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ON A NEW FAMILY OF BIVARIATE MEANS II

EDWARD NEUMAN

(Communicated by T. Burić)

Abstract. Lower and upper bounds as well as inequalities satisfied by members of a family of
bivariate means, introduced recently by this author in [18], are established. In particular, opti-
mal convex combinations bounds are obtained. Also, the Wilker and Huygens-type inequalities
involving means under discussion are obtained.

1. Introduction

In this paper we continue study of bivariate means introduced recently by this
author in [18].

For the sake of presentation we recall first definition of the Schwab-Borchardt
mean

SB(a,b)≡ SB =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
b2−a2

cos−1(a/b)
if a < b,

√
a2−b2

cosh−1(a/b)
if b < a

(1.1)

(see, e.g., [5], [6]) which plays a crucial role in this paper. This mean has been stud-
ied extensively in [19], [20], and in [7]. It is well known that the mean SB is strict,
nonsymmetric and homogeneous of degree one in its variables. Mean SB can also be
represented in terms of the degenerated completely symmetric elliptic integral of the
first kind (see, e.g., [13]). It has been pointed out in [19] that some well known bi-
variate means such as logarithmic mean and two Seiffert means (see [22, 23]) can be
represented as the Schwab Borchardt mean of two simpler means such as geometric
and arithmetic means or as the Schwab-Borchardt mean of arithmetic and the square
root mean. This idea was employed lately by this author and other researchers as well.
For more details see [7]–[15].

The mean under discussion, denoted by

R(a,b) ≡ R,

is defined as follows (see [18])

R(a,b) = bea/SB(a,b)−1. (1.2)
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Clearly function R : R
2
+ → R is nonsymmetric and homogeneous of degree one in its

variables.
This paper can be regarded as continuation of investigations initiated in author’s

earlier papers [7, 10, 11, 12, 13, 14, 15, 16, 18] and is organized as follows. Some
preliminary results are given in Section 2. Bounds for the means under discussion are
established in Section 3. Therein the arithmetic and geometric bounds for the new
means are derived. The Wilker and Huygens-type inequalities involving mean R are
established in Section 4.

2. Preliminaries

First of all we will give new formulas for means SB . We have [17]

SB(a,b)≡ SB =

⎧⎪⎪⎨
⎪⎪⎩

b
sinr
r

= a
tanr

r
if a < b,

b
sinhs

s
= a

tanhs
s

if b < a,

(2.1)

where

cosr = a/b if a < b and coshs = a/b if a > b. (2.2)

Clearly

0 < r < π/2 (2.3)

and

0 < s < ∞. (2.4)

It has been proven in [18] that

min(a,b) <
ab

SB(a,b)
< R(a,b) < max(a,b). (2.5)

It follows from (2.5) that R(a,b) is the mean value of its arguments.
For later use let us record two formulas

R(a,b) = bercotr−1 (2.6)

if a < b and

R(a,b) = bescoths−1 (2.7)

if a > b , where r and s are defined in (2.2). Formulas (2.6) and (2.7) follow immedi-
ately from (1.2) and (2.1).

In the next chapter we will utilize three lemmas which are included here for
reader’s convenience. The following one, often called L’Hôspital’s-type rule for mono-
tonicity, can be found, e.g., in [2]
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LEMMA A. Let the functions f and g be continuous on [c,d] , differentiable on

(c,d) and such that g′(t) �= 0 on (c,d) . If f ′(t)
g′(t) is (strictly) increasing (decreasing) on

(c,d) , then the functions f (t)− f (d)
g(t)−g(d) and f (t)− f (c)

g(t)−g(c) are also (strictly) increasing (decreas-

ing) on (c,d) .

Also, we will need the following monotonicity result [4]

LEMMA B. Suppose that the power series f (t) = ∑∞
n=0 antn and g(t)= ∑∞

n=0 bntn

(bn > 0 for all n � 0) both converge for |t| < ∞ . Then the function f (t)/g(t) is
(strictly) increasing (decreasing) for t > 0 if the sequence {an/bn}∞

n=0 is (strictly)
increasing (decreasing).

The Wilker and Huygens-type inequalities involving mean R will be established
with the aid of the following (see [8])

LEMMA C. Let u,v,λ and μ be positive numbers. Assume that

1 < uγvδ (2.8)

holds for some nonnegative numbers γ and δ whose sume equals to 1. If u and v
satisfy the separation condition u < 1 < v, then the inequality

1 <
λ

λ + μ
up +

μ
λ + μ

vq (2.9)

holds if
q > 0 and pλ δ � qμγ. (2.10)

If v < 1 < u, then the inequality (2.9) holds true if

p > 0 and qμγ � pλ δ . (2.11)

3. Bounds for mean R

Our first result reads as follows:

THEOREM 3.1. If a < b, then the following inequality

(SB(a,b)
b

)α
<

R(a,b)
b

<
(SB(a,b)

b

)β
(3.1)

holds true for all

α � 1/ log(π/2) = 2.214 . . . and β � 2. (3.2)

If a > b, then inequality (3.1) is satisfied for all

α � 1 and β � 2. (3.3)
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Proof. Assume that a < b . It follows from (2.1) and (2.6), respectively that

SB(a,b)
b

=
sinr
r

and
R(a,b)

b
= ercotr−1. (3.4)

Thus the two-sided inequality (3.1) can be written as follows:

( sinr
r

)α
< ercotr−1 <

( sinr
r

)β
(3.5)

(0 < |r| < π/2) . Let us introduce an auxiliary function

Φ(r) =
rcotr−1

ln

(
sin r
r

) =:
f (r)
g(r)

.

It is clear that the inequality (3.5) is equivalent to

β < Φ(r) < α. (3.6)

We shall now prove that the function Φ(r) is strictly increasing on (0,π/2) . To this
aim we employ formulas (4.3.70) and (4.3.71) in [1] to obtain

f (r) = −
∞

∑
n=1

22n|B2n|
(2n)!

r2n =: −
∞

∑
n=1

anr
2n

and

g(r) = −
∞

∑
n=1

22n−1|B2n|
n(2n)!

r2n =: −
∞

∑
n=1

bnr
2n,

respectively. Here B2n stands for the Bernoulli number of order 2n . Hence

an

bn
= 2n

for all n � 1. Use of Lemma B yields the monotonicity property of function Φ . Easy
computations yield

Φ(0+) = 2 and Φ(π/2−) = 1/ ln(π/2).

This completes the proof of (3.1) when a < b . Let now a > b . It is easy to see that in
this case inequality (3.1) can be written as follows

( sinhs
s

)α
< escoths−1 <

(sinhs
s

)β
(3.7)

For the proof of the left inequality in (3.7) we employ the following one

2coshs+ λ
2+ λ

< escoths−1,
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where 1 � λ � 4, see [9, Theorem 3]. Letting λ = 4 we get

coshs+2
3

< escoths−1.

Combining this with Huygens inequality (see [21])

sinhs
s

<
coshs+2

3

(s > 0) we obtain the desired result. The right inequality in (3.7) has been established
in [3]. The proof is complete. �

We will now deal with bounds for R in the form of either arithmetic or geometric
convex combinations of mean’s arguments.

We have the following:

THEOREM 3.2. If a > b, then the two-sided inequality

αa+(1−α)b < R(a,b) < βa+(1−β )b (3.8)

holds for all
α � 2/3 and β � 2/e = 0.735 . . . . (3.9)

If a < b, then the inequality (3.8) is valid for all

α � 2/3 and β � 1−1/e = 0.632 . . . . (3.10)

Proof. We shall establish first the assertion when a > b . Let us note that the
inequality (3.8) can be written as follows

α <
R/b−1
a/b−1

< β .

Making use of (2.7) we get
R/b = escoths−1

while (2.2) yields
a/b = coshs.

The last three statements can be combined in one

α < Ψ(s) < β , (3.11)

where

Ψ(s) =
escoth s−1−1
coshs−1

=:
f1(s)
g1(s)

(s > 0) . Let F(s) = f ′1(s)/g′1(s) . Differentiation yields

F(s) = escoths−1(coths− s/sinh2(s))/sinhs.
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We shall prove now that the function F(s) is strictly increasing on its domain. We
differentiate again to obtain

F ′(s) =
escoth s−1

sinh3(s)
h(s),

where

h(s) =
s2

sinh2(s)
+

scoshs
sinhs

−2.

We need to show that h(s) > 0 holds for all s > 0. The inequality h(s) > 0 is equivalent
to

sinhs
s

<
1
2

( s
sinhs

+ coshs
)

which is established [21]. Thus the function F(s) is strictly increasing. Making use
of Lemma A we conclude that the function Ψ(s) is strictly increasing. One can easily
verify that

Ψ(0+) = 2/3 and Ψ(∞−) = 2/e.

This in conjunction with (3.11) yields bounds (3.9). The proof of Theorem 3.2 in the
case when a > b is complete. Assume now that a < b . Using (2.6) we can write
inequality (3.8) as follows

β < Φ(r) < α, (3.12)

where

Φ(r) =
1− ercotr−1

1− cosr
=:

f2(r)
g2(r)

,

0 < |r| < π/2.Clearly function Φ(r) is even on the stated domain. For the sake of
simplicity we will assume, to the end of this proof, that 0 < r < π/2. Let

G(r) := f ′2(r)/g′2(r).

Differentiation yields

G′(r) = −ercotr−1

sin3 r
g(r),

where

g(r) =
r2

sin2 r
+ r

cosr
sinr

−2.

Using inequality (2.11) of Theorem 2.3 in [21]:

sinr
r

<
1
2

( r
sin r

+ cosr
)

we obtain g(r) > 0. This in turn implies thatG′(r) < 0. Thus the function Φ(r) is
strictly decreasing. One can easily verify that

Φ(0+) = 2/3 and Φ(π/2−) = 1−1/e. (3.13)
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This in conjunction with (3.12) gives (3.10). The proof is complete. �
It is worthy to mention that it follows from Theorem 3.2 that the inequality

2a+b
3

< R(a,b)

holds true for all positive and unequal numbers a and b .
It has been proven in [18] that the inequality

a2/3b1/3 < R(a,b)

is valid for all a,b > 0, a �= b . We shall show now that this inequality is optimal in a
certain sense.

The announced result reads as follows:

THEOREM 3.3. If a < b, then the following inequality

aαb1−α < R(a,b) < aβ b1−β (3.14)

holds true for all
α � 2/3 and β � 0. (3.15)

Proof. First we divide each member of (3.14) by b and next employ formulas
(2.2) and (2.6) to obtain

(cosr)α <
R
b

< (cosr)β

where r ∈ (0,π/2) . Taking logarithms of three members in the above inequality we get

β < Ψ(r) < α, (3.16)

where now

Ψ(r) =
rcotr−1
ln(cosr)

. (3.17)

Our next task is to demonstrate that the function Ψ(r) is strictly decreasing on its
domain. Writing Ψ(r) = f (r)/g(r) and next using formulas (4.3.70) and (4.3.72) in
[1] we obtain

f (r) = rcotr−1 = −
∞

∑
n=1

22n|B2n|
(2n)!

r2n =: −
∞

∑
n=1

anr
2n

and

g(r) = −
∞

∑
n=1

22n−1(22n−1)|B2n|
n(2n)!

r2n =: −
∞

∑
n=1

bnr
2n,

respectively. This yields
an

bn
=

2n
22n−1

.
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Since the sequence (an/bn) is strictly decreasing we conclude that the function |Ψ(r)|
is strictly decreasing. This in conjunction with

Ψ(0+) = 2/3 and Ψ(π/2−) = 0

and (3.16) yields the assertion (3.15). �
We close this section with the following:

THEOREM 3.4. If

a < b, c < d and
a
b

<
c
d
, (3.18)

then
R(a,b)

b
<

R(c,d)
d

. (3.19)

Inequality (3.19) is reversed if

a > b, c > d and
a
b

>
c
d
.

Proof. We shall prove this theorem when a < b . Using (2.6) we have

R(a,b)
b

= ercotr−1 =: f (r).

Logarithmic differentiation gives

f ′(r)
f (r)

=
1

sin r

(
cosr− r

sinr

)
.

Taking into account that r/sinr > 1 holds for all r ∈ (0,π/2) we conclude that f ′(r) <
0 on the stated domain. Thus the function f (r) is strictly decreasing for all 0 < r <
π/2. Using (2.2) we have r = cos−1(a/b) and p = cos−1(c/d) . Assumption

a
b

<
c
d

gives r > p . Using monotonicity property of the function f we obtain the desired result
(3.19) Because the proof of the second part of this theorem goes along the lines used
above it is omitted. �

4. Wilker and Huygens-type inequalities involving mean R

Inequalities similar to (2.9) are called in mathematical literature Wilker and Huy-
gens-type inequalities. There is a wast literature about those inequalities for the trigono-
metric, hyperbolic and Jacobian elliptic functions and also for the Schwab-Borchardt
means and other bivariate means. The interested reader is referred to [8] and the refer-
ences therein.

For the sake of brevity we will write now R instead of R(a,b) . The main result of
this section reads as follows:
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THEOREM 4.1. Let λ and μ be positive numbers. If a < b, then the inequality

1 <
λ

λ + μ

(R
b

)p
+

μ
λ + μ

(R
a

)q
(4.1)

is satisfied if
q > 0 and 2pλ � qμ . (4.2)

If a > b, then the inequality (4.1) is valid if

p > 0 and 2qμ � pλ . (4.3)

Proof. Let a < b . Then a < R < b . This implies that

R
b

< 1 <
R
a
.

With

u =
R
b

and v =
R
a

we see that the separation condition u < 1 < v is satisfied. This together with a2/3b1/3 <
R gives

1 < u1/3v2/3.

Comparison with (2.8) yields γ = 1/3 and δ = 2/3. To obtain conditions (4.2) it
suffices to use (2.10). Proof of the second statement of this theorem goes along the
above lines. We omit further details. The proof is complete. �

We close this section with Wilker-type inequality involving the identric mean
I(a,b) ≡ I of two positive and unequal numbers a and b . Recall that

I(a,b) =
1
e

(aa

bb

)1/(a−b)

Let A and G stand for the unweighted arithmetic and geometric means, respectively,
of a and b . It is easy to show that R(A,G) = I . To prove the last identity we employ
(1.2), with a = A and b = G , to obtain

lnR(A,G) = −1+ lnG+
A
L

,

where L stands for the logarithmic mean of a and b . Here we have used a known fact
that SB(A,G) = L (see [19]). A straightforward algebra yields lnR(A,G) = ln I(a,b) .

To obtain an inequality involving identric mean I we use (4.3) to conclude that the
following inequality

1 <
λ

λ + μ

( I
G

)p
+

μ
λ + μ

( I
A

)q

is valid for all numbers λ ,μ , p,q which satisfy conditions

λ ,μ , p > 0 and 2qμ � pλ .
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