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A FAMILY OF MEROMORPHIC FUNCTIONS INVOLVING
GENERALIZED MITTAG-LEFFLER FUNCTION

CAI-MEI YAN AND JIN-LIN L1U *

(Communicated by H. M. Srivastava)

Abstract. We introduce a new family of meromorphic functions defined by the second order
differential subordination involving generalized Mittag-Leffler function. Certain convolution
properties of the family are discussed.

1. Introduction

The Mittag-Leffler function is defined by

Zn

Ea.p(Z) :rgm (Z,OC,ﬂ eC; RG(OC) > 0), (1.1)

where T'(+) is classical gamma function. It was first introduced in 1903 by Swedish
mathematician Mittag-Leffler for f = 1.

The Mittag-Leffler function E,, g(z), as well as its various further generalizations,
arise naturally in the solution of fractional differential equations and fractional integro-
differential equations which are associated with (for example) the kinetic equation, ran-
dom walks, Lévy flights, super-diffusive transport problems and in the study of complex
systems. In particular, it is an explicit formula for the resolvent of Riemann-Liouville
fractional integrals by Hille and Tamarkin. The more properties and applications of the
Mittag-Leffler functions, together with their generalizations, can be found in a number
of recent works [1] to [3], and [8] to [12].

In [12], Yin and Huang considered a generalized Mittag-Leffler function as fol-
lows:

Zn

Eaﬁ,q(z) = };W (Z,OC,ﬂ eC, qc (0,+°°); RG(OC) > 0), (1.2)

where Ty (x) is classical g-gamma function defined by

_ 9'q
Fylx) = x(x+1)-(x+q)
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It is known that lim, .. I';(x) = I'(x). The logarithmic derivative of q-gamma
function

d /
Wy(x) = alogl"q(x) =

is known as generalized digamma function. Its derivatives w,ﬁ")(x) are known as the

generalized polygamma function. These functions have the following representations
of series

), & (=D
VW= X e (13)

Let X(p) denote the class of functions of the form

f(Z):Zip—’—ian_Pznip (pEN:{172737})7 (14)

n=1

which are analytic in the punctured open unit disk Uy = {z € C: 0 < |z] < 1}. The
class 2(p) is closed under the Hadamard product (or convolution)

(fixfh)(z)=2"+ i an—pran—p23" " = (fax f1)(2),

n=1
where N
fiR) =2+ Y anp2 P €2(p) (j=1,2).
n=1
Now, for f € Z(p), we consider the following operator L? B 3(p) — X(p) asso-
ciated with the generalized Mittag-Leffler function E, g ,(z):

Ly f(2) = (T4(B)z PE, /3 q(Z)) * f(2)

7P n—p
+2 an+ﬁ) g (1.5)

where z,0,8 € C, g € (0,40) and Re(o) > 0.

For functions f and g analytic in U, we say that f is subordinate to g, written
f < g,if g isunivalentin U, f(0) = g(0) and f(U) C g(U).

Let P be the class of functions # with #(0) = 1, which are analytic and convex
univalent in the open unit disk U = {z € C : |z < 1}.

In this paper we introduce and investigate the following subclass of X(p).

DEFINITION.. A function f € X(p) is said to be in the class G g 4(A;h) if it
satisfies the second order differential subordination

A—1

2 (2,51(0)) + 22 (1,1() " < h(a), (1.6)

A
pp+1)

where 4,0,8 € C, g € (0,+e0), Re(or) >0 and h € P.
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Let A be the class of functions of the form f(z) =z+X,_, @,2" which are analytic
in U. A function f € A is said to be in the class S*(y) if Re <Z;(())> >y (zeU) for
some ¥y (y<1). When 0 < y< 1, §*(y) is the class of starlike functions of order ¥ in

U. A function f € A is said to be prestarlike of order y in U if

oy S ES ) (<),

(1-2)20

We denote this class by R(y) (see [6]). It is obvious that a function f € A is in the class
R(0) if and only if f is convex univalentin U and R (%) =8* (%) .

The study of the Mittag-Leffler function and its various generalizations is a recent
interesting topic in geometric function theory. In this paper we shall make a further
contribution to the subject by showing some convolution properties for meromorphic
functions involving the generalized Mittag-Leffler function.

The following lemmas will be used in our present investigation.

LEMMA 1. ([S]) Let g be analytic in U and h be analytic and convex univalent
in U with h(0) = g(0). If

a>+ﬁ@<><m> (L.7)

where Rey > 0 and 1 # 0, then
~ Z
8(z) < h(z) = uz‘“/o t*~'h(t)dt < h(z)

and h is the best dominant of (1.7).
LEMMA 2. ([6]) Let y< 1, f € S*(y) and g € R(y). Then, for analytic function
FinU,
g (fF)
gxf
where co(F (U)) denotes the closed convex hull of F(U).

LEMMA 3. ([4]) Let g(z) =14+X5_,,bn2" (m €N) be analyticin U. If Re(g(z)) >
0 (z€U), then

(U) cea(F(U)),

L— |z
1+ |z|™

Re(g(z)) > (zeU).

2. Properties of the class G, g ,(1;h)

In this section we shall derive several convolution properties for functions in the
class Gy g 4(A3h).

THEOREM 1. Let A <0, y>0and f € Gy g 4(A;vh+1—7). If v < Y0, where

1 R A

P u
=—11 d 2.1
0 2<+ A o Jo 1+u u) ’ 2D
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then f € Gy g 4(0sh). The bound vy is sharp when h(z) = 1%1
Proof. Let

1 /
8 =2 (L4,/() @2)
for f € Gy pq(A;vh+1—7) with <0 and y > 0. Then we have

A / A-1 ptl (14 ' p+2 (14
80 @ = = (L) + ot (L @)
< Yh(z)+1—7.
Hence an application of Lemma 1 yields
1) p z
g0 <~ MRS [ a1y =)0, @)
where
(p+1) w1 e i
y(z) = PP 0 / di+1—7. (2.4)
A o 1—1

If 0 <y < 10, where %(> 1) is given by (2.1), then it follows from (2.3) that

RC(W(Z))Z—@/O w5 TRe (1_1 )du—!—l—y

_ptl g
y(ip+1) flu 7
B (7L >/0 1+u dutl-y
1
> - U).
5 (€U)

Now, by using the Herglotz representation for the function v, from (2.2) and (2.3) we
arrive at

1 /
— @ (L) < e w)@) <)
because £ is convex univalent in U. This shows that f € Gy g ,(0;4).

For the function h(z) = - and f € £(p) defined by

z
ptl 4

1 ! Y(p+1) pet (217 %
__ptl(a __ gt _
pz (La.pf(z)> PR ) /0 1= dt+1—v,

it is easy to verify that

A Ly (Lq PYic )) (;:L l)zf’+2 (Lz,ﬁf(Z))”: yh(z) +1—7.

Thus f € Gy g 4(A;Yh+1—7). Also, for y > y, we have

Pl

+
1 ! y(p+l)/1 u i 1
_ . ptl (74 _ _ _ _
Re{ pZ (L%ﬁf(z))} A o l4u du+tl Y<2 (z b,

which implies that f & G4 g 4(0;/). Hence the bound y cannot be increased when
h(z) = IL_Z . The proof of the theorem is completed. [
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THEOREM 2. Let f € Gy ,(A:h), g € Z(p) and Re(2Pg(z)) > 5 (z€U). Then
fx8€Gypq(Ash).

Proof. For f € Gy p4(A;h) and g € X(p), we have

A—1 ! "
2=l <LZ"/3 (f*g)(z)> i I)ZPH (L‘éﬁ (f*g)(z))
= A ) (1 L ) s () s (2L )
= ("8(2)) * w(2), (2.5)
where
A—1 ! "
V(o) = T (L 10) 4ot (L1 @) <k @6

In view of the conditions of the theorem, the function z”g(z) has the Herglotz repre-
sentation:

dp(x)
Fg(z) = / zel), 2.7
s@=[ o @€V) @)
where f1(x) is a probability measure defined on the unit circle x| =1 and [, du(x) =
1. Since the function /4 is convex univalent in U, it follows from (2.5), (2.6) and (2.7)
that

A — /
= Lo (L p(r8)@) +

= 1 y(xz)du(x) < h(z).

Il=

p(p+ 1)Zp+2 <Lg=ﬁ (f*g)(z)>”

This shows that f* g € Gy g 4(4;h) and the theorem is proved. [

THEOREM 3. Let f € Gy g 4(A;h) be given by (1.4) and let

k=1
se2) =2 P+ Y anpd" P (ke N\{1}).
n=1
Then the function
Z
pi(z) = prfl/o uls (u)du
is also in the class Gq g 4(Ash).
Proof. For f € Ga,ﬁ’q(l;h), we have

—z*f’+2 o L= (frg0(e) (keN\{1}), 2.8)
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where
k=1 _n—p
b4
= -P
g(z) =z +n§:'1”+1

€X(p).

Further, for k € N\ {1}, it is know from [7] that

n

k-1
Re{z’gi(z)} = Re{H— Y <

4 1
n1n+1}>§ (zeU). (2.9)

In view of (2.8) and (2.9), an application of Theorem 2 leads to pi(z) € Gg g 4(A3h).
The proof of the theorem is completed. [J

THEOREM 4. Let f € Gy p 4(A3h), g €X(p) and P 'g(z) €R(y) (y<1). Then
f*8€Gypq(Ash).
Proof. From (2.5) we can write

"

Aol (Li,ﬁ(f*g)(Z))/Jr

pp+1)
~ (#8(2) * (zy(2)
T @@ e

22 (L 5 (£ 9)()

where the function y is defined as in (2.6).
Since the function / is convex univalentin U,

w(z) <h(z), ZTg(z) €R(y) and z€S'(y) (y<1),

from (2.10) and Lemma 2, we obtain the desired result. The proof of the theorem is
completed. [

Taking y=0 and y= % in Theorem 4, we have the following.

COROLLARY. Let f € Gy p 4(A;h) and let g € X(p) satisfy either of the follow-
ing conditions:

(i) z7*'g(z) is convex univalent in U
or

(ii) P 1g(z) € S* (3).
Then fxg € Gy p 4(Ash).

THEOREM 5. Let A <0 and
[i@Q =27+ anpd " €Gyp (Aihy) (j=12), (2.11)
n=1

where
1+z
hj(z)zyj—k(l—yj)l—_z and 7y <1. (2.12)
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If f € X(p) is defined by

(1457) = —% ((Lgﬁfl @) (foﬁfz(Z))/) :

then f € Gy 4(Ash), where

14z
W) =7+ (-7
-z
and vy is given by
il
y:{1—4<1—n><1—n>(1+%“f&"liu ) (2 <o)
1=4(1-n)(1-n) (A =0).

The bound v is the best possible.

Proof. We consider the case when A < 0. By setting

A—1

i) = 2o (1,10 +

pp+1)

for f; (j=1,2) given by (2.11), we find that

- n 1+z .
Hj(@) =1+ Y bjd" <y +(1=v)1— (=12)

n=1 -

and

" plp+1) =M@ty [T pri )
(£4510) = oD /Of T (dr (=1,2).

A

Now, if f € X(p) is defined by (2.13), we find from (2.17) that

(£150) + (12,020) )

1 1
Pp+ )Z_p_l/ ulTlHl(uz)du>
A 0
1 1
prfl/ u_pTH_le(uz)du)
0

+1)
1
= )Z_p_l/ uipTﬂle(uz)du,
0

(sepr0) =~

Tl

]
T~

=
<
+
= >

where

u i

(Hy * Hy)(uz)du.

=
|
=
>4 >
—_
o\_
<
t

22 (1 ,550)
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(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)
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Also, by using (2.16) and the Herglotz theorem, we see that

Re { (Ll(z_);lﬂ) x (% + H272((1Z>__Y29)’2) } >0 (zeU),

which leads to
Re{(HixH2)(2)} >w=1-2(1-n)(1-7p) (z€U).
According to Lemma 3, we have

1— g

Re{(HyH2)(2)} > 0+ (1= 10) 7

(zeU). (2.20)

Now it follows from (2.18) to (2.20) that

Re{%zl’“ (Lipr@) +- (pi EACY f(z>)"}
=Re{H(z2)}

1
:_p—f—l/ uipTH*lRe{(Hl*Hz)(uz)}du

p+1 b _p 1 —ulz]
7 1— d
2 u 70+ ( Yo)1+u‘z| u

40 [
0 1+u

(=]

du

p+1 Ly
=1—-4(1- 1— 1
(I-n)(l-p) |1+ o 11a du

which proves that f € G, g ,(A;h) for the function & given by (2.14).
In order to show that the bound 7y is sharp, we take the functions f; € X(p)
(j =1,2) defined by

rop(p+1) G-Ae+) [T pr1 141 )
(Lipsi2) :7(1 )4 /Of ’ (Yj+(1—w>ﬁ>dt (j=12),

(2.21)
for which we have

and
Z
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Hence, for the function f given by (2.13), we have

A—1 ! A "
p+1 q p+2 (14
2 (Laﬁ f(z)) e (Laﬁ f(z))
+1 b _pr
:_pT | g 1<1+4(1—yl)(1—3/2)1i—zuz>du—>y (as z— —1).

Finally, for the case when A = 0, the proof of the theorem is simple and we choose

to omit the details involved. [
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