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COEFFICIENT PROBLEMS FOR UNIFIED STARLIKE AND CONVEX
CLASSES OF m-FOLD SYMMETRIC BI-UNIVALENT FUNCTIONS

ZHENHAN TU AND LIANGPENG XIONG

(Communicated by H. M. Srivastava)

Abstract. Let 9, denote the class of m-fold symmetric bi-univalent functions in the open unit
disk. We obtain the coefficient bounds of |ay+1| and |az,+1] for functions in a new general

subclass %,Z‘p (a) of F,, where h and p are in Carathéodary class of functions. We investigate

the initial Taylor-Maclaurin coefficients estimate problems associated with ‘@”,ﬁ”’(oc) also. Our
conclusion improves some earlier related results.

1. Introduction

Let < be the class of functions of the form:

f(z)=z+ianz"7 (D

n=2

which are normalized analytic in the open unit disk U= {z € C: |z| < 1}. We denote
by .7 the class of all functions f(z) € & which are univalent in U.

Let & be the class of all analytic functions p : U — C satisfying p(0) = 1 and
the real part Rp(z) >0 on U.

The Koebe one-quarter theorem ensures that the image of U under every f € .
contains a disk of radius % (see, Duren [11]). Thus, every function f(z) € . has an
inverse f~!, which is defined by

@)=z z€U

and

£t = (wl <), min) >3 ).

A function f € .7 is said to be bi-univalentin U if both f and f~! are univalent
in U. Let .7 denote the class of bi-univalent functions.

In 1967, Lewin [20] investigated the class .7 and showed that, for every function
f €. of the form (1), the second coefficient of f satisfies the estimate |ap| < 1.51.
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Also, Brannan-Clunie [7] conjectured that |a;| < V2 for f € . Furthermore, Ne-
tanyahu [22] proved that max{|ay| : f € T} = %. In 1985, Kedzierawski [19] proved
the Brannan-Clunie conjecture for bi-starlike functions and Tan [35] obtained the bound
with |ay| < 1.485, which is the best known estimate for functions in the class .7 . In ad-
dition, Brannan-Taha [8] obtained estimates on the initial coefficients |a;| and |az| for
functions in the classes of bi-starlike functions of order § (0 < 8 < 1) and bi-convex
functions of order B (0< B < 1).

The study of bi-univalent functions was revived in recent years by Srivastava—
Mishra—Gochhayat [24], and a considerably large number of sequels to Srivastava—
Mishra—Gochhayat [24] have appeared in the literature since then (see, e.g., [3, 12, 15,
23, 25, 33, 36, 37, 38]). Recently, Caglar-Deniz-Srivastava [10] studied the second
Hankel determinant for certain subclasses of bi-univalent functions, Deniz [13] and
Srivastava-Bansal [27] both extended and improved the results of Brannan—Taha [&]
by the principle of subordination between analytic functions, and Srivastava-Gaboury-
Ghanim [30] obtained the coefficient estimates for some general subclasses of analytic
and bi-univalent functions.

Faber polynomials plays a considerable act in geometric function theory (see, e.g.,
[4, 6, 17]), which was introduced by Faber [16]. In particular, Srivastava-Eker-Ali
[28] and Sakar-Giiney [34] used the Faber polynomial expansion techniques to derive
bounds for the general Taylor-Maclaurin coefficients |a,| of the functions in different
subclasses of .7, and Srivastava-Eker-Hamidi-Jahangiri [31] studied the Faber polyno-
mial coefficients for bi-univalent functions defined by the Tremblay fractional deriva-
tive operator.

Now, using the Faber polynomial expansion of functions f € .o/ of the form (1),
the coefficients of its inverse map g = f~! can be expressed as (see, Airault-Bouali

[4]):
_ < 1
gw) =fH(w) =w+ 3 —K, " (az,a5,.. )", @)
n=2
where
- (=n)! 1 (=n)! 3
K n — n n
T o -2 Y RCas o™ @
(—n)! —4 (—n)! -5 2
n n _ 2
Conam—a? “pCaromos @stnta)
(—I’l)' —6 —1
- —2n+5 "V
+(—2n+5)!(n—6)!a2 [ag+ (—2n+ )a3a4]—|—j§17a2 i,
in which V; (7 < j < n) is a homogeneous polynomial in the variables ay,as,...,a,

(see, Airault-Ren [5]). In particular, the first three terms of K~ j’l are

|
_Kl 2 = —dap,

1
; “Ky* = — (563 — 5araz +ay). 3)

1
—K{3:2a%—a3, 1

3

Thus, the inverse function f~! may analytically continued to U as follows:

FHw) =w—aw? + (245 — a3)w® — (543 — 5azaz + ag)w* + - - 4)
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For each f € ., the function
h(z) =/ f(z"), ze U, meN,

is univalent and maps the unit disk U into a region with m-fold symmetry. A function
is said to be m-fold symmetric (see, e.g., [20, 29]) if it has the following normalized
form: =
f(Z):Z+Zamk+1zmk+l, z€U, meN. (5)
k=1
We denote by .#, the class of m-fold symmetric univalent functions in U. The func-
tions in the class . are said to be one-fold symmetric.

Each bi-univalent function generates an m-fold symmetric bi-univalent function
for each integer m € N. The normalized form of f is given as in (5) and the series
expansion for £, which has been recently proven by Srivastava-Sivasubramanian-
Sivakumar [26], is given as follows:

2m+1 e, (6)
where f~! = g. We denote by .7, the class of m-fold symmetric bi-univalent functions
in U. Thus, when m = 1, the formula (6) coincides with the formula (4).

Here are some examples of m-fold symmetric bi-univalent functions (see, e.g.,

[26, 29]) o o
(=) [ree(=)]" (o -2

with the corresponding inverse functions

gw)=w— am+1wm+1 +[(m+ l)agqﬂ — Qo y1]W

( wh )% (e2wm—l>% (ewm—l>%
L—wn/) 7 \e™" 41/ 7 e '
Srivastava-Gaboury-Ghanim [29] and Sivasubramanian-Sivakumar [32] deal with the
coefficients problems for f € .7, . Bounds for the initial coefficients of different classes

of m-fold symmetric bi-univalent functions were also investigated by the other authors
(see, e.g., [14, 17, 26]).

DEFINITION 1. Let the function 4, p: U — C be constrained that 7(0) = p(0) =
1 and
min{R((z)), R((p(z))} >0 (z€).

For a function f € J,, we say f € Gu? () if the following conditions are satisfied:

zf'(2) \* 2f"(2)\ 1@
<f(z)> (“’ f/(z)> €h(U) (zeU, 0<a<l)

and

(D) (1428 ™ e p) e, o<,
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REMARK 1. Obviously, Ghp (o) generalizes the class of m-fold symmetric bi-
starlike and bi-convex functions. Specially, ‘th P(o) was introduced and studied by
Xiong-Liu [36] with €77(cx). Some closely-related classes were investigated by Bulut
[9] and Xu-Xiao-Srivastava [37] also.

If we let

14 (1-2p)z" w1l
hiz) = 0<B<l, zelU
(@) I —z" l+z P ¢ )

and
1+z l—z
(0< 1, zeU
1—2 1+z P ¢ )

in Definition 1 respectively, then we have the definition 2 and definition 3 as follows.

DEFINITION 2. For a function f € 7, we say f € 4 (o) if the following con-
ditions are satisfied:

o (L) (+28) "L p cev

ER{ <wgl(w)>a (1 N wg//(W)>1—a} S (weD),

and

g'(w)
where g(w) = f1(w),0<B<1,0<a<l.

REMARK 2. (i) If m = 1 in Definition 2, then the class <g1/3 (o) was introduced
and studied by Ali-Lee-Ravichandran-Supramaniama [3] with €5 (). Also the classes
¢P(1)=.7P and €P(0) = #P were introduced by Brannan-Taha [8].

(ii) If oc = 0 in Definition 2, then the class %,E (0) was introduced and studied by
Sivasubramanian-Sivakumar [32] with %nﬁ .

(iii) If o = 1 in Definition 2, then the class € (1) was introduced and studied by
Hamidi-Jahangiri [17] with 5@3 .

DEFINITION 3. For a function f € 7, we say f € P () if the following con-
ditions are satisfied:

g [(LE)* (14 LN ] < B2 zew
and
wg' (w)\ @ wg” (w)\ -
arg{( g )> <1+ 5(())> } <ﬁ771:’ wel,

w
<a<1,0<B<I.
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REMARK 3. (i) If m =1 in Definition 3, then the class was introduced and studied
by Ali-Lee-Ravichandran-Supramaniama [3] with €8 (). Also the classes €*P (1) =
g and ¢*B(0) = g were introduced by Brannan-Taha [8].

(i) If &« =0 or @ =1 in Definition 3, then the classes were introduced and studied
by Sivasubramanian-Sivakumar [32] with ./, Bor. 7P respectively.

Motivated and stimulated especially by the works of Srivastava—Mishra—Gochhayat
[24], Xiong-Liu [36], Xu-Xiao-Srivastava [37] and Xu-Gui-Srivastava [38], we give the
estimates on the initial coefficients |a,,1| and |aamy 1| for the subclass € () of m-
fold symmetric bi-univalent functions in this paper. The corresponding results about

the classes €2 (o) and &P (o) were given also. Our results generalize and improve
some earlier related works.

2. Main results

We begin by finding the estimates on the coefficients |a,, 11| and |az, | for func-
tions in the class €7 (ct).

THEOREM 1. Let the function f(z) given by (5) be in the class ‘K,ﬁ’p(a). Then

|am+1<mm{\/lh2'" I+l [ o>|2+|pm<>|2} o

2m)!|Ly| 2(m!)2[(1 = a)m? + 1]2
and
1ALy R (0)] |P )|
<
|2+ 1|\mm{‘ LB ‘ (2m)! +[2 LB ‘ B0 ®)

where A =m(m+1)2(1 —a)2m+1)+2a], B=4(1 — a)m(Zm + 1) + 4ma,
Ly = (m+ D2(1 — a)m(2m + 1) + 2mar] + oo — 1)m? + 20(1 — o)m*(m + 1)
—2mo— a1 — o)m*(m+1)* —2m(1 — o) (m+1)? and

A WO +[p" )[R (0)] +[pCm(0)]

B= B2(m!)2[(1— o)m?+ 1]? (2m)'B

Proof. For the function f € €7 (o) and for the inverse map g = f~!, we obtain

) (+5) ™ 0 eew
and , " 1
<W§<$§)>“<l N w:f(v(:)v)) C=pw) (wew), 10

where h and p satisfy the hypotheses in Definition 1. Now suppose that the functions
h(z) and p(w) have the following series expansions:

h(z) = 14 hp?™ + hom™™ + -+ (11)
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and
p(W) =14 puw + paaw® + -, (12)

respectively.
Following (5), we write:

(Zf/(z)>a<l + Zf”@)l_a =1+ "+ Tond™ + -,

f(2) f'(@)
where
T = [(1 — 0)m? + ay (13)
and
Tom = [2(1 — o)m(2m + 1) + 2mot]azy, 11+ {LO‘Z_ 1)m2 + o1 — o)m?*(1+m)
e 8212 (1~ )+ 1)
Also from (5) and (6), we get
wg’(w) o wg”(w) I-a _ m 2m .
( o ) (1+ e ) = LG+ Gan® (14)
where
G =—[(1—a)m*+ ay,
and
Gom = [m(m+ D2(1 - a)(2m+1) +20] +wm2 +a(l —o)ym*(m+1)
—mao, — Mmz(m—k D2 —m(1—o)(m+ 1)2} a,an

—2(1 = o)ym(2m+ 1) + 2mae)azmy 1.

Now, combining (9)-(14), we have

Ton = hm, (15)
Tom = hom, (16)
Gy = Pm, 17)
Gom = pam- (18)
From (15) and (17), it follows
hw = —Pm (19)

and
2[(1—oym? +12aly = h2, + ph (20)



COEFFICIENT PROBLEMS 927

Also from (16) and (18), we get
Lty = hom + Pam, 1)
where

Ly = (m+D[2(1 —a)m(2m+ 1) +2mo) + o(oc— 1)m?
+20(1 — o)m*(m+1) = 2moc — a1 — o)m*(m+1)> = 2m(1 — o) (m+ 1),

Therefore, from (20) and (21), we have

h2, + p?
2 m m
— 22
Gt = Al — o)+ 12 22)
and

2 o h2m +p2m (23)

a =
m+1 y
Ly,

which give the desired estimate on |a,,1| as asserted in (7).
Next, in order to find the bound on |ay,, 1/, by subtracting (18) from (16), we get

4[(1— o)ym(2m+ 1) +mol)agy1 —m(m+1)[2(1 — o) 2m+ 1)+ 20 a2y = hom — pam-

(24)
By (22) and (24), it follows
Comm+D2(1—a)2m+1)+2a] k% +Dpl
Gl (1 - a)mCm+ 1) +ma] 2[(1— o)m2+ 1]2
+ h2m — P2m (25)

41— a)m(2m+1) +ma]
On the other hand, from (23) and (24), it follows

LyuBayy+1 = A(hom + pam) + Lin(hom — Pam),
where
A=mm+1)2(1—a)2m+1)+20a],
B=4(1—a)m(2m+1)+4mo.
Thus we obtain
A+L, A—-L,

= h
azm+1 LB om+ LB DP2m;

which yields the desired estimate on |ay,,+1| as asserted in (8). [

THEOREM 2. Let the function f(z) given by (5) be in the class &P (a). Then

2 1 2
|@m1] <min{—B P }
m

2m)!|Ly|  m(m")[(1 — o)m? + 1]
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and
A— Lm
LB

. A+1L
|azm 1] < min { (‘ LmBm +

232
>m2(2m)!’%2}’
where A =m(m+1)2(1 —o)2m+ 1) +2a], B =4(1 — a)m(2m+ 1)+ 4mo,
Ly = (m+ D2(1 — o)m(2m + 1) + 2ma] + a(o — 1)m? + 20(1 — o)m?*(m + 1)
—2ma— o1 — o)ym*(m+1)> —2m(1 — o) (m+1)? and

_A 4p° 4p°
T B [(1— e+ 12 | n2@m)iB’

B,

Proof. Let

1+2"\B B B> »
(2) o +202 2 e 2 €

and

m I_Zm ﬁ ﬁ ﬁz 2,
= =1-2=7"+2=-7z"4... U

p(2) <l—|—z’"> oz + i +-, ZE
in Theorem 1. Then we have Theorem 2. [

THEOREM 3. Let the function f(z) given by (5) be in the class &P (o). Then

am+1<min{5\/(1‘ﬁ>[’"+(1—m)(l—li)} 2(1-B) }

(2m)!|Ly,| "m(m!)[(1 — a)m?+1]
and
. A+Lpy|  |A=Ln|\ [2(1=B)m+ (1 —m)(1-B)]
|“2’"+1|<mm{<’ LB | | B D [m2(2m)! }’%3}’

where A =m(m+1)2(1 —o)2m+ 1) +2a], B =4(1 — a)m(2m+ 1)+ 4mo,
Ly = (m+ D2(1 — a)m(2m + 1) + 2mar] + oo — 1)m? + 20(1 — o)m*(m + 1)
—2mo— a1 — o)m*(m+1)* —2m(1 — o) (m+1)? and

_A 4(1-B)° +4(1—ﬁ)lm+(1—m)(1—ﬂ)\
T Bm2(m")?[(1 — a)m? +1]2 m2(2m)!B '

B3

Proof. Let

w1+ (L =2B)z"
1—z"

= 1+ 2=+ [Z (1) +

h(z) =
1—m

P 2-2BP]" 4, zEU
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and
e = i
2 2 1—m 7
—1-2(1-p): +[%(1—ﬂ)+ (2= 2B)%| 2"+, zEU

in Theorem 1. Then we have Theorem 3. [

3. Corollaries and consequences
In this section, we give some corollaries by using the above theorems.

COROLLARY 1. Let the function f(z) given by (5) be in the class €"P(at), then

4] < min [n"(0)| + |p"(0)|  [IK(0 \2+\p ()
2 2|2 —30+4]

as] < min \a2—11a+16|\h”(0)|+ la? + 50— 8]|p"(0)] %
} 8(3—2a)(a?—3a+4)  8(3—2a)(c>—30+4)) [’

and

where
_HOP+[PO)F  [h(0)]+[p"(0)]
B = 22—a?2 | 8(3-2a)

Proof. By taking m =1 in Theorem 1, we get Corollary 1, which is an improve-
ment of the estimates given by Xiong-Liu [36]. [J

COROLLARY 2. Let the function f(z) given by (5) be in the class B Then

.| 2B 1 2B
fame1] < m‘“{?\/z(zm)!m2(m+ 1) m(mt)(m?+1) }

|@om1] <min{ B 2m + DB + B }

and

m*(2m)!" m2(m!)2(m2 +1)2  m3(2m+1)!
Proof. By letting oo = 0 in Theorem 2, we have Corollary 2. [

COROLLARY 3. Let the function f(z) given by (5) be in the class S Then

28 1 28
lan ] < m‘“{ ) on? <mz>}
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and

m*(2m)! " mE(m!)2  m3(2m)!

(m+1)p? 2m+1)p>  p? }'

laomi1| < min{

Proof. Let oo =1 in Theorem 2. Then we have Corollary 3. [

COROLLARY 4. Let the function f(z) given by (5) be in the class ,%/mﬁ . Then

amr| <mind 2, [AZBmt(1=m)(1-p)] _2(1-p)
ml] & m 2(2m)!m2(m—|—l) 7M(m!)(m2+1)

and

(1= B)lm+ (1 —m)(l—ﬁ)}|7934}7

< min
[a2m1] < mi { i (2m)!

where

2m+ )1 =p)?  (1=p)lm+ (1 —m)(1-B)|

%:WWWW+W m3(2m+1)!

Proof. Let o =0 in Theorem 3. Then we have Corollary 4. [

COROLLARY 5. Let the function f(z) given by (5) be in the class 5”,,9 . Then

@i <mm{3\/(1—ﬁ>[m+<l —M)(I—B)}72(1—ﬁ)}

2(2m) ey
and
|lazm+1| < min{ (m+1)|(1 ~ ﬁ};g&;g —m)(1 —ﬁ)]\,%s },
where

2m+ D(L—p)*  (A=p)m+(1-m)(1-p)|

Bs = m2(m!)?2 m3(2m)!

Proof. Let oo =1 in Theorem 3. Then we have Corollary 5. O

REMARK 4. In the case of one fold symmetric functions, Corollary 1 to Corol-
lary 5 improve the estimates obtained by Brannan-Taha [8]. Sharp estimates for the
coefficients |ap11|, |aam+1| and other coefficients of functions belonging to the classes

investigated in this paper are yet open problems.
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