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THE MEAN CONSISTENCY OF THE WEIGHTED ESTIMATOR IN THE

FIXED DESIGN REGRESSION MODELS BASED ON m–END ERRORS

WEIFENG XU, YI WU, RUI ZHANG, HUILING JIANG AND XUEJUN WANG

(Communicated by J. Pečarić)

Abstract. In this paper, some moment inequalities for m -extended negatively dependent (m -
END, for short) random variables are established which can be applied to investigate the non-
parametric regression models based on m -END errors. Some results on mean consistency for the
estimator in nonparametric regression models are presented. As an application, the consistency
for the nearest neighbor estimator is obtained.

1. Introduction

Firstly, let us recall the concepts of extended negatively dependent random vari-
ables and m-extended negatively dependent random variables.

DEFINITION 1.1. A finite collection of random variables X1,X2, . . . ,Xn is said to
be extended negatively dependent (END, for short) if there exists a constant M > 0
such that both

P(X1 > x1,X2 > x2, . . . ,Xn > xn) � M
n

∏
i=1

P(Xi > xi)

and

P(X1 � x1,X2 � x2, . . . ,Xn � xn) � M
n

∏
i=1

P(Xi � xi)

hold for all real numbers x1,x2, . . . ,xn . An infinite sequence {Xn,n � 1} of random
variables is said to be END if every finite subcollection is END.

An array {Xni,1 � i � n,n � 1} of random variables is called rowwise END ran-
dom variables if for every n � 1,{Xni,1 � i � n} is a sequence of END random vari-
ables.

The concept of END sequence was introduced by Liu (2009). Negatively associ-
ated (NA, for short) random variables, negatively orthant dependent (NOD, for short)
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random variables and some other positively dependent structures are its special cases.
Since the concept of END sequence was introduced by Liu (2009), many authors were
devoted to studying the probability limit theorem and statistical large sample properties
for END random variables, including the probability inequalities, moment inequalities
and applications. For example, Chen et al. (2010) established the strong law of large
numbers for extend negatively dependent random variables and showed applications to
risk theory and renewal theory; Shen (2011) presented some probability inequalities
and gave some applications; Wu and Guan (2012) presented some convergence prop-
erties for the partial sums of END random variables; Qiu et al. (2013) and Wang et al.
(2013) provided some results on complete convergence for weighted sums of arrays of
rowwise END random variables; Wu et al. (2014) obtained some results on complete
convergence and complete moment convergence for arrays of rowwise END random
variables; Shen (2014) studied the asymptotic approximation of inverse moments for a
class of nonnegative random variables including END random variables; Shen (2016)
established some results on complete convergence for weighted sums of END random
variables and gave applications to nonparametric regression models, and so on.

Based on END random variables, Wang et al. (2016) introduced the concept of
m-END random variables as follows.

DEFINITION 1.2. Let m � 1 be a fixed integer. A sequence {Xn,n � 1} of ran-
dom variables is said to be m-extended negatively dependent (m-END, for short) if for
any n � 2 and any i1, i2, . . . , in such that |ik - i j|� m for all 1 � k �= j � n , we have that
Xi1 ,Xi2 , . . . ,Xin are END.

An array {Xni, i � 1,n � 1} of random variables is called rowwise m-END if for
every n � 1,{Xni, i � 1} is a sequence of m-END random variables.

The concept of m-END sequence was introduced by Wang et al. (2016). When
m = 1, the concept of m-END random variables reduces to the so-called END ran-
dom variables. Hence, the concept of m-END random variables is a natural extension
of END random variables. Besides, it is well known that if for any n � 2 and any
i1, i2, . . . , in such that |ik − i j| � m for all 1 � k �= j � n , we have that Xi1 ,Xi2 , . . . ,Xin
are independent (or NA), then we can say that {Xn,n � 1} are m-dependence (or m-
NA). Hence, m-END is weaker than m-dependence, m-NA and END. So, it is of
great interest to study the probability inequalities, moment inequalities and probability
limit theorems of m-END random variables and their applications in many stochas-
tic models. We are devoted to studying the asymptotic properties for the estimator in
nonparametric regression models based on m-END errors.

Now we consider the following fixed design regression model:

Yni = g(xni)+ εni, i = 1,2, . . . ,n, n � 1, (1.1)

where xni are design points on a set A in R
q for some q � 1, g(·) is an unknown

regression function on A and εni are random errors. Assume that for each n , {εni,1 �
i � n} has the same distribution as that of {εi,1 � i � n} . As an estimator of g(·) , the
following weighted regression estimator is considered:

gn(x) =
n

∑
i=1

Wni(x)Yni,x ∈ A ⊂ R
q, (1.2)
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where Wni(x) = Wni(x,xn1, . . . ,xnn) are weight functions.
The above estimator was first proposed by Georgiev (1985) and has been studied

by many authors subsequently. For example, when εni are independent, consistency and
asymptotic normality have been studied by Georgiev and Greblicki (1986), Georgiev
(1988) and Müller (1987) and so on. As for the case when εni are dependent, it has been
studied by various authors in recent years as well. Roussas (1989) discussed strong con-
sistency and quadratic mean consistency for gn(x) under mixing conditions. Roussas
et al. (1992) established asymptotic normality of gn(x) assuming that the errors are
from a strictly stationary stochastic process and satisfying the strong mixing condition.
Tran et al. (1996) discussed asymptotic normality of gn(x) assuming that the errors
form a linear time series, more precisely, a weakly stationary linear process based on
martingale difference sequences. Hu et al. (2003) gave the mean consistency, com-
plete consistency and asymptotic normality of regression models with linear process
errors. Liang and Jing (2005) presented some asymptotic properties for estimator of
nonparametric regression models based on negatively associated sequences. Yang et al.
(2012) has investigated the consistency for the estimator of nonparametric regression
model based on NOD errors. Shen (2013) presented the Bernstein-type inequality for
widely dependent sequence and applied it to nonparametric regression models. Shen
et al. (2015) established the Rosenthal-type inequality for negatively superadditive de-
pendent random variables and gave its application in nonparametric regression models.
Yang et al. (2016) established the complete consistency of estimators for regression
models based on END errors, and so on.

The main aim of this work is to investigate the mean consistency and uniformly
mean consistency for the estimator of nonparametric regression models based on m-
END errors. The results obtained in the paper will generalize some corresponding ones
for independent errors and some dependent errors.

For any function g(x) , we use c(g) to denote all continuity points of function g on
the set A in R

q for some q � 1. Let C,C1,C2, . . . , denote the positive constants whose
values may vary at each occurrence. �x� denotes the largest integer not exceeding x ,
I(B) is the indicator function of set B , x+ = xI(x � 0) , x− = −xI(x < 0) and ‖x‖
denotes Euclidean norm of x . In this article, some lemmas are presented in Section 2,
main results and their proofs are presented in Section 3 and Section 4, respectively.

2. Some lemmas

In this section, we will present some lemmas which will be used to prove our
main results. The first one is a basic property for END random variables, which was
presented by Liu (2010).

LEMMA 2.1. Let random variables X1,X2, . . . ,Xn be END, f1, f2, . . . , fn are all
nondecreasing (or all nonincreasing) functions, then random variables f1(X1), f2(X2),
. . . , fn(Xn) are END.

The following lemma is the Marcinkiewicz-Zygmund type inequality and Rosen-
thal type inequality for END random variables. The first one can be obtained by the
method used in Chen et al. (2014), and the second one can be found in Shen (2011).
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LEMMA 2.2. Let {Xn,n � 1} be a sequence of END random variables with
EXn = 0 and E|Xn|p < ∞ for all n � 1 and some p � 1 . Then

E

∣∣∣∣∣
n

∑
i=1

Xi

∣∣∣∣∣
p

� cp

n

∑
i=1

E|Xi|p, 1 � p < 2, (2.1)

and

E

∣∣∣∣∣
n

∑
i=1

Xi

∣∣∣∣∣
p

� dp

⎧⎨
⎩

n

∑
i=1

E|Xi|p +

(
n

∑
i=1

EX2
i

)p/2
⎫⎬
⎭ , p � 2, (2.2)

where cp and dp depend only on p.

By Lemmas 2.1 and 2.2, we can obtain the following moment inequalities for
m-END random variables which are indispensable in proving our main results.

LEMMA 2.3. Let {Xn,n � 1} be a sequence of m-END random variables with
EXn = 0 and E|Xn|p < ∞ for all n � 1 and some p � 1 . Then

E

∣∣∣∣∣
n

∑
i=1

Xi

∣∣∣∣∣
p

� cm,p

n

∑
i=1

E|Xi|p, 1 � p < 2,

and

E

∣∣∣∣∣
n

∑
i=1

Xi

∣∣∣∣∣
p

� dm,p

⎧⎨
⎩

n

∑
i=1

E|Xi|p +

(
n

∑
i=1

EX2
i

)p/2
⎫⎬
⎭ , p � 2,

where cm,p , dm,p depend only on p and m.

Proof. For any fixed n sufficiently large, if n � m , there exist positive integers i
and 1 � j � m such that n = mi+ j . Let r = �n/m� . Define

Yi =
{

Xi, 1 � i � n,
0, i > n.

Noting that ∑n
i=1 Xi = ∑m

j=1 ∑r
i=0Ymi+ j , we have∣∣∣∣∣

n

∑
i=1

Xi

∣∣∣∣∣�
m

∑
j=1

r

∑
i=0

|Ymi+ j|.

By the inequality above and Cr -inequality, we can get that

E

∣∣∣∣∣
n

∑
i=1

Xi

∣∣∣∣∣
p

= E

∣∣∣∣∣
m

∑
j=1

r

∑
i=0

Ymi+ j

∣∣∣∣∣
p

� mp−1
m

∑
j=1

E

(
r

∑
i=0

|Ymi+ j|
)p

� (2m)p−1
m

∑
j=1

E

(
r

∑
i=0

Y+
mi+ j

)p

+(2m)p−1
m

∑
j=1

E

(
r

∑
i=0

Y−
mi+ j

)p

. (2.3)
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By the definition of m-END random variables, it can be easily seen that Yj,Ym+ j, . . . ,
Ymr+ j are END random variables for each j = 1,2, . . . ,m . Hence, Y+

j ,Y+
m+ j , . . . , Y+

mr+ j

and Y−
j ,Y−

m+ j , . . . , Y−
mr+ j are both END random variables for each j = 1,2, . . . ,m by

Lemma 2.1.
For 1 � p < 2, we have by (2.1) and (2.3) that for any n � m ,

E

∣∣∣∣∣
n

∑
i=1

Xi

∣∣∣∣∣
p

� (2m)p−1cp

m

∑
j=1

r

∑
i=0

E|Y+
mi+ j|p +(2m)p−1cp

m

∑
j=1

r

∑
i=0

E|Y−
mi+ j|p

= (2m)p−1cp

m

∑
j=1

r

∑
i=0

E|Ymi+ j|p � cm,p

n

∑
i=1

E|Xi|p.

For p � 2, we have by (2.2) and (2.3) that for any n � m ,

E

∣∣∣∣∣
n

∑
i=1

Xi

∣∣∣∣∣
p

� (2m)p−1dp

m

∑
j=1

[
r

∑
i=0

E|Y+
mi+ j|p +(

r

∑
i=0

E|Y+
mi+ j|2)p/2

]

+(2m)p−1dp

m

∑
j=1

[
r

∑
i=0

E|Y−
mi+ j|p +(

r

∑
i=0

E|Y−
mi+ j|2)p/2

]

� 2pmp−1dp

m

∑
j=1

[
r

∑
i=0

E|Ymi+ j|p +(
r

∑
i=0

E|Ymi+ j|2)p/2

]

� dm,p

(
n

∑
i=1

E|Xi|p +(
n

∑
i=1

EX2
i )p/2

)
.

The proof is completed. �

3. Main results

Under the nonparametric regression model (1.1) , for any fixed point x ∈ A ⊂ R
q ,

some hypotheses on weight functions Wni(x) =Wni(x,xn1, . . . ,xnn) are given as follows:
(H1)∑n

i=1 |Wni(x)|p → 0 as n → ∞ for some p ∈ (1,2] ;
(H2)∑n

i=1Wni(x) → 1 as n → ∞ ;
(H3)∑n

i=1 |Wni(x)| � C for all n ;
(H4)∑n

i=1W 2
ni(x) → 0 as n → ∞ ;

(H5)∑n
i=1 |Wni(x)| · |g(xni)−g(x)|I(‖xni− x‖ > a) → 0 as n → ∞ for all a > 0.

Based on the conditions above, we can get the following results on mean consis-
tency for the nonparametric regression estimator gn(x) .

THEOREM 3.1. Let {εn,n � 1} be a sequence of mean zero m-END random
variables. Assume that the conditions (H2)–(H5) are satisfied. If supn�1 Eε2

n < ∞,
then for any x ∈ c(g) and any r ∈ (0,2] ,

E|gn(x)−g(x)|r → 0, as n → ∞. (3.1)

If supn�1 E|εn|r < ∞ for some r > 2 , then (3.1) also holds true.
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THEOREM 3.2. Let {εn,n � 1} be a sequence of mean zero m-END random
variables. Assume that the conditions (H1) , (H2) , (H3) and (H5) are satisfied. If
supn�1 E|εn|p < ∞ for some p ∈ (1,2] , then

E|gn(x)−g(x)|p → 0, as n → ∞. (3.2)

In order to obtain the uniform convergence for the estimator of g(x) , some uniform
version of assumptions on Wni(x) = Wni(x,xn1, . . . ,xnn) are needed as follows:

(H ′
1)supx∈A ∑n

i=1 |Wni(x)|p → 0 as n → ∞ for some p ∈ (1,2] ;
(H ′

2)supx∈A |∑n
i=1Wni(x)−1| → 0 as n → ∞ ;

(H ′
3)supx∈A |∑n

i=1Wni(x)| � C for all n ;
(H ′

4)supx∈A ∑n
i=1W 2

ni(x) → 0 as n → ∞ ;
(H ′

5)supx∈A ∑n
i=1 |Wni(x)| · |g(xni)− g(x)|I(‖xni − x‖ > a) → 0 as n → ∞ for all

a > 0.
Based on the conditions of (H ′

1)–(H ′
5) , we can get the uniform convergence for

the estimator of g(x) as follows.

THEOREM 3.3. Let {εn,n � 1} be a sequence of mean zero m-END random
variables. Suppose that the conditions (H ′

2)–(H ′
5) hold true and g is continuous on

the compact set A. If supn�1 Eε2
n < ∞ , then for any r ∈ (0,2] ,

sup
x∈A

E|gn(x)−g(x)|r → 0, as n → ∞. (3.3)

If supn�1 E|εn|r < ∞ for some r > 2 , then (3.3) also holds true.

THEOREM 3.4. Let {εn,n � 1} be a sequence of mean zero m-END random
variables. Assume that the conditions (H ′

1) , (H ′
2) , (H ′

3) and (H ′
5) hold true and g is

continuous on the compact set A. If supn�1 E|εn|p < ∞ for some p ∈ (1,2] , then

sup
x∈A

E|gn(x)−g(x)|p → 0, as n → ∞. (3.4)

As an application of the above results, we give an example for the nearest neighbor
estimator of g(x) . Without loss of generality, let A=[0,1] and xni = i/n, i = 1,2, . . . ,n .
For any x ∈ A ⊂ R

q , we rewrite |xn1− x|, |xn2− x|, . . . , |xnn − x| as follows:

|x(n)
R1(x)

− x|� |x(n)
R2(x)

− x|� . . . � |x(n)
Rn(x)

− x|,

if |xni − x| = |xn j − x| , then |xni − x| will be put in front for i < j . Define the nearest
neighbor estimator as follows:

gn(x) =
n

∑
i=1

Wni(x)Yni,x ∈ A ⊂ R
q, (3.5)

where Wni(x) = Wni(x,xn1, . . . ,xnn) are weight functions and

Wni(x) = Wni(x,xn1, . . . ,xnn) =

{
1/kn, if |xni− x| � |x(n)

Rkn(x) − x|,
0, otherwise.
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Let kn = �n1/p� for some p > 1 and g is continuous on the compact set A . Conse-
quently, for every x ∈ [0,1] , we can obtain by the definition of Ri(x) and the choice of
xni that

n

∑
i=1

|Wni(x)|p =
n

∑
i=1

|WnRi(x)(x)|p =
kn

∑
i=1

1
kp
n

= k1−p
n ;

n

∑
i=1

Wni(x) =
n

∑
i=1

WnRi(x)(x) =
kn

∑
i=1

1
kn

= 1;

n

∑
i=1

|Wni(x)| =
n

∑
i=1

Wni(x) =
n

∑
i=1

WnRi(x)(x) =
kn

∑
i=1

1
kn

= 1;

n

∑
i=1

W 2
ni(x) =

n

∑
i=1

W 2
nRi(x)(x) =

kn

∑
i=1

1
k2
n

=
1
kn

;

n

∑
i=1

Wni(x)I(‖xni− x‖ > a) �
n

∑
i=1

Wni(x)
(xni − x)2

a2 =
kn

∑
i=1

(x(n)
Ri(x)

− x)2

kna2

�
kn

∑
i=1

(i/n)2

kna2 � (
kn

na
)2 � C

n2−2/p
.

Hence, the conditions (H1)–(H5) are satisfied. Similarly, the conditions (H ′
1)–(H ′

5)
are also satisfied. Therefore, by Theorems 3.3 and 3.4, we can get the following results
on mean consistency for the nearest neighbor estimator.

COROLLARY 3.1. Let {εn,n � 1} be a sequence of mean zero m-END random
variables. Assume that g is continuous on the compact set A and kn = �n1/p� for some
p > 1 .

(i) If supn�1 Eε2
n < ∞ , then (3.3) holds for any r ∈ (0,2];

(ii) If supn�1 E|εn|p < ∞ , then (3.4) holds true.

4. Proofs of the main results

Proof of Theorem 3.1. By Cr -inequality, we have

E|gn(x)−g(x)|r � C [E|gn(x)−Egn(x)|r + |Egn(x)−g(x)|r] . (4.1)

For x ∈ c(g) and a > 0, we can see that

|Egn(x)−g(x)| �
n

∑
i=1

|Wni(x)| · |g(xni)−g(x)|I(‖xni− x‖ � a)

+
n

∑
i=1

|Wni(x)| · |g(xni)−g(x)|I(‖xni− x‖ > a)

+|g(x)| · |
n

∑
i=1

|Wni(x)−1|.
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Since x ∈ c(g) , we can get that for any ε > 0, there exists a δ > 0 such that
|g(x′)−g(x)|< ε when |x′ − x|< δ . Setting a ∈ (0,δ ) , we can get

|Egn(x)−g(x)| � ε
n

∑
i=1

|Wni(x)| +
n

∑
i=1

|Wni(x)| · |g(xni)−g(x)|I(‖xni− x‖ > a)

+|g(x)| · |
n

∑
i=1

Wni(x)−1|.

By conditions (H2) , (H3) and (H5) , we have that

|Egn(x)−g(x)| → 0, as n → ∞, x ∈ c(g). (4.2)

On the other hand, for the fixed x , by Lemma 2.1, we can see that {W+
ni (x)εi,1 �

i � n} and {W−
ni (x)εi,1 � i � n} are both m-END sequences. Noting that Wni(x)εi =

W+
ni (x)εi −W−

ni (x)εi , without loss of generality, we assume that Wni(x) � 0 in what
follows. If 0 < r � 2, by Jensen’s inequality, Lemma 2.2, (H4) and supn�1 Eε2

n < ∞ ,
we have

E|gn(x)−Egn(x)|r = E

∣∣∣∣∣
n

∑
i=1

Wni(x)εni

∣∣∣∣∣
r

= E

∣∣∣∣∣
n

∑
i=1

Wni(x)εi

∣∣∣∣∣
r

�

⎡
⎣E

(
n

∑
i=1

Wni(x)εi

)2
⎤
⎦

r/2

� C1

[
n

∑
i=1

W 2
ni(x)Eε2

i

]r/2

� C2

[
n

∑
i=1

W 2
ni(x)

]r/2

→ 0, as n → ∞, (4.3)

following from that {εni,1 � i � n} has the same distribution as that of {εi,1 � i � n}
for each n . If r > 2, by Lemma 2.2, supn�1 E|εn|r < ∞ and (H4) again, we obtain

E |gn(x)−Egn(x)|r = E

∣∣∣∣∣
n

∑
i=1

Wni(x)εni

∣∣∣∣∣
r

= E

∣∣∣∣∣
n

∑
i=1

Wni(x)εi

∣∣∣∣∣
r

� C3

⎧⎨
⎩

n

∑
i=1

Wr
ni(x)E|εi|r +

[
n

∑
i=1

W 2
ni(x)Eε2

i

]r/2
⎫⎬
⎭

� C4

⎧⎨
⎩
[

n

∑
i=1

W 2
ni(x)

]r/2

+

[
n

∑
i=1

W 2
ni(x)

]r/2
⎫⎬
⎭

→ 0, as n → ∞, (4.4)

since (∑n
i=1 aα

i )1/α � (∑n
i=1 aβ

i )1/β holds for any positive number sequence {ai,1 �
i � n} and 1 � α � β . Therefore, the desired result (3.1) follows from (4.1)–(4.4)
immediately. This completes the proof of the theorem. �
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Proof of Theorem 3.2. For p ∈ (1,2] , by (H1) , Lemma 2.2 and supn�1 E|εn|p <
∞ , we get

E|gn(x)−Egn(x)|p = E

∣∣∣∣∣
n

∑
i=1

Wni(x)εni

∣∣∣∣∣
p

= E

∣∣∣∣∣
n

∑
i=1

Wni(x)εi

∣∣∣∣∣
p

� C5

n

∑
i=1

|Wni(x)|pE|εi|p

� C6

n

∑
i=1

|Wni(x)|p → 0, as n → ∞. (4.5)

Besides, noting that the conditions (H2) , (H3) and (H5) are also satisfied, we can ob-
tain that |Egn(x)−g(x)| → 0, as n → ∞ for any x ∈ c(g) . Therefore, the desired result
(3.2) follows from (4.1), (4.2) and (4.5) immediately. The proof is completed. �

Proof of Theorem 3.3. Since g is continuous on the compact set A , we have that
g is uniformly continuous on the compact set A . Consequently, similar to the proof of
Theorem 3.1, we can get that

lim
n→∞

sup
x∈A

E|gn(x)−Egn(x)|r = 0, lim
n→∞

sup
x∈A

|Egn(x)−g(x)|r = 0.

Therefore,

sup
x∈A

E|gn(x)−g(x)|r � cp

[
sup
x∈A

E|gn(x)−Egn(x)|r + sup
x∈A

|Egn(x)−g(x)|r
]

→ 0, as n → ∞,

which implies the desired result (3.3) immediately. The proof is completed. �

Proof of Theorem 3.4. Since g is continuous on the compact set A , we can see that
g is uniformly continuous on the compact set A . Consequently, similar to the proofs of
Theorem 3.1 and Theorem 3.2, we can get that

lim
n→∞

sup
x∈A

E|gn(x)−Egn(x)|p = 0, lim
n→∞

sup
x∈A

|Egn(x)−g(x)|p = 0.

Therefore,

sup
x∈A

E|gn(x)−g(x)|p � cp

[
sup
x∈A

E|gn(x)−Egn(x)|p + sup
x∈A

|Egn(x)−g(x)|p
]

→ 0, as n → ∞,

which implies the desired result (3.4) . This completes the proof of the theorem. �
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