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NEW EXPLICIT BOUNDS ON GAMIDOV TYPE INTEGRAL

INEQUALITIES ON TIME SCALES AND APPLICATIONS

KHALED BOUKERRIOUA, DALLEL DIABI AND IMEN MEZIRI

(Communicated by Q.-H. Ma)

Abstract. In this paper, we derive some generalizations of certain Gamidov type integral inequal-
ities on time scales, which provide explicit bounds on unknown functions. Also, some examples
are presented to show the feasibility of these results.

1. Introduction

Integral inequalities that give explicit bounds on unknown functions provide a
very useful and important device in the study of many qualitative as well as quanti-
tative properties of solutions of differential and integral equations. During the past few
years, many such new inequalities have been discovered, which are motivated by cer-
tain applications. For example, see [2–3, 6–16] and the references therein. In [10] ,
Sh. G. Gamidov, while studying the boundary value problem for higher order differ-
ential equations, initiated the study of obtaining explicit upper bounds on the integral
inequalities of the forms

u(t) � c+
∫ t

a
f (s)u(s)ds+

∫ b

a
n(s)u(s)ds. (1.1)

for t ∈ [a,b] , under some suitable conditions on the functions involved in (1.1).
In [16] , Pachpatte established more general Gamidov inequalities as follows:

u(t) � a(t)+
∫ t

a
f (t,s)u(s)ds+

∫ b

a
n(s)u(s)ds. (1.2)

In [8], the authors considered the followig Gronwall-Bellman-Gamidov integral
inequality with power nonlinearity

up(t) � a(t)+b(t)
t∫

0

f (s)uq(s)ds+ c(t)
T∫

0

n(s)ur(s)ds. (1.3)

In the present paper we shall consider the problem of obtaining new explicit upper
bounds on the general versions of (1.3) on time scales which can be used as tools in
the study of qualitative behavior of solutions of certain classes of integral equations on
time scales.
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2. Some preliminaries

In what follows, R denotes the set of real numbers, R+ = [0,+∞[ , T is an arbi-
trary time scale. The forward and backward jump operators σ ,ρ : T → T are defined
by σ(t) := inf{s ∈ T : s > t} , ρ(t) =: sup{s ∈ T : s < t} . Crd denotes the set of rd-
continuous functions and the set T

k is derived from the time scale T as follows: If T

has a left-scattered maximum m , then T
k = T−{m} , otherwise, T

k = T . The grain-
iness function μ : T → [0,∞[ is defined by μ(t) := σ(t)− t. R denotes the set of all
regressive and rd -continuous functions.

We define the set of all positively regressive functions by

R+ = {p ∈ R : 1+ μ(t)p(t) > 0 for all t ∈ T} .

Also we define the time scales interval by

[a,b]T = {t ∈ T : a � t � b} , (2.1)

note that [a,b]k
T

=
{

[a,b]T if b is left- dense,
[a,b[

T
= [a,ρ(b)]T = [a,b[ if b is left- scattered.

The following lemmas are very useful in our main results.

LEMMA 1. (Theorem 6.1 in [4]) Suppose u,b ∈Crd , a ∈ R+ . Then

uΔ (t) � a(t)u(t)+b(t), t � t0, t ∈ T, (2.2)

implies

u(t) � u(t0)ea(t,t0)+
t∫

t0

b(τ)ea(t,σ(τ))Δτ, t � t0, t ∈ T. (2.3)

LEMMA 2. (Theorem 1.117 in [4]) Let t0 ∈ T
k and assume f : T×T

k → R is
continuous at (t, t) , where t ∈T

k with t > t0 . Also assume that f Δ(t, .) is rd-continuous
on [t0,σ(t)] . Suppose that for each ε > 0 there exists a neighborhood U of t , inde-
pendent of τ ∈ [t0,σ(t)] , such that∣∣∣ f (σ(t),τ)− f (s,τ)− f Δ(t,τ)(σ(t)− s)

∣∣∣ � ε |σ(t)− s| for all s ∈U, (2.4)

where f Δ denotes the derivative of f with respect to the first variable. Then

g(t) :=
t∫
a

f (t,τ)Δτ implies gΔ(t) =
t∫
a

f Δ(t,τ)Δτ + f (σ(t), t). (2.5)

For more discussion on time scales, we refer the reader to [4, 5].

LEMMA 3. [11] Assume that a � 0, p � q � 0 and p �= 0 , then

a
q
p � q

p
K

q−p
p a+

p−q
p

K
q
p , (2.6)

for any K > 0.

Now we state the main results of this work.
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3. Main result

In this section, some time scale Gamidov type integral inequalities are investi-
gated. For convenience, it is always assumed that p,q,r are real constants such that
0 < q , r � p , p � 1 and a,b ∈ T.

LEMMA 4. Suppose u,m, l,n ∈Crd ([a,b]
T
,R+) , and g : R+ → R+ is a differen-

tiable increasing function on ]0,+∞[ with continuous nonincreasing first derivative g′
on ]0,+∞[ . If

u(t) � m(t)+ l(t)
b∫

a

n(s)g(u(s))Δs. (3.1)

Then

u(t) � m(t)+

l(t)
b∫

a

n(s)g(m(s))Δs

1−
b∫

a

g′(m(s))n(s)l(s)Δs

, (3.2)

for all t ∈ [a,b]k
T

provided that

b∫
a

ǵ(m(s))n(s)l(s)Δs < 1. (3.3)

Proof. Let

Σ =
b∫

a

n(s)g(u(s))Δs, (3.4)

it’s clear that Σ is a constant, substituting (3.4) in (3.1), we get

u(t) � m(t)+ l(t)Σ. (3.5)

Applying the mean value Theorem for the function g , then for every x � y > 0, there
exists c ∈]y,x[ such that

g(x)−g(y) = g′(c)(x− y) � g′(y)(x− y) (3.6)

which gives

g(u(t)) � g(m(t)+ l(t)Σ) � g′(m(t))l(t)Σ+g(m(t)). (3.7)

Multiplying both sides of (3.7) by n(t), then integrating the result from a to b, it
yields

b∫
a

n(s)g(u(s))Δs �
b∫

a

n(s)g(m(s))Δs+ Σ
b∫

a

g′(m(s))n(s)l(s)Δs. (3.8)
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(3.8) can be rewritten as

Σ �
b∫

a

n(s)g(m(s))Δs+ Σ
b∫

a

g′(m(s))n(s)l(s)Δs. (3.9)

The inequality (3.9) implies the estimate

Σ

⎛
⎝1−

b∫
a

g′(m(s))n(s)l(s)Δs

⎞
⎠ �

b∫
a

n(s)g(m(s))Δs. (3.10)

From (3.3), we observe that

Σ �

b∫
a

n(s)g(m(s))Δs

1−
b∫

a

g′(m(s))n(s)l(s)Δs

. (3.11)

Therefore, from (3.11) and (3.5), one can deduce inequality (3.2). �

REMARK 1. If we take T = R and g(x) = x , a = 0, b = T, Lemma 4 reduces to
Lemma 3 in [8] .

COROLLARY 1. Assume that the hypotheses of Lemma 4 hold. Then

u(t) � m(t)+ l(t)
b∫

a

n(s)arctan(u(s))Δs

implies

u(t) � m(t)+

l(t)
b∫

a

n(s)arctan(m(s))Δs

1−
b∫

a

n(s)l(s)
1+m2(s)

Δs

,

for all t ∈ [a,b]k
T

provided that

b∫
a

n(s)l(s)
1+m2(s)

Δs < 1,

and if

u(t) � m(t)+ l(t)
b∫

a

n(s) ln(u(s)+1)Δs,
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then

u(t) � m(t)+

l(t)
b∫

a

n(s) ln(m(s)+1)Δs

1−
b∫

a

n(s)l(s)
1+m(s)

Δs

,

for all t ∈ [a,b]k
T

provided that

b∫
a

n(s)l(s)
1+m(s)

Δs < 1.

Now by using Lemma 4, we give a new versions of the inequality (1.3) on time
scale.

THEOREM 1. Let u,c,n ∈ Crd ([a,b]
T
,R+) and cΔ � 0 , and f is defined as in

Lemma 2 such that f (t,s) � 0 and f Δ(t,s) � 0 for t,s∈ [a,b]
T

with s � t. If g : R+ →
R+ is a differentiable increasing function on ]0,+∞[ with continuous nonincreasing
first derivative g′ on ]0,+∞[. Then

u(t) � c(t)+
t∫

a

f (t,s)u(s)Δs+
b∫

a

n(s)g(u(s))Δs, (3.12)

implies

u(t) �

⎛
⎜⎜⎜⎜⎜⎜⎝

m(t)+

l(t)
b∫

a

n(s)g(m(s))Δs

1−
b∫

a

g′(m(s))n(s)l(s)Δs

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3.13)

for all t ∈ [a,b]k
T
, where

m(t) = c(a)eP(t,a)+
t∫

a

Q(s)eP(t,σ (s))Δs, (3.14)

l(t) = eP(t,a),

and

P(t) =

⎡
⎣ f (σ (t) ,t)+

t∫
a

f Δ(t,s)Δs

⎤
⎦ , (3.15)

Q(t) = cΔ(t),
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with
b∫

a

g′(m(s))n(s)l(s)Δs < 1. (3.16)

Proof. Define a function z(t) by

z(t) = c(t)+
t∫

a

f (t,s)u(s)Δs+
b∫

a

n(s)g(u(s))Δs, (3.17)

then

u(t) � z(t), (3.18)

z(a) = c(a)+
b∫

a

n(s)g(u(s))Δs,

and from (3.17)–(3.18), we have

z(a) � c(a)+
b∫

a

n(s)g(z(s))Δs, (3.19)

zΔ(t) = cΔ(t)+ f (σ (t) ,t)u(t)+
t∫

a

f Δ(t,s)u(s)Δs, (3.20)

zΔ(t) � cΔ(t)+

⎛
⎝ f (σ (t) ,t)+

t∫
a

f Δ(t,s)Δs

⎞
⎠z(t). (3.21)

The inequality (3.21) can be reformulated as

zΔ(t) � P(t)z(t)+Q(t), (3.22)

where P and Q are defined as in (3.15).
Applying Lemma 1 to (3.22), we obtain

z(t) � z(a)eP(t,a)+
t∫

a

Q(s)eP(t,σ (s))Δs. (3.23)

The substituting of (3.19) in (3.23), gives

z(t) �
t∫

a

Q(s)eP(t,σ (s))Δs+ c(a)eP(t,a)+ eP(t,a)
b∫

a

n(s)g(z(s))Δs. (3.24)
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The inequality (3.24) can be rewritten as

z(t) � m(t)+ l(t)
b∫

a

n(s)g(z(s))Δs, (3.25)

where m and l are defined as in (3.14).
Applying Lemma 4 to (3.25), we get the desired inequality. �

REMARK 2. If we take T = R and g(x) = x, the inequality given in Theorem 1
reduces to the inequality given in [16, Theorem 1, (a3)].

THEOREM 2. Let u,a,b,n ∈ Crd ([a,b]
T
,R+) , and f is defined as in Lemma 2

such that f (t,s) � 0 and f Δ(t,s) � 0 for t,s∈ [a,b]
T

with s� t. If g : R+ →R+ is a dif-
ferentiable increasing function on ]0,+∞[ with continuous nonincreasing first deriva-
tive g′ on ]0,+∞[ , then

up(t) � a(t)+b(t)

⎛
⎝ t∫

a

f (t,s)uq(s)Δs+
b∫

a

n(s)g(u(s))Δs

⎞
⎠ , (3.26)

implies

u(t) � m∗(t)+

l∗(t)
b∫

a

n(s)g(m∗(s))Δs

1−
b∫

a

g′(m∗(s))n(s)l∗(s)Δs

,

for all t ∈ [a,b]k
T
, where m∗(t) and l∗(t) are given by

m∗(t) =
1
p
K

1−p
p b(t)

t∫
a

Q∗(s)eP∗(t,σ (s))Δs+
1
p
K

1−p
p a(t)+

p−1
p

K
1
p , (3.27)

l∗(t) =
1
p
K

1−p
p b(t)eP∗(t,a),

and

P∗(t) =
q
p
K

q−p
p b(t) f (σ (t) ,t)+

t∫
a

q
p
K

q−p
p b(s) f Δ(t,s)Δs, (3.28)

Q∗(t) = f (σ (t) , t)
( q

p
K

q−p
p a(t)+

p−q
p

K
q
p

)
+

t∫
a

f Δ(t,s)
( q

p
K

q−p
p a(s)+

p−q
p

K
q
p

)
Δs

with
b∫

a

g′(m∗(s))n(s)l∗(s)Δs < 1.
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Proof. Define a function z(t) by

z(t) =
t∫

a

f (t,s)uq(s)Δs+
b∫

a

n(s)g(u(s))Δs, (3.29)

then
u(t) � (a(t)+b(t)z(t))

1
p . (3.30)

Using Lemma 3, we obtain

u(t) � 1
p
K

1−p
p (a(t)+b(t)z(t))+

p−1
p

K
1
p = w(t), (3.31)

z(a) =
b∫

a

n(s)g(u(s))Δs �
b∫

a

n(s)g(w(s))Δs.

Using Lemma 2, we get

zΔ(t) = f (σ (t) ,t)uq(t)+
t∫

a

f Δ(t,s)uq(s)Δs (3.32)

� f (σ (t) ,t)(a(t)+b(t)z(t))
q
p +

t∫
a

f Δ(t,s)(a(s)+b(t)z(s))
q
p Δs.

Applying Lemma 3 to (3.32), we obtain

zΔ(t) � f (σ (t) ,t)
( q

p
K

q−p
p (a(t)+b(t)z(t))+

p−q
p

K
q
p

)
(3.33)

+
t∫

a

f Δ(t,s)
( q

p
K

q−p
p (a(s)+b(s)z(s))+

p−q
p

K
q
p

)
Δs.

Then, (3.33) can be rewritten as

zΔ(t) �
(q

p
K

q−p
p b(t) f (σ (t) ,t)+

t∫
a

q
p
K

q−p
p f Δ(t,s)b(s)Δs

)
z(t) (3.34)

+ f (σ (t) ,t)
( q

p
K

q−p
p a(t)+

p−q
p

K
q
p

)

+
t∫

a

f Δ(t,s)
( q

p
K

q−p
p a(s)+

p−q
p

K
q
p

)
Δs.

Now (3.34) can be restated as

zΔ(t) � P∗(t)z(t)+Q∗(t), (3.35)



NEW EXPLICIT BOUNDS ON GAMIDOV TYPE INTEGRAL INEQUALITIES 815

where P∗(t) and Q∗(t) are given by (3.28).
Using Lemma 1, from (3.35), we easily obtain

z(t) � z(a)eP∗(t,a)+
t∫

a

Q∗(s)eP∗(t,σ (s))Δs. (3.36)

From (3.31) and (3.36), we have

z(t) � eP∗(t,a)
b∫

a

n(s)g(w(s))Δs+
t∫

a

Q∗(s)eP∗(t,σ (s))Δs. (3.37)

Multiplying both sides of the inequality (3.37) by 1
pK

1−p
p b(t) and adding 1

pK
1−p

p a(t)+
p−1
p K

1
p to both sides of the resultant inequality, we obain

w(t) � 1
p
K

1−p
p b(t)eP∗(t,a)

b∫
a

n(s)g(w(s))Δs (3.38)

+
1
p
K

1−p
p b(t)

t∫
a

Q∗(s)eP∗(t,σ (s))Δs+
1
p
K

1−p
p a(t)+

p−1
p

K
1
p ,

then (3.38) can be reformulated as

w(t) � m∗(t)+ l∗(t)
b∫

a

n(s)g(w(s))Δs, (3.39)

where m∗ and l∗ are defined as in (3.27).
Using Lemma 4, from (3.39) we have

u(t) � w(t) � m∗(t)+

l∗(t)
b∫

a

n(s)g(m∗(s))Δs

1−
b∫

a

g′(m∗(s))n(s)l∗(s)Δs

. (3.40)

The proof of Theorem 2 is complete. �

COROLLARY 2. Let u,a,b,c,n ∈Crd ([a,b]
T
,R+) and f is defined as in Lemma

2 such that f (t,s) � 0 and f Δ(t,s) � 0 for t,s ∈ [a,b]
T
, with s � t. If g : R+ →

R+ is a differentiable increasing function on ]0,+∞[ with continuous nonincreasing
first derivative g′ on ]0,+∞[. Then

up(t) � a(t)+b(t)
t∫

a

f (t,s)uq(s)Δs+ c(t)
b∫

a

n(s)g(u(s))Δs, (3.41)
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implies

u(t) � m∗(t)+

l∗(t)
b∫

a

n(s)g(m∗(s))Δs

1−
b∫

a

g′(m∗(s))n(s)l∗(s)Δs

(3.42)

for t ∈ [a,b]k
T

where m∗(t) , l∗(t),P∗(t) and Q∗(t) are defined as in (3.27)–(3.28) by
replacing b(t) by (b(t)+ c(t)) , with

b∫
a

g′(m∗(s))n(s)l∗(s)Δs < 1.

Proof. The inequality (3.41) can be estimated as

up(t) � a(t)+ (b(t)+ c(t))

⎛
⎝ t∫

a

f (t,s)uq(s)Δs+
b∫

a

n(s)g(u(s))Δs

⎞
⎠ . (3.43)

Applying Theorem 2 to (3.43), we obtain the desired inequality (3.42). �

THEOREM 3. Let u,c,n ∈ Crd ([a,b]
T
,R+) , with cΔ � 0 and f is defined as in

Lemma 2 such that f (t,s) � 0 and f Δ(t,s) � 0 for t,s∈ [a,b]
T

with s � t. Assume that
g1,g2 : R+ → R+ are a differentiable increasing functions on ]0,+∞[ with continuous
nonincreasing first derivatives on ]0,+∞[ .

Then

up(t) � c(t)+
t∫

a

f (t,s)g1(u(s))Δs+
b∫

a

n(s)g2(u(s))Δs, (3.44)

implies

u(t) � m(t)+

l(t)
b∫

a

n(s)g2(m(s))Δs

1−
b∫

a

g′2(m(s))n(s)l(s)Δs

, (3.45)

for all t ∈ [a,b]k
T
, provided that

b∫
a

g′2(m(s))n(s)l(s)Δs < 1,
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where

m(t) =
1
p
K

1−p
p (c(a)eP(t,a)+

t∫
a

Q(s)eP(t,σ (s))Δs)+
p−1

p
K

1
p , (3.46)

l(t) =
1
p
K

1−p
p eP(t,a),

and

P(t) =
1
p
K

1−p
p g′1

( p−1
p

K
1
p

)(
f (σ (t) ,t)+

t∫
a

f Δ(t,s)Δs
)
, (3.47)

Q(t) = cΔ(t)+ g1

( p−1
p

K
1
p

)(
f (σ (t) , t)+

t∫
a

f Δ(t,s)Δs
)
.

Proof. Define a function z(t) by

z(t) = c(t)+
t∫

a

f (t,s)g1(u(s))Δs+
b∫

a

n(s)g2(u(s))Δs, (3.48)

then

u(t) � z
1
p (t) � 1

p
K

1−p
p z(t)+

p−1
p

K
1
p = w(t), (3.49)

zΔ(t) = cΔ(t)+ f (σ (t) ,t)g1(u(t))+
t∫

a

f Δ(t,s)g1(u(s))Δs,

zΔ(t) � cΔ(t)+
(

f (σ (t) ,t)+
t∫

a

f Δ(t,s)Δs
)
g1(w(t)),

z(a) = c(a)+
b∫

a

n(s)g2(u(s))Δs � c(a)+
b∫

a

n(s)g2(w(s))Δs,

from the properties of g1 and using (3.49), it follows that

zΔ(t) � cΔ(t)+( f (σ (t) ,t)+
t∫

a

f Δ(t,s)Δs)
(
g′1

( p−1
p

K
1
p

) 1
p
K

1−p
p z(t)+g1

( p−1
p

K
1
p

))
,

(3.50)
the inequality (3.50) can be reformulated as

zΔ(t) � P(t)z(t)+Q(t), (3.51)

where P and Q are defined as in (3.47).
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Using Lemma 1 from (3.51), we have

z(t) � z(a)eP(t,a)+
t∫

a

Q(s)eP(t,σ (s))Δs. (3.52)

Substituting the last inequality of (3.49) in (3.52), we get

z(t) � c(a)eP(t,a)+
t∫

a

Q(s)eP(t,σ (s))Δs+ eP(t,a)
b∫

a

n(s)g2(w(s))Δs, (3.53)

multiplying both sides of (3.53) by 1
pK

1−p
p and adding p−1

p K
1
p to both sides of the

resultant inequality, we obtain

w(t) � 1
p
K

1−p
p

⎛
⎝c(a)eP(t,a)+

t∫
a

Q(s)eP(t,σ (s))Δs

⎞
⎠+

p−1
p

K
1
p (3.54)

+
1
p
K

1−p
p eP(t,a)

b∫
a

n(s)g2(w(s))Δs,

the inequality (3.54) can be expressed as

w(t) � m(t)+ l(t)
b∫

a

n(s)g2(w(s))Δs, (3.55)

where m(t) and l(t) are defined as in (3.46). Using lemma 4, from (3.55), we have

u(t) � w(t) � m(t)+

l(t)
b∫

a

n(s)g2(m(s))Δs

1−
b∫

a

g′2(m(s))n(s)l(s)Δs

.

This completes the proof of Theorem 3. �

THEOREM 4. Let u,h,n∈Crd ([a,b]
T
,R+) , c � 0 , and f is defined as in Lemma

2 such that f (t,s) � 0 and f Δ(t,s) � 0 for t,s∈ [a,b]
T

with s � t. If g is differentiable
increasing functions on ]0,+∞[ with continuous nonincreasing first derivative g′ on
]0,+∞[ . Then

up(t) � c +
t∫

a

h(s)

⎡
⎣uq(s)+

s∫
a

f (s,τ)uq(τ)Δτ +
b∫

a

n(τ)g(u(τ))Δτ

⎤
⎦Δs, (3.56)
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implies

u(t) �

⎡
⎢⎢⎢⎢⎢⎢⎣

c+qK
q−1

p

t∫
a

h(τ)(m(τ)+

l(τ)
b∫

a

n(t)g(m(t))Δt

1−
b∫

a

g′(m(t))n(t)l(t)Δt

)Δτ

⎤
⎥⎥⎥⎥⎥⎥⎦

1
p

. (3.57)

for all t ∈ [a,b]k
T
, provided that

b∫
a

g′(m(t))n(t)l(t)Δt < 1, (3.58)

where

m(t) =
( 1

p
K

1−p
p c+

p−1
qp

K
1
p

)
eP(t,a)+

p−1
p

K
1
p (3.59)

+
1
q
K

1−q
p

t∫
a

Q(s)eP(t,σ (s))Δs,

l(t) =
1
q
K

1−q
p eP(t,a),

P(t) =
q
p
K

q−p
p

h(t)+ f (σ(t),t)+
t∫

a

f Δ(t,τ)Δτ, (3.60)

Q(t) =
p−q

p
K

q
p ( f (σ(t),t)+

t∫
a

f Δ(t,τ)Δτ).

Proof. Define function z(t) as follows

z(t) = c +
t∫

a

h(s)

⎡
⎣uq(s)+

s∫
a

f (s,τ)uq(τ)Δτ +
b∫

a

n(τ)g(u(τ))Δτ

⎤
⎦Δs, (3.61)

then
z(a) = c, (3.62)

u(t) � z
1
p (t) � 1

p
K

1−p
p z(t)+

p−1
p

K
1
p , (3.63)

and

zΔ(t) = h(t)

⎡
⎣uq(t)+

t∫
a

f (t,τ)uq(τ)Δτ +
b∫

a

n(τ)g(u(τ))Δτ

⎤
⎦ . (3.64)



820 K. BOUKERRIOUA, D. DIABI AND I. MEZIRI

Using (3.63) and taking into account that z(t) is nondecreasing, (3.64) becomes

zΔ(t) � h(t)

⎡
⎣
⎛
⎝z

q
p (t)+

t∫
a

f (t,τ)z
q
p (τ)Δτ

⎞
⎠+

⎛
⎝ b∫

a

n(τ)g(z
1
p (τ))Δτ

⎞
⎠

⎤
⎦ . (3.65)

Using Lemma 3 from (3.65), we obtain

zΔ(t) � h(t)

⎡
⎣( q

p
K

q−p
p z(t)+

p−q
p

K
q
p

)
+

t∫
a

f (t,τ)
( q

p
K

q−p
p z(τ)+

p−q
p

K
q
p

)
Δτ

+
b∫

a

n(τ)g
( 1

p
K

1−p
p z(τ)+

p−1
p

K
1
p

)
Δτ

⎤
⎦ . (3.66)

Define a function v(t) by

v(t) =

⎡
⎣(q

p
K

q−p
p z(t)+

p−q
p

K
q
p

)
+

t∫
a

f (t,τ)
( q

p
K

q−p
p z(τ)+

p−q
p

K
q
p

)
Δτ

+
b∫

a

n(τ)g
(1

p
K

1−p
p z(τ)+

p−1
p

K
1
p

)
Δτ

⎤
⎦ . (3.67)

Then

v(a) =
q
p
K

q−p
p c+

p−q
p

K
q
p +

b∫
a

n(τ)g
(1

p
K

1−p
p z(τ)+

p−1
p

K
1
p

)
Δτ. (3.68)

Remarking that

q
p
K

q−p
p z(t) � v(t), zΔ(t) � h(t)v(t), (3.69)

and v(t) is nondecreasing for t ∈ [a,b]k
T
. Using Lemma 2, we obtain

vΔ(t) =
q
p
K

q−p
p zΔ(t)+ f (σ(t),t)

(q
p
K

q−p
p z(t)+

p−q
p

K
q
p

)
(3.70)

+
t∫

a

f Δ(t,τ)
( q

p
K

q−p
p z(τ)+

p−q
p

K
q
p

)
Δτ.

It follows from (3.69) and (3.70) that

vΔ(t) �
(q

p
K

q−p
p h(t)+ f (σ(t),t)+

t∫
a

f Δ(t,τ)Δτ
)
v(t) (3.71)

+
p−q

p
K

q
p ( f (σ(t),t)+

t∫
a

f Δ(t,τ)Δτ),
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then the inequality (3.71), can be reformulated as

vΔ(t) � P(t)v(t)+Q(t). (3.72)

where P(t) and Q(t) are defined as in (3.60).
Using lemma 1 from (3.72), we have

v(t) � v(a)eP(t,a)+
t∫

a

Q(s)eP(t,σ (s))Δs, (3.73)

from (3.73) and using (3.68), it is easy to observe that

v(t) �
( q

p
K

q−p
p c+

p−q
p

K
q
p

)
eP(t,a) (3.74)

+ eP(t,a)
b∫

a

n(τ)g
( 1

p
K

1−p
p z(τ)+

p−1
p

K
1
p

)
Δτ

+
t∫

a

Q(s)eP(t,σ (s))Δs.

Multiplying both sides of (3.74) by 1
qK

1−q
p and adding p−1

p K
1
p to both sides of the

resultant inequality and using (3.69), we obtain

1
q
K

1−q
p v(t)+

p−1
p

K
1
p � m(t)+ l(t)

b∫
a

n(τ)g
(1

q
K

1−q
p v(τ)+

p−1
p

K
1
p

)
Δτ, (3.75)

where m(t) and l(t) are defined as in (3.59).
The inequality (3.75) can be restated as

w(t) � m(t)+ l(t)
b∫

a

n(τ)g(w(τ))Δτ, (3.76)

where

w(t) =
1
q
K

1−q
p v(t)+

p−1
p

K
1
p . (3.77)

Applying Lemma 4 to (3.77), we get

w(t) � m(t)+

l(t)
b∫

a

n(s)g(m(s))Δs

1−
b∫

a

g′(m(s))n(s)l(s)Δs

. (3.78)
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It follows from (3.77) that
1
q
K

1−q
p v(t) � w(t), (3.79)

using (3.78) and (3.79), we obtain

v(t) � qK
q−1

p

⎛
⎜⎜⎜⎜⎜⎜⎝

m(t)+

l(t)
b∫

a

n(s)g(m(s))Δs

1−
b∫

a

g′(m(s))n(s)l(s)Δs

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.80)

It follows from (3.69) that

zΔ(t) � qK
q−1

p h(t)

⎛
⎜⎜⎜⎜⎜⎜⎝

m(t)+

l(t)
b∫

a

n(s)g(m(s))Δs

1−
b∫

a

g′(m(s))n(s)l(s)Δs

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.81)

Integrating the inequality (3.81) from a to t , we obtain

z(t) � c+qK
q−1

p

t∫
a

h(τ)

⎛
⎜⎜⎜⎜⎜⎜⎝

m(τ)+

l(τ)
b∫

a

n(s)g(m(s))Δs

1−
b∫

a

g′(m(s))n(s)l(s)Δs

⎞
⎟⎟⎟⎟⎟⎟⎠

Δτ. (3.82)

Therefore, from (3.82) and (3.63), one can deduce the inequality (3.57). �

REMARK 3. If we take T = R , g(x) = x, f (t,s) = f (t) , p = q = 1 the inequality
given in Theorem 4 reduces to the inequality given in Theorem 1.5.3 (c2) in [15, page
47].

4. Applications

In this section we present some examples for our main results to investigate certain
properties of solutions of dynamic equation on time scales.

EXAMPLE 1. Consider the following general mixed nonlinear integral equation

yp(t) = x(t)+
∫ t

a
F(s,yq(s))Δs+

∫ b

a
G(s,y(s))Δs, (4.1)

for t ∈ [a,b]
T
, where p � q � 1, p � r � 1, y(t) is unknown function, x∈Crd ([a,b]

T
,R) ,

F,G ∈Crd ([a,b]
T
×R,R) .
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Suppose that the functions x,y,F,G in equation (4.1) satisfy the following condi-
tions:

|x(t)| � a(t), (4.2)

|F(s,yq(s))| � f (s) |y|q ,

|G(s,y(s))| � n(s)g(|y|).
where a,n, f ∈Crd ([a,b]

T
,R+) and g defined as in Theorem 2.

PROPOSITION 1. Assume that y(t) is the unique solution of equation (4.1) and∫ b
a g′(m∗(s))n(s)l∗(s)Δs < 1 , then

|y(t)| �
{

m∗(t)+
l∗(t)

∫ b
a n(s)g(m∗(s))Δs

1− ∫ b
a g′(m∗(s)n(s)l∗(s)Δs

}
, (4.3)

holds for all t ∈ [a,b]k
T
, where m∗(t) and l∗(t) are defined as in Theorem 2.

Proof. From (4.1)–(4.2), we obtain

|y(t)|p � a(t)+
∫ t

a
f (s) |y(s)|q Δs+

∫ b

a
n(s)g(|y|)Δs. (4.4)

Applying Theorem 2 to (4.4), we get (4.3). �

REMARK 4. If we take g(x) = arctan(x) in (4.4) , then the solution of (4.1)–(4.2)
can be estimated as

|y(t)| �

⎧⎪⎪⎨
⎪⎪⎩m∗(t)+

l∗(t)
∫ b
a n(s)arctan(m∗(s))Δs

1− ∫ b
a

n(s)l∗(s)
1+m∗2(s)

Δs

⎫⎪⎪⎬
⎪⎪⎭ .

where m∗ and l∗ are as same defined in Theorem 2.

EXAMPLE 2. Consider the following initial value problem

yΔ(t) = h(t)
[
yq(t)+

∫ t

a
f (t,s)yq(s)Δs+

∫ b

a
n(s) ln(|y(s)|+1)Δs

]
, y(a) = c, (4.5)

where h(t) , f (t,s) and n(t) are as same defined in Theorem 4, and c is a constant.

PROPOSITION 2. Assume that y(t) is the unique solution of (4.5) , then

y(t) �

⎡
⎢⎢⎢⎢⎢⎢⎣

c+qK
q−1

p

t∫
a

h(τ)

⎛
⎜⎜⎜⎜⎜⎜⎝

m(τ)+

l(τ)
b∫

a

n(s) ln(m(s)+1)Δs

1−
b∫

a

n(s)l(s)
1+m(s)

Δs

⎞
⎟⎟⎟⎟⎟⎟⎠

Δτ

⎤
⎥⎥⎥⎥⎥⎥⎦

1
p

, (4.6)
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holds for all t ∈ [a,b]k
T
, provided that

b∫
a

n(s)l(s)
1+m(s)

Δs < 1. (4.7)

where m and l as same defined in Theorem 4.

Proof. If y(t) is the unique solution of (4.5) , then y(t) can be expressed as

y(t) = c+
∫ t

a
h(s)

[
yq(s)+

∫ s

a
f (s,τ)yq(τ)Δτ +

∫ b

a
n(τ) ln(|y(τ)|+1)Δτ

]
Δs. (4.8)

Then

|y(t)| � |c|+
∫ t

a
h(s)

[
|yq(s)|+

∫ s

a
f (s,τ) |yq(τ)|Δτ +

∫ b

a
n(τ) ln(|y(τ)|+1)Δτ

]
Δs.

(4.9)
Applying Theorem 4 to (4.9) , we obtain the desired inequality (4.6). �
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Boston, Mass, USA, 2003.

[6] K. BOUKERRIOUA AND A. GUEZANE-LAKOUD, Some nonlinear integral inequalities arising in
differential equations, EJDE, vol. 2008 (2008), no. 80, pp. 1–6, http://ejde.math.txstate.

[7] K. CHENG, C. GUO, New Explicit Bounds on Gamidov Type Integral Inequalities for Functions in
Two Variables and Their Applications, Abstract and Applied Analysis 2014, Article ID 539701, 9
pages.

[8] K. CHENG, C. GUO, M. TANG, Some Nonlinear Gronwall-Bellman-Gamidov Integral Inequalities
and Their Weakly Singular Analogues with Applications, Abstract and Applied Analysis 2014, Article
ID 562691, 9 pages.

[9] R. A. C. FERREIRA AND D. F. M. TORRES, Generalizations of Gronwall-Bihari inequalities on time
scales, Journal of Difference Equations and Applications 15 (2009), no. 6, 529–539.

[10] SH. G. GAMIDOV,Certain integral inequalities for boundary value problems of differential equations,
Differ. Uravn. 5, 3 (1969), 463–472.

[11] F. JIANG, F. MENG, Explicit bounds on some new nonlinear integral inequalities with delay, Journal
of Computational and Applied Mathematics 205 (2007), 479–486.

[12] S. D. KENDRE, S. G. LATPATE, On some mixed integral inequalities and its applications, Theoretical
Mathematics Applications, vol. 5 (2013), no. 1, 1–14.



NEW EXPLICIT BOUNDS ON GAMIDOV TYPE INTEGRAL INEQUALITIES 825

[13] B. G. PACHPATTE, Inequalities for Differential and integral equation, Academic Press, New York,
1998.

[14] B. G. PACHPATTE, A note on certain integral inequality, Tamkang Journal of Mathematics, vol. 33,
no. 4, pp. 353–358, 2002.

[15] B. G. PACHPATTE, Integral and finite difference inequalities and applications, North-Holland Mathe-
matics studies, 205, 2006.

[16] B. G. PACHPATTE, Explicit bounds on Gamidov type integral inequalities, Tamkang Journal of Math-
ematics, vol. 37, no. 1, pp. 1–9, 2006.

(Received December 29, 2016) K. Boukerrioua
Lanos Laboratory

University of Bdji-Mokhtar Annaba
Annaba, Algeria

e-mail: khaledv2004@yahoo.fr

D. Diabi
Lanos Laboratory

University of Bdji-Mokhtar Annaba
Annaba, Algeria

I. Meziri
Lanos Laboratory

University of Bdji-Mokhtar Annaba
Annaba, Algeria

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


