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ON GENERALIZATION OF D’AURIZIO–SÁNDOR

INEQUALITIES INVOLVING A PARAMETER

LI-CHANG HUNG AND PEI-YING LI

(Communicated by J. Pečarić)

Abstract. In this work, we generalize the D’Aurizio-Sándor inequalities ([2, 4]) using an elemen-
tary approach. In particular, our approach provides an alternative proof of the D’Aurizio-Sándor
inequalities. Moreover, as an immediate consequence of the generalized D’Aurizio-Sándor in-
equalities, we establish the D’Aurizio-Sándor-type inequalities for hyperbolic functions.

1. Introduction

Based on infinite product expansions and inequalities on series and the Riemann’s
zeta function, D’Aurizio ([2]) proved the following inequality:

1− cosx
cos x

2

x2 <
4

π2 , (1)

where x ∈ (0,π/2) . Using an elementary approach, Sándor ([4]) offered an alternative
proof of (1) by employing trigonometric inequalities and an auxiliary function. In the
same paper, Sándor also provided the converse to (1):

1− cosx
cos x

2

x2 >
3
8
, (2)

where x ∈ (0,π/2) . In addition, Sándor found the following analogous inequality (4)
holds true for the case of sine functions:

THEOREM 1. (D’Aurizio-Sándor inequalities ([2, 4])) The two double inequalities

3
8

<

1− cosx
cos x

2

x2 <
4

π2 (3)

and

4
π2 (2−

√
2) <

2− sinx
sin x

2

x2 <
1
4

(4)

hold for any x ∈ (0,π/2) .
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Throughout this paper, we denote
1− cosx

cos x
p

x2 and
p− sinx

sin x
p

x2 respectively by

f c
p(x) =

1− cosx
cos x

p

x2 , (5)

f s
p(x) =

p− sinx
sin x

p

x2 . (6)

Our aim is to generalize the D’Aurizio-Sándor inequalities for the case of f c
p(x) and

f s
p(x) as follows:

THEOREM 2. (Generalized D’Aurizio-Sándor inequalities) Let 0 < x< π/2 . Then
the two double inequalities

4
π2 <

1− cosx
cos x

p

x2 <
p2−1
2 p2 (7)

and

4
π2

(
p− csc

(
π
2p

))
<

p− sinx
sin x

p

x2 <
p2−1
6 p

(8)

hold for p = 3,4,5, · · · . In particular, (8) remains true when p = 2 while (7) is reversed
when p = 2 .

We remark that the inequality (7) for the cosine function has been established in
[5]. In this paper, we prove (7) by using a different approach.

The remainder of this paper is organized as follows. Section 2 is devoted to the
proof of Theorem 2 and an alternative proof of Theorem 1. In Section 3, we establish
an analogue of Theorem 2 for hyperbolic functions. As an application of Theorem 2,
we apply in Section 4 the inequality (8) to the Chebyshev polynomials of the second
kind and establish a trigonometric inequality.

2. Proof of the main results

At first we will prove the following lemma. The lemma provides some formulas
for the higher-order derivative d2

dx2 (x3 d
dx f�p (x)) involving f�p (x) (� = c,s) , which

are the key ingredients of the proof of Theorem 2. It will turn out that the sign of
d2

dx2 (x3 d
dx f�p (x)) plays a crucial role in proving Theorem 2.

LEMMA 1. Let 0 < x < π/2 and k = 1,2,3, · · · . Then when p ∈ R and p �= 0 ,
we have
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(i)

d2

dx2

(
x3 d

dx
f c
p(x)

)
= −

x csc4( x
p )

8 p3

(
(p+1)3 sin

(
x− 3x

p

)
+(p−1)3 sin

(
x+

3x
p

)
+
(
3p3 +3p2−15p−23

)
sin
(
x− x

p

)

+
(
3p3−3p2−15p+23

)
sin
(
x+

x
p

))
; (9)

(ii)

d2

dx2

(
x3 d

dx
f s
p(x)

)
=

x csc4( x
p )

8 p3

(
(p+1)3 sin

(
x− 3x

p

)
− (p−1)3 sin

(
x+

3x
p

)
+
(−3p3−3p2 +15p+23

)
sin
(
x− x

p

)

+
(
3p3−3p2−15p+23

)
sin
(
x+

x
p

))
. (10)

In particular,

(iii) when p = 2k ,

d2

dx2

(
x3 d

dx
f s
p(x)

)
= − x

4k3

k−1

∑
j=0

(2 j +1)3 sin

(
2 j +1

2k
x

)
; (11)

(iv) when p = 2k+1 ,

d2

dx2

(
x3 d

dx
f c
p(x)

)
=− 16x

(2k+1)3

k

∑
j=1

j3 sin

(
2 j

2k+1
x

)
(−1) j−1, (12)

d2

dx2

(
x3 d

dx
f s
p(x)

)
=− 16x

(2k+1)3

k

∑
j=1

j3 sin

(
2 j

2k+1
x

)
. (13)

(v) For p ∈ R and p �= 0 ,

lim
x→0

d
dx

(
x3 d

dx
f�p (x)

)
= lim

x→0
x3 d

dx
f�p (x) = 0, (14)

where � = c,s.

Proof. (i) , (ii) and (v) follow directly from calculations using elementary Cal-
culus. In particular, trigonometric addition formulas are used in proving (i) and (ii) .
To prove (11) in (iii) , we claim

− x
4k3

k−1

∑
j=0

(2 j +1)3 sin

(
2 j +1

2k
x

)
= −x

d3

dx3

(
sinx

sin
(

x
2k

)
)

. (15)
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We rewrite

1
4k3

k−1

∑
j=0

(2 j +1)3 sin

(
2 j +1

2k
x

)
= 2

d3

dx3

(
k−1

∑
j=0

cos

(
2 j +1

2k
x

))
. (16)

On the other hand, making use of Euler’s formula eiz = cosz+ i sinz leads to an alter-
native expression of the right-hand side of (16):

k−1

∑
j=0

cos

(
2 j +1

2k
x

)
=

k−1

∑
j=0

ℜ
{

ei( x
2k + x

k j)
}

= ℜ

{
ei x

2k

k−1

∑
j=0

(
ei x

k

) j
}

(17)

= ℜ
{

ei x
2k

1− eix

1− ei x
k

}
= ℜ

{
ei x

2k
e

ix
2 (e−

i x
2 − e

ix
2 )

e
ix
2k (e−

i x
2k − e

ix
2k )

}
(18)

= ℜ

{
e

ix
2

sin
(

x
2

)
sin
(

x
2k

)
}

= cos
( x

2

) sin
(

x
2

)
sin
(

x
2k

) =
sinx

2 sin
(

x
2k

) , (19)

where ℜ{z} is the real part of z and i =
√−1. We complete the proof of the claim.

Now it suffices to show

d2

dx2

(
x3 d

dx
f s
p(x)

)
= −x

d3

dx3

(
sinx

sin
(

x
2k

)
)

. (20)

Using (10) in (ii) , this can be achieved by straightforward calculations of the right-
hand side of the above equation. Thus (iii) is proved. The proof of (iv) is similar, and
we omit the details. We complete the proof of Lemma 1. �

We provide here an alternative proof of the two double inequalities in Theorem 1.

Proof of Theorem 1. To this end, we show that for x∈ (0,π/2) , f c
2 (x) =

1− cosx
cos x

2
x2 is

strictly increasing while f s
2(x) =

2− sinx
sin x

2
x2 is strictly decreasing. These lead to the desired

inequalities since it is easy to see that

lim
x→0

f c
2 (x) =

3
8
, lim

x→π/2
f c
2 (x) =

4
π2 , (21)

lim
x→0

f s
2(x) =

1
4
, lim

x→π/2
f s
2(x) =

4
π2 (2−

√
2). (22)

To see if f c
2 (x) is strictly increasing, we employ (9) in Lemma 1 to obtain

d2

dx2

(
x3 d

dx
f c
2 (x)

)
= − x

64
sec4

( x
2

)(
−44sin

( x
2

)
+5sin

(
3x
2

)
+ sin

(
5x
2

))

= − x
16

sec4
( x

2

)
sin
( x

2

)
(cosx−2)(cosx+5) > 0. (23)
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As limx→0
d
dx

(
x3 d

dx f c
2 (x)

)
= 0, it follows that d

dx

(
x3 d

dx f c
2 (x)

)
> 0. We are led to

x3 d
dx f c

2 (x) > 0 or d
dx f c

2 (x) > 0 since limx→0
(
x3 d

dx f c
2 (x)

)
= 0. This shows that f c

2 (x) is
strictly increasing.

By means of (11) in Lemma 1, we have

d2

dx2

(
x3 d

dx
f s
2(x)

)
= − x

4
sin
( x

2

)
< 0, (24)

from which we infer that d
dx

(
x3 d

dx f s
2(x)

)
< 0 because of limx→0

d
dx

(
x3 d

dx f s
2(x)

)
= 0.

Then
d
dx

(
x3 d

dx
f s
2(x)

)
< 0, (25)

together with the fact that limx→0
(
x3 d

dx f s
2(x)

)
= 0 yields x3 d

dx f s
2(x) < 0 or d

dx f s
2(x) <

0. Thus we have shown that f s
2(x) is strictly decreasing. We note that when p = 2, (v)

of Lemma 1

lim
x→0

d
dx

(
x3 d

dx
f�2 (x)

)
= lim

x→0
x3 d

dx
f�2 (x) = 0, (26)

where � = c,s has been employed in the above arguments. This completes the proof
of the theorem. �

We are now in the position to give the proof of Theorem 2.

Proof of Theorem 2. The proof of the case when p = 2 has been given in Theo-
rem 2. For p � 3, we prove the desired inequalities by showing that d

dx f�p (x) < 0 for

�= c,s . Due to (i) of Lemma 1, we see that d2

dx2

(
x3 d

dx f c
p(x)

)
< 0. On the other hand,

we use (11) and (13) in Lemma 1 to conclude that d2

dx2

(
x3 d

dx f s
p(x)

)
< 0. Thus we have

shown that for � = c,s ,
d2

dx2

(
x3 d

dx
f�p (x)

)
< 0. (27)

Because of the first vanishing limit in (v) of Lemma 1, it follows that

d
dx

(
x3 d

dx
f�p (x)

)
< 0, (28)

which, together with the fact that the second limit in (v) of Lemma 1 vanishes, implies
that x3 d

dx f�p (x) < 0 or d
dx f�p (x) < 0 for � = c,s . It remains to find the following

limits:

lim
x→0

f c
p(x) =

p2 −1
2 p2 , lim

x→π/2
f c
p(x) =

4
π2 , (29)

lim
x→0

f s
p(x) =

p2 −1
6 p

, lim
x→π/2

f s
p(x) =

4
π2

(
p− csc

(
π
2p

))
. (30)
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We immediately have

4
π2 = lim

x→π/2
f c
p(x) <

1− cosx
cos x

p

x2 < lim
x→0

f c
p(x) =

p2−1
2 p2 (31)

and

4
π2

(
p− csc

(
π
2p

))
= lim

x→π/2
f s
p(x) <

p− sinx
sin x

p

x2 < lim
x→0

f s
p(x) =

p2−1
6 p

. (32)

The proof is completed. �

3. Generalized D’Aurizio-Sándor inequalities for hyperbolic functions

In this section, we show an analogue of Theorem 2 for the case of hyperbolic
functions holds true. Let

hc
p(x) =

1− coshx
cosh x

p

x2 , (33)

hs
p(x) =

p− sinhx
sinh x

p

x2 . (34)

Following the same arguments for proving Lemma 1, it can be shown that Lemma 1
with cosx , sinx and f�p (x) (�= c,s) replaced by coshx , sinhx and h�p (x) (�= c,s)
respectively, remains valid. It follows that we can prove d

dx h
�
p (x) < 0 for � = c,s as

in the proof of Theorem 2. It remains to calculate the following limits:

lim
x→0

f c
p(x) =

1− p2

2 p2 , lim
x→π/2

f c
p(x) =

4
π2

(
1− cosh

(π
2

)
sech

(
π
2p

))
, (35)

lim
x→0

f s
p(x) =

1− p2

6 p
, lim

x→π/2
f s
p(x) =

4
π2

(
p− sinh

(π
2

)
csch

(
π
2p

))
. (36)

Thus, we have the following analogue of Theorem 2 for coshx and sinhx .

THEOREM 3. Let 0 < x < π/2 . Then the two double inequalities

4
π2

(
1− cosh

(π
2

)
sech

(
π
2p

))
<

1− coshx
cosh x

p

x2 <
1− p2

2 p2 (37)

and

4
π2

(
p− sinh

(π
2

)
csch

(
π
2p

))
<

p− sinhx
sinh x

p

x2 <
1− p2

6 p
(38)
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hold for p = 3,4,5, · · · . In particular, (37) is reversed when p = 2 while (38) remains
true when p = 2 .

4. Application of the generalized D’Aurizio-Sándor inequalities to the Chebyshev
polynomials of the second kinds

The first few Chebyshev polynomials of the second kind Un(x) (n = 0,1,2, · · ·)
are ([1, 3])

U0(x) = 1, (39)

U1(x) = 2x, (40)

U2(x) = 4x2−1, (41)

U3(x) = 8x3−4x, (42)

U4(x) = 16x4−12x2 +1, (43)

U5(x) = 32x5−32x3 +6x, (44)

U6(x) = 64x6−80x4 +24x2−1. (45)

In this section, we apply Theorem 2 to Un(x) with x = cosθ . By means of the formula

Un(cosθ ) = sin((n+1)θ)
sinθ , we obtain the following corollary.

COROLLARY 1. Let y ∈ (0, π
2 p) . The double inequality

p
6

(
(1− p2)y2 +6

)
< Up−1(cosy) < p− 4

π2

(
p− csc

(
π
2p

))
py2 (46)

holds for p = 2,3,4,5, · · · .

Proof. The double inequality (8) in Theorem 2 can be written as

p− p2 −1
6 p

x2 <
sinx
sin x

p

< p− 4
π2

(
p− csc

(
π
2p

))
x2, x ∈ (0,π/2). (47)

Letting x/p = y , we have

p
6

(
6− (p2−1)y2)<

sin(py)
siny

< p− 4
π2

(
p− csc

(
π
2p

))
p2 y2, y∈ (0,

π
2 p

). (48)

Due to sin(py)
siny = Up−1(cosy) , the proof is completed. �

EXAMPLE 1. Letting p = 7 in Corollary 1 results in the following inequality

7−56y2 < 64 cos6 y−80 cos4 y+24 cos2 y−1 < 7− 196
(
7− csc

( π
14

))
π2 y2, (49)

where y ∈ (0, π
14) ≈ (0,0.2244) and

196(7−csc( π
14 ))

π2 ≈ 49.7673.
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