πl

i=1x
xi
i

Πl
i=1y

yi
i

)∣∣∣∣�
∣∣∣ 1

ϑ2
1
G̃d

∣∣∣ , then

⇒
∣∣∣∣log

(
Πl

i=1x
xi
i

Πl
i=1y

yi
i

)∣∣∣∣−
∣∣∣∣ 1

ϑ 2
1

G̃d

∣∣∣∣ �
∣∣∣∣log

(
Πl

i=1x
xi
i

Πl
i=1y

yi
i

)
+

1

ϑ 2
1

G̃d

∣∣∣∣
� 1

(2q−1)
1
q

(
ϑ 1−2q

2 −ϑ 1−2q
1

) 1
q ‖ f‖q′ ,

⇒ 0 �
∣∣∣∣log

(
Πl

i=1x
xi
i

Πl
i=1y

yi
i

)∣∣∣∣ � 1

(2q−1)
1
q

(
ϑ 1−2q

2 −ϑ 1−2q
1

) 1
q
+

1

ϑ 2
1

G̃d,

if the quotient in the L. H. S. is greater than equal to 1, then

0 � Πl
i=1x

xi
i � e

2

(1−3q)
1
q

(
ϑ1−3q

2 −ϑ1−3q
1

) 1
q + 1

ϑ2
1

G̃d

Πl
i=1y

yi
i ,

this is the another relation between the elements of x and the elements of y ,
here, Gd , G̃d and f (t) be defined as in Application 1.

APPLICATION 3. Let us consider that x = (x1,x2, . . . ,xl) and y = (y1,y2, . . . ,yl)
be l -tuples such that xi,yi ∈ [ϑ1,ϑ2] and p = (p1, p2, . . . , pl) such that pi ∈ R . Then
the Ostrowski-type inequality (73) for n = 3 as an upper bound of our generalized result
is as follows:

• let f (x) = ex, x ∈ R , then

0 �
∣∣∣∣∣

l

∑
i=1

pie
xi −

l

∑
i=1

pie
yi − eϑ2

l

∑
i=1

pi (xi − yi)− eϑ1Gd

∣∣∣∣∣� 1
q
(eqϑ2 − eqϑ1)

1
q ‖ f ‖q′ ,

• let f (x) = xr, [0,∞) for r > 1, then

0 �
∣∣∣∣∣

l

∑
i=1

pix
r
i −

l

∑
i=1

piy
r
i − rϑ r−1

2 − r(r−1)ϑ r−2
1 Gd

∣∣∣∣∣
� r(r−1)(r−2)

(rq−3q+1)
1
q

(
ϑ q(r−3)+1

2 −ϑ q(r−3)+1
1

) 1
q ‖ f ‖q′ .
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applications, J. Math. Inequal. 8 (1) (2014), 159–170.

[6] L. FUCHS, A new proof of an inequality of Hardy-Littlewood-Polya, Mat. Tidsskr, B (1947), 53–54, 9,
4 (2003), 607–615.
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[9] J. JAKŠETIĆ AND J. PEČRIĆ, Exponential convexity method, J. Convex Anal. 20 1 (2013), 181–197.
[10] A. W. MARSHALL, I. OLKIN AND BARRY C. ARNOLD, Inequalities: Theory of Majorization and

Its Applications (Second Edition), Springer Series in Statistics, New York 2011.
[11] N. MEHMOOD, R. P. AGARWAL, S. I. BUTT AND J. PEČARIĆ, New generalizations of Popoviciu-
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