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Abstract. In this paper, we present a family of high accurate approximation formulas

Wp (x) =
√

2πx
( x

e

)x (
xsinh 1

x

)x/2
exp
(

1
1620x5

x2+p
x2+p+33/35

)
for gamma function Γ(x+1) with parameter p � −33/35 , and prove the function

x �→ lnΓ(x+1)− lnWp (x)

is strictly increasing and concave on (0,∞) if and only if p � 158/315 . This yields some new
sharp approximations for gamma function.

1. Introduction

It is known that the Stirling’s formula

n! ∼
√

2πnnne−n (1.1)

for n ∈ N has important applications in probability theory, statistical physics, number
theory, combinatorics and other related fields. There are many improvements for the
Stirling’s formula, see for example, Burnside’s [1], Gosper [2], Batir [3], Mortici [4].

Because the gamma function Γ(x) =
∫ ∞
0 tx−1e−tdt for x > 0 is related to the fac-

torial function, many scholars were devoted to seeking various better approximations
for the gamma function, for instance, Ramanujan [5, p. 339], Windschitl [6, Eq. (42)],
[7], Nemes [8, Corollary 4.1], Mortici [9, 10], Yang and Chu [11, Propositions 4 and
5], Chen [12, 13], Lu et al. [14, 15].

More results involving the approximation formulas for the factorial or gamma
function can be found in [16, 17, 18, 19, 20, 21, 22, 23] and the references cited therein.
Several nice inequalities between gamma function and the truncations of its asymptotic
series can be found in [24], [25].

Now we focus on the Windschitl’s approximation formulas (see [6, Eq. (42)], [7])
given by

Γ(x+1) ∼
√

2πx
(x

e

)x
(

xsinh
1
x

)x/2

:= W0 (x) , (1.2)

Mathematics subject classification (2010): Primary 33B15, 26D15, Secondary 26A48, 26A51.
Keywords and phrases: Gamma function, monotonicity, convexity, Windschitl type approximation.
∗ Corresponding author.

c© � � , Zagreb
Paper JMI-12-67

889

http://dx.doi.org/10.7153/jmi-2018-12-67


890 Z.-H. YANG AND J.-F. TIAN

Γ(x+1) ∼
√

2πx
(x

e

)x
(

xsinh
1
x

+
1

810x6

)x/2

:= W1 (x) , (1.3)

as x → ∞ . It was showed in [13] that the rates of Windschitl’s approximation formulas
W0 (x) and W1 (x) converging to Γ(x+1) is like x−5 and x−7 as x → ∞ , respectively.
These show that W0 (x) and W1 (x) are excellent approximations for gamma function.

Very recently, by using a little known power series Yang and Tian [26] developed
Windschitl’s approximation formula W0 (x) for the gamma function to asymptotic ex-
pansion

Γ(x+1) ∼
√

2πx
(x

e

)x
(

xsinh
1
x

)x/2

exp

(
∞

∑
n=3

2n(2n−2)!−22n−1

2n(2n)!
B2n

x2n−1

)
(1.4)

as x→ ∞ , where B2n is the Bernoulli number. While the approximation formula W1 (x)
was developed to another asymptotic expansion by Chen and Paris in [27, Theorem 2]:

Γ(x+1) ∼
√

2πx
(x

e

)x
(

xsinh
1
x

+
1

810x6 −
163

170100x8 +
1019

680400x10 + · · ·
)x/2

as x → ∞ . Lu, Song and Ma [28] extended Windschitl’s formula W0 (n) to another
asymptotic expansion in the form of

Γ(n+1) ∼
√

2πn
(n

e

)n
[
nsinh

(
1
n

+
a7

n7 +
a9

n9 +
a11

n11 + · · ·
)]n/2

with a7 = 1/810,a9 = −67/42525,a11 = 19/8505, . . . without a general formula for
the coefficients ak for k � 7. This general formula was given by Chen in [12, Theorem
2], and in the same paper, Chen presented a new asymptotic expansion

Γ(x+1) ∼
√

2πx
(x

e

)x
(

xsinh
1
x

)x/2+∑∞
j=0 r jx− j

, x → ∞, (1.5)

which was improved in [26] by Yang and Tian.
On the other hand, Alzer [29] showed that the double inequality

√
2πx

(x
e

)x
(

xsinh
1
x

)x/2(
1+

α
x5

)
< Γ(x+1)<

√
2πx

(x
e

)x
(

xsinh
1
x

)x/2(
1+

β
x5

)
(1.6)

holds for x > 0 with the best possible constants α = 0 and β = 1/1620. Yang and
Tian [30] presented a very accurate Windschitl type approximation:

Γ(x+1) ∼
√

2πx
(x

e

)x
(

xsinh
1
x

)x/2

exp

(
7

324
1

x3 (35x2 +33)

)
= W2 (x) , (1.7)

as x → ∞ , and prove that the function x �→ lnΓ(x+1)− lnW2 (x) is decreasing and
concave on (1,∞) . This yields some new inequalities for gamma function in terms of
W0 (x) .

Inspired by the Windschitl type approximation (1.7), we consider a family of
Windschitl type approximations for gamma function defined by

Γ(x+1) ∼
√

2πx
(x

e

)x
(

xsinh
1
x

)x/2

exp

(
1

1620x5

x2 + p
x2 + p+33/35

)
= Wp (x) (1.8)
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as x → ∞ , where p � −33/35. It is easy to see that

W∞ (x) = lim
p→∞

Wp (x) =
√

2πx
(x

e

)x
(

xsinh
1
x

)x/2

exp

(
1

1620x5

)

W−33/35 (x) =
√

2πx
(x

e

)x
(

xsinh
1
x

)x/2

exp

(
1

1620x5 −
11

18900x7

)
,

W0 (x) =
√

2πx
(x

e

)x
(

xsinh
1
x

)x/2

exp

(
1

1620x5

x2

x2 +33/35

)
= W2 (x) .

The aim of this paper is to determine the parameter p � −33/35 such that the function
x �→ lnΓ(x+1)− lnWp (x) is increasing and concave on (0,∞) . Our main result is the
following theorem.

THEOREM 1. Let p � −33/35 . Then the function

Fp (x) = lnΓ(x+1)− ln
√

2π −
(

x+
1
2

)
lnx+ x

− x
2

ln

(
xsinh

1
x

)
− 1

1620x5

x2 + p
x2 + p+33/35

(1.9)

is strictly increasing and concave on (0,∞) if and only if p � p0 = 158/315 .

2. Proof of Theorem 1

As is well known, analytic inequality [31, 32, 33] is playing a very important role
in different branches of modern mathematics. In order to prove Theorem 1, we need
the following inequality.

LEMMA 1. The inequality

ψ ′
(

x+
1
2

)
<

1
x

x6 + 445
78 x4 + 199801

34320 x2 + 3072
5005

x6 + 301
52 x4 + 14357

2288 x2 + 9069
9152

(2.1)

holds for x > 0 .

Proof. Let

g(x) = ψ ′
(

x+
1
2

)
− 1

x
q6 (x)
p6 (x)

,

where

p6 (x) = x6 +
301
52

x4 +
14357
2288

x2 +
9069
9152

,

q6 (x) = x6 +
445
78

x4 +
199801
34320

x2 +
3072
5005

.

In view of

ψ ′
(

x+
3
2

)
−ψ ′

(
x+

1
2

)
= − 1

(x+1/2)2
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(see [34, p. 260, (6.4.6)]), we have

g(x+1)−g(x) = ψ ′
(

x+
3
2

)
− 1

x+1
q6 (x+1)
p6 (x+1)

−ψ ′
(

x+
1
2

)
+

1
x

q6 (x)
p6 (x)

= − 1

(x+1/2)2
− 1

x+1
q6 (x+1)
p6 (x+1)

+
1
x

q6 (x)
p6 (x)

=
176400
20449

1

x(x+1)(2x+1)2 p6 (x) p6 (x+1)
> 0.

This yields
g(x) < g(x+1) < .. . < lim

n→∞
g(x+n) = 0,

which completes the proof. �
Proof of Theorem 1. Using the asymptotic expansion (1.4), we have that as x→∞ ,

Fp (x) =
[
lnΓ(x+1)− ln

√
2π −

(
x+

1
2

)
lnx+ x− x

2
ln

(
xsinh

1
x

)]

− 1
1620x5

x2 + p
x2 + p+33/35

∼

5

∑
n=3

2n(2n−2)!−22n−1

2n(2n)!
B2n

x2n−1 −
1

1620x5

x2 + p
x2 + p+33/35

= − 11
170100

(315p−158)x2− (455p+429)
x9 (35x2 +35p+33)

,

which implies that

lim
x→∞

Fp (x)
x−9 = − 11

18900

(
p− 158

315

)
. (2.2)

In view of limx→∞ Fp (x) = 0, making use of L’Hospital rule gives

lim
x→∞

F ′
p (x)
x−10 =

11
2100

(
p− 158

315

)
,

lim
x→∞

F ′′
p (x)
x−11 = − 11

210

(
p− 158

315

)
.

(i) We now prove the necessity. If Fp is increasing and concave on (0,∞) , then
there must be

lim
x→∞

F ′
p (x)
x−10 =

11
2100

(
p− 158

315

)
� 0 and lim

x→∞

F ′′
p (x)
x−11 = − 11

210

(
p− 158

315

)
� 0,

which yields p � p0 = 158/315.
(ii) We next prove the sufficiency. Differentiation yields

F ′
p (x) = ψ (x+1)− 1

2
ln

(
xsinh

1
x

)
+

1
2x

coth
1
x
− lnx− 1

2x
− 1

2

+
7

324
175x4 +(350p+99)x2 +5p(35p+33)

x6 (35x2 +35p+33)2
,
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F ′′
p (x) = ψ ′ (x+1)+

1
2x3

1

sinh2 (1/x)
− 3

2x
+

1
2x2

− 7
54

6125x6 +35(525p+187)x4 +3(35p+33)(175p+22)x2 +5p(35p+33)2

x7 (35x2 +35p+33)3
.

Since

∂F ′
p (x)

∂ p
=

385
108

63x2 +35p+33

x6 (35x2 +35p+33)3
> 0

∂F ′′
p (x)
∂ p

= −385
18

3675x4 +112(35p+33)x2 +(35p+33)2

x7 (35x2 +35p+33)4
< 0

for p � −33/35 and x > 0, that are, the functions p �→ F ′
p (x) and p �→ F ′′

p (x) are in-
creasing and decreasing on [−33/35,∞) . Thus, if we prove F ′′

p0
(x) < 0, then F ′

p0
(x) >

limx→∞ F ′
p0

(x) = 0 for x > 0. And, for p � p0 , it is easy to see that F ′′
p (x) � F ′′

p0
(x) < 0

and F ′
p (x) � F ′

p0
(x) > 0, then the sufficiency follows.

Replacing x by (x+1/2) in the inequity of (2.1) leads to

ψ ′ (x+1) < 1
210

(60060x6+180180x5+567875x4+835450x3+919933x2+532238x+146631)
(2x+1)(143x6+429x5+1364x4+2013x3+2273x2+1338x+420) ,

which indicates that

F ′′
p0

(x) < 1
210

60060x6+180180x5+567875x4+835450x3+919933x2+532238x+146631
(2x+1)(143x6+429x5+1364x4+2013x3+2273x2+1338x+420)

− 3
2x + 1

2x2 + 1
2x3

1
sinh2(1/x)

− 127575x6+328293x4+346788x2+133510

9450x7(9x2+13)3 := f
(

1
x

)
.

Simplifying yields

f (t) =
t3

2sinh2 t
− t

9450
p19 (t)
p13 (t)

,

where

p19 (t) = 56074200t19+290784780t18+806391950t17+1630996354t16

+2573755772t15−948850784t14−5848462963t13−3534213977t12

+16372329813t11+57129403014t10+109206482238t9+152782165188t8

+164420940285t7+152143429005t6+108142112610t5+70899015285t4

+32357867850t3+14814902025t2+3447969525t+985134150,

p13 (t)= (t +2)
(
13t2 +9

)3(
420t6 +1338t5 +2273t4 +2013t3 +1364t2 +429t +143

)
.

Using the inequality

2sinh2 t = cosh2t−1 >
6

∑
n=0

22n

(2n)!
t2n−1 =

6

∑
n=1

22n

(2n)!
t2n,
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we have

f (t) <
t3

∑6
n=1

22n

(2n)! t
2n

− t
9450

p19 (t)
p13 (t)

=
t

9450

9450p13 (t)−
(

∑6
n=1

22n

(2n)! t
2n−2

)
p19 (t)(

∑6
n=1

22n

(2n)! t
2n−2

)
p13 (t)

:= − 1
4725

t13× p17 (t)(
∑6

n=1
22n

(2n)! t
2n−2

)
p13 (t)

< 0,

where

p17 (t) =
213616

891
t17 +

1174888
945

t16 +
30363892

2673
t15 +

22453788188
467775

t14

+
20234223892

66825
t13 +

537563456096
467775

t12 +
360206516968

66825
t11

+
8397752582192

467775
t10 +

1379858652428
22275

t9 +
25906996096822

155925
t8

+
3144272626043

7425
t7 +

8209692140801
10395

t6 +
1214784299189

825
t5

+
7860969452488

5775
t4 +

94725155551
55

t3 +
353797595441

385
t2

+
3200114871

5
t +

6400229742
35

> 0

for t > 0. This implies that F ′′
p0

(x) < 0 for x > 0, and the proof is complete. �

3. New bounds for gamma function

As a direct consequence of Theorem 1, we immediately get

COROLLARY 1. For p �−33/35 , let Wp (x) be defined by (1.8). Then the double
inequality

λpWp (x) < Γ(x+1) < Wp (x) , (3.1)

or equivalently,

λp

(
xsinh

1
x

)x/2

exp

(
1

1620x5

x2 + p
x2 + p+33/35

)

� Γ(x+1)√
2πx(x/e)x

<

(
xsinh

1
x

)x/2

exp

(
1

1620x5

x2 + p
x2 + p+33/35

) (3.2)

holds for x � 1 if and only if p � p0 = 158/315 , where

λp =
1√

2π sinh1
exp

(
1

324
11333p+22025

35p+68

)
(3.3)
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is the best constant. In particular, we have

λp0Wp0 (x) < Γ(x+1) < Wp0 (x) ,

namely,

λp0

(
xsinh

1
x

)x/2

exp

(
1

1620x5

x2 +158/315
x2 +13/9

)

� Γ(x+1)√
2πx(x/2)x

<

(
xsinh

1
x

)x/2

exp

(
1

1620x5

x2 +158/315
x2 +13/9

) (3.4)

holds for x � 1 with the best constant

λp0 =
1√

2π sinh1
exp

(
113357
113400

)
≈ 0.999963. (3.5)

Proof. The necessary condition for the inequalities (3.2) to hold for x � 1 follows
from limx→∞ x9Fp (x) � 0. This together with the limit relation (2.2) yields p � p0 =
158/315.

The sufficient condition for the inequalities (3.2) to hold for x � 1 follows from
the increasing property of Fp on (0,∞) if p � p0 = 158/315.

Putting p = p0 = 158/315 in inequalities (3.2) gives (3.4), which completes the
proof. �

REMARK 1. We claim that the lower and upper bounds in inequalities (3.1) are
decreasing and increasing with respect to the parameter p on [−33/35,∞) for x � 1.
In fact, by differentiation we find that

∂
∂ p

lnWp (x) =
77

108x5 (35x2 +35p+33)2
,

∂
∂ p

(ln(λpWp (x))) = − 77
108

Hp (x)

x5 (35p+68)2 (35x2 +35p+33)2
,

where

Hp(x)= 1225(x5−1)p2+70(35x7+33x5−68)p+(1225x9+2310x7+1089x5−4624).

Clearly, ∂ lnWp (x)/∂ p > 0 for p �−33/35 and x � 1; while ∂ (ln(λpWp (x))) /∂ p <
0 is due to

Hp (x) = 1225

[(
x5 −1

)(
p+

33
35

)2

+2
(
x7−1

)(
p+

33
35

)
+
(
x9 −1

)]
> 0

for p � −33/35 and x > 1. Thus taking p = 158/315, 4/7, ∞ , we obtain the follow-
ing corollary.

COROLLARY 2. The inequalities

λ∞W∞ (x) � λ4/7W4/7 (x) � λp0Wp0 (x) � Γ(x+1) < Wp0 (x) < W22/35 (x) < W∞ (x) ,
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that are,

λ∞ exp

(
1

1620x5

)
� λ4/7 exp

(
1

324
7x2 +4

x5 (35x2 +53)

)

� λp0 exp

(
1

1620x5

x2 +158/315
x2 +13/9

)
� Γ(x+1)√

2πx(x/2)x (xsinh(1/x))x/2

< exp

(
1

1620x5

x2 +158/315
x2 +13/9

)
< exp

(
1

324
7x2 +4

x5 (35x2 +53)

)
< exp

(
1

1620x5

)
,

hold for x � 1 , where λp0 ≈ 0.999963 given in (3.5) and

λ4/7 =
1√

2π sinh1
exp

(
2591
2592

)
≈ 0.999956,

λ∞ =
1√

2π sinh1
exp

(
1619
1620

)
≈ 0.999725

are the best constants.

It has been shown in [30] that the function x �→ lnΓ(x+1)− lnW2 (x) is decreasing
and concave on (1,∞) . Since W2 (x) = W0 (x) , by the same technique as the proof of
Theorem 1 we can prove

THEOREM 2. Let p � −33/35 . Then the function Fp defined by (1.9) is decreas-
ing and convex on [1,∞) if −33/35 � p � 0 .

Likewise, let p =−33/35, −1/7, 0 in Theorem 2. Then by using the monotonic-
ity of Fp in x on (1,∞) and bounds in inequalities (3.2) we can obtain

COROLLARY 3. The inequalities

W−33/35 (x)< W−1/7 (x)< W0 (x)< Γ(x+1)< λ0W0 (x)� λ−1/7W−1/7 (x)� W−33/35 (x) ,

namely,

exp

(
1

1620x5 −
11

18900x7

)
< exp

(
1

2268
7x2−1

x5 (5x2 +4)

)
< exp

(
7

324x3 (35x2 +33)

)

<
Γ(x+1)√

2πx(x/2)x (xsinh(1/x))x/2
� λ0 exp

(
7

324x3 (35x2 +33)

)

� λ−1/7 exp

(
1

2268
7x2−1

x5 (5x2 +4)

)
� λ−33/35 exp

(
1

1620x5 −
11

18900x7

)
,

hold for x � 1 with the best constants

λ0 =
1√

2π sinh1
exp

(
22025
22032

)
≈ 1.000024,

λ−1/7 =
1√

2π sinh1
exp

(
3401
3402

)
≈ 1.000048,

λ−33/35 =
1√

2π sinh1
exp

(
28349
28350

)
≈ 1.000307.
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4. Numerical comparisons

As we know, a remarkable approximation for gamma function is fairly accurate
but relatively succinct. Such ones can see [5, p. 339], [8, Corollary 4.1], [7], [9],
[11, Propositions 4 and 5], [13]. In this section, we list some more accurate but sim-
ple approximation formulas for gamma function and compare them with our family of
approximation formulas Wp (x) defined by (1.8).

It is easy to check that Nemes’ approximation formula [7] satisfies

Γ(x+1) ∼
√

2πx
(x

e

)x
exp

(
210x2 +53

360x(7x2 +2)

)(
1+O

(
1
x7

))
:= N2 (x) , (4.1)

as x → ∞ . It was showed in [13] that as x → ∞ ,

Γ(x+1) ∼
√

2πx
(x

e

)x
(

1+
1

12x3 +24x/7−1/2

)x2+53/210(
1+O

(
1
x7

))
:= C (x) .

(4.2)
As shown in Introduction, we have

Γ(x+1)∼
√

2πx
(x

e

)x
(

xsinh
1
x

+
1

810x6

)x/2(
1+O

(
1
x7

))
=W1 (x)

(
1+O

(
1
x7

))
.

For our family of approximation formulas Wp (x) for gamma function, by (2.2) we see
that

lim
x→∞

lnΓ(x+1)− lnWp (x)
x−9 = lim

x→∞

Fp (x)
x−9 = − 11

18900

(
p− 158

315

)
,

which implies that

Γ(x+1) ∼ Wp (x)
(

1+O

(
1
x9

))
if p 	= p0 =

158
315

.

And, we easily verify that

lim
x→∞

lnΓ(x+1)− lnWp0 (x)
x−11 = − 276277

392931000
,

which indicates that

Γ(x+1) ∼ Wp0 (x)
(

1+O

(
1

x11

))
.

It thus can be seen that our new Windschitl type approximation formula Wp0 (x)
are the best among ones listed above, which can be also found from the following Table
1.

Table 1: Comparison among N2 (4.1), C (4.2), W1 (1.3), W0 and Wp0

n
∣∣∣N2(n)−n!

n!

∣∣∣ ∣∣∣C(n)−n!
n!

∣∣∣ ∣∣∣W1(n)−n!
n!

∣∣∣ ∣∣∣W0(n)−n!
n!

∣∣∣ ∣∣∣Wp0 (n)−n!
n!

∣∣∣
1 1.11×10−4 1.340×10−4 1.83×10−4 2.41×10−5 3.74×10−5

2 1.90×10−6 2.22×10−6 2.67×10−6 2.31×10−7 1.08×10−7

5 4.35×10−9 4.96×10−9 5.74×10−9 1.25×10−10 1.13×10−11

10 3.61×10−11 4.09×10−11 4.71×10−11 2.79×10−13 6.59×10−15

20 2.86×10−13 3.24×10−13 3.73×10−13 5.63×10−16 3.38×10−18

50 4.71×10−16 5.33×10−16 6.13×10−16 1.49×10−19 1.44×10−22

100 3.68×10−18 4.17×10−18 4.79×10−18 2.92×10−22 7.01×10−26
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