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Abstract. Four conjectures with a parameter about a point in the plane of a triangle are proved.
A theorem which allows assumptions to be added to help proving and reducing the complexity
is also presented. The proving procedure could be applied to the similar problems.

1. Introduction

Point and triangle are the elementary objects in geometry. There are plenty of
results concerning these two things such as the Erdös-Mordell inequality [1]. [3] pre-
sented some inequalities and conjectures about a point and a triangle on the same plane.
[2] presented proofs to two conjectures based on the successive difference substitution
method [4]. [6] proved another conjecture with a parameter based on the complete dis-
crimination system for polynomials [5] and put forward four conjectures with a param-
eter, two of these conjectures are the parameterized versions of those two conjectures
proved in [2].

As shown in Fig. 1, P and triangle ABC are on a same plane. Let D , E , F denote
the feet of the perpendiculars from P to BC , CA , AB (may be produced) respectively.
And let a , b , c , r1 , r2 , r3 , R1 , R2 , R3 denote the lengths of the line segments BC ,
CA , AB , PD , PE , PF , PA , PB , PC respectively.

Figure 1: P and �ABC

The four conjectures presented in [6] are rewritten as the following four proposi-
tions.

Mathematics subject classification (2010): 51M16, 12-04.
Keywords and phrases: Geometric inequality, real algebraic geometry, barycentric coordinates.

c© � � , Zagreb
Paper JMI-12-72

953

http://dx.doi.org/10.7153/jmi-2018-12-72


954 F. HUANG AND Y. LI

PROPOSITION 1. Notations as above, when λ � 0, there exists

2R2
1− r2

2 − r2
3

a2 +b2 + c2 + λa2 +
2R2

2− r2
3 − r2

1

a2 +b2 + c2 + λb2 +
2R2

3− r2
1 − r2

2

a2 +b2 + c2 + λc2 � 3
2(λ +3)

. (1)

PROPOSITION 2. Notations as above, when λ � 0, there exists

R2
2 +R2

3− r2
2 − r2

3

a2 +b2 + c2 + λa2 +
R2

3 +R2
1− r2

3 − r2
1

a2 +b2 + c2 + λb2 +
R2

1 +R2
2− r2

1 − r2
2

a2 +b2 + c2 + λc2 � 3
2(λ +3)

. (2)

PROPOSITION 3. Notations as above, when λ � 0, there exists

2R2
1− r2

2 − r2
3

(b+ c)2 + λbc
+

2R2
2− r2

3 − r2
1

(c+a)2 + λca
+

2R2
3− r2

1 − r2
2

(a+b)2 + λab
� 3

2(λ +4)
. (3)

PROPOSITION 4. Notations as above, when λ � 0, there exists

R2
2 +R2

3− r2
2 − r2

3

(b+ c)2 + λbc
+

R2
3 +R2

1− r2
3 − r2

1

(c+a)2 + λca
+

R2
1 +R2

2− r2
1 − r2

2

(a+b)2 + λab
� 3

2(λ +4)
. (4)

Obviously, (3) and (4) are the parameterized versions of Conjecture 3 and 4 in
[3] respectively which were proved in [2]. The rest parts are arranged as follows. In
Section 2, some preliminary equations are recalled and a theorem to explain why some
constrains could be made is presented. After that, the proofs to these four propositions
are presented. The work is concluded in Section 3.

2. Main result

2.1. Preliminary

In this subsection, some equations are recalled. And a theorem which theoretically
supports us to make some assumption to reduce the complexity is presented.

According to the triangle inequality, three positive variables, say u , v , w , are
usually called to express a , b , c , the lengths of three sides of �ABC as follows,

a = u+ v, b = v+w, c = u+w. (5)

When the problems are homogeneous with respect to {a,b,c} , we could divide into
six cases according to the size order of {a,b,c} . In each case, one of {a,b,c} is the
maximum and set to 1, and the other two are then less than 1.

Actually, in many problems, especially in geometric problems, some constrains
could be assumed without loss of generality. However, these operations are usually
based on experience. We present the following theorem to illustrate such things in an
analytic way.
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THEOREM 1. Let m and n be two positive integers, Ω1 ⊂ Rm and Ω2 ⊂ Rn .
Let Φ denote a proposition defined in Ω1 and Λ the set where Φ holds, i.e. Λ �
{xxxx ∈ Ω1 |Φ(xxxx) is correct} . For a function f : Ω1 ×Ω2 → R , if ∀xxxx0 ∈ Ω1 , ∀yyyy0 ∈ Ω2 ,
there exist xxxx1 ∈ Λ , yyyy1 ∈ Ω2 , such that f (xxxx1,yyyy1) = f (xxxx0,yyyy0) , then the following three
statements are equivalent,

I. ∀(xxxx,yyyy) ∈ Ω1×Ω2 , f (xxxx,yyyy) � 0 ,

II. ∀(xxxx,yyyy) ∈ Λ×Ω2 , f (xxxx,yyyy) � 0 ,

III. For every xxxx ∈ Ω1 , if Φ(xxxx) holds, then f (xxxx,yyyy) � 0 holds for every yyyy ∈ Ω2 .

Proof. The equivalency between II. and III. is obvious, since xxxx∈Λ⇔Φ(xxxx) holds.
I. ⇒ II. Since Λ ⊆ Ω1 , for every (xxxx,yyyy) ∈ Λ ×Ω2 , it is belongs to Ω1 ×Ω2 ,

therefore f (xxxx,yyyy) � 0.
I. ⇐ II. Because ∀(xxxx,yyyy) ∈ Ω1 ×Ω2 , there exists (xxxx1,yyyy1) ∈ Λ ×Ω2 , such that

f (xxxx,yyyy) = f (xxxx1,yyyy1) . Based on the hypothesis, we have f (xxxx1,yyyy1) � 0. Therefore,
f (xxxx,yyyy) � 0.

From all above, the theorem has been proved. �

REMARK 1. To prove an inequality, say f (x,y,z) � 0 on R3 . If f is symmetric
and homogeneous with respect to {x,y,z} , based on our experience, we could add a
constrain, x � y � z , to help proving the inequality. But if f is not symmetric with
respect to {x,y,z} , our experience can not provide such constrain confidentially. The
above theorem provides a theoretical support for adding helpful constrains. Further-
more, there could be some derivatives about this theorem. For example, the conclusion
of f , to be non-negative, may be changed to be in an interval.

Let (x,y,z) be the normalized barycentric coordinates of P with respect to �ABC .
That is to say, x , y , z ∈ R and x + y + z = 1. There are some other well-known
equations, we just list them here without proof.

R1 =
√

b2z2 + c2y2 + yz(b2 + c2−a2), (6)

R2 =
√

c2x2 +a2z2 + xz(a2 + c2−b2), (7)

R3 =
√

a2y2 +b2x2 + xy(a2 +b2− c2), (8)

S =

√
(a+b+ c)(b+ c−a)(a+ c−b)(a+b− c)

4
, (9)

r1 =
2S|x|

a
, r2 =

2S|y|
b

, r3 =
2S|z|

c
. (10)
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2.2. Main result

In this subsection, we prove the Proposition 1–4.
First, substitute (6)–(10) into the inequality (1) and obtain an equivalent1,

F1 =
f1(a,b,c,x,y,z)

4a2b2c2 (λ +3)(λa2 + σ)(λ b2 + σ)(λ c2 + σ)
� 0, (11)

in which

σ = a2 +b2 + c2, (12)

f1(a,b,c,x,y,z) = (λ +3) · ( f11(a,b,c) · x2 + f12(c,a,b) · xy+ f11(b,c,a) · y2

+ f12(a,b,c) · yz+ f11(c,a,b) · z2 + f12(b,c,a) · xz)
−6a2b2c2 (

a2λ + σ
)(

b2λ + σ
)(

c2λ + σ
)
, (13)

f11(a,b,c) = b2c2(λa2 + σ)
((

a4b2 +a4c2 +6a2b4 +6a2c4 +b6

+c6−b4c2−b2c4 −4a2b2c2
)

λ +2σ(σ +2bc)(σ −2bc)
)

, (14)

f12(a,b,c) = 8a2b2c2(σ −2a2)(σ + λb2)(σ + λc2). (15)

Let Ω denote the region of (a,b,c) , the lengths of three sides of �ABC . And Ψ
denotes the region of (x,y,z) , the normalized barycentric coordinates of P with respect
to �ABC . That is to say,

Ω �{(x1,x2,x3) ∈ R3
+ |x1 + x2 > x3,x2 + x3 > x1,x3 + x1 > x2 }, (16)

Ψ �{(x1,x2,x3) ∈ R3 |x1 + x2 + x3 = 1}. (17)

Obviously, for any (x1,x2,x3)∈Ω , all its permutations are in Ω . And ∀(x1,x2,x3)∈Ψ ,
all its permutations are in Ψ , too. We could divide Ω into six subsets according to the
size order, a � b � c , b � c � a etc. And let Ω1 denote {(a,b,c) ∈ Ω |a � b � c} .
Since

f1(a,b,c,x,y,z) = f1(b,c,a,y,z,x) = f1(c,a,b,z,x,y)
= f1(a,c,b,x,z,y) = f1(c,b,a,z,y,x) = f1(b,a,c,y,x,z), (18)

according to Theorem1, if f1(a,b,c,x,y,z) � 0 holds on Ω1 ×Ψ , then it will hold on
Ω×Ψ . Therefore, we just need prove f1(a,b,c,x,y,z) � 0 when a � b � c .

Additionally, because f1(a,b,c,x,y,z) is homogeneous with respect to {a,b,c} ,
based on (5), we could set

a = u+ v = 1, b = u+w = 1− v+w, c = v+w. (19)

Notice that u , v , w are all positive real numbers. Since a � b � c , we also have

1− v = u � v � w > 0, v ∈
(

0,
1
2

]
, w ∈ (0,v]. (20)

1All the calculations are implemented in the Maple 2017.
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Furthermore, we could use other two non-negative variables s , t to replace v , w by

v =
1

2+ s
, w =

1
2+ s+ t

. (21)

Substitute (19), (21) and z = 1−x−y sequentially into f1(a,b,c,x,y,z) , then we obtain
an equivalent of f1(a,b,c,x,y,z) � 0 as follows,

G1 =
g12 · x2 +g11 · x+g10

(2+ s)10 (2+ s+ t)10 � 0, (22)

in which g11 is a polynomial of y , s , t , λ with 1210 terms, g10 is a polynomial of y ,
λ , s , t with 1804 terms and

g12 = 8
(
s2 + st +4s+ t +4

)2
(λ +3) g̃12. (23)

Here g̃12 is a polynomial of λ , s , t with 297 positive-coefficient terms including a
positive constant. Because λ , s , t are all non-negative, g12 is positive. Since g12x2 +
g11x + g10 is a quadratic polynomial with respect to x , in order to obtain its positive
semidefinition, we only need prove δ1x � 4 g12g10−g2

11 � 0. Calculation shows that

δ1x = 64
(
s2 + st +4s+ t +4

)2
(λ +3)(4+2s+ t)2 · (h12y

2 +h11y+h10
)
, (24)

in which h11 is a polynomial of λ , s , t with 2118 terms, h10 is also a polynomial of
λ , s , t with 2309 terms and

h12 =16 (2+ s)2 (s+1)2 (s+ t +3)2 (2+ s+ t)2 (λ +3) · h̃12. (25)

Here h̃12 is a polynomial of λ , s , t with 858 positive-coefficient terms including a
positive constant. Since λ , s , t are all non-negative, h12 is positive. To prove the
positive semidefinition of h12y2 +h11y+h10 , we need prove δ1y � 4h12h10−h2

11 � 0.
Calculation shows that δ1y is a polynomial of λ , s , t with 13424 positive-coefficient
terms.

Therefore, when λ , s , t are all non-negative, δ1y is non-negative and so are
h12y2 + h11y+ h10 , δ1x and g12x2 + g11x+ g10 . That is to say (22) holds and so does
f1 � 0 when a � b � c . According to Theorem1, f1 � 0 holds in Ω×Ψ . Consequen-
tially, the inequality (1) is correct for any λ � 0. From all above, we just present a
proof to the Proposition 1.

REMARK 2. Compared with the proofs in [2] and [6], the above proof is more
straightforward. Although the assumption, a � b � c , may be made based on the
experience manually, the theoretical support provided by Theorem 1 makes us more
confidential and makes it possible for an automated reasoning algorithm to do the same
thing.

For the other three propostions, the proving procedure is quite similar. We just
summarize some key data below. Notice that the first subscript denotes which proposi-
tion it belongs to.
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Substituting (6)–(10) into the inequalities (2), (3) and (4), the equivalent inequali-
ties respectively are

F2 =
f2(a,b,c,x,y,z)

4a2b2c2(λ +3)(λa2 + σ)(λb2 + σ)(λc2 + σ)
� 0, (26)

F3 =
f3(a,b,c,x,y,z)

4a2b2c2(λ +4)(λab+(a+b)2)(λac+(a+ c)2)(λbc+(b+ c)2)
� 0, (27)

F4 =
f4(a,b,c,x,y,z)

4a2b2c2(λ +4)(λab+(a+b)2)(λac+(a+ c)2)(λbc+(b+ c)2)
� 0, (28)

where

f2(a,b,c,x,y,z) =(λ +3)
(
f21(a,b,c)x2 + f22(c,a,b)xy+ f21(b,c,a)y2

+ f22(a,b,c)yz+ f21(c,a,b)z2 + f22(b,c,a)xz
)

−6a2b2c2(a2λ + σ)(b2λ + σ)(c2λ + σ),

f3(a,b,c,x,y,z) =(λ +4)
(
f31(a,b,c)x2 + f32(c,a,b)xy+ f31(b,c,a)y2

+ f32(a,b,c)yz+ f31(c,a,b)z2 + f32(b,c,a)xz
)

−6a2b2c2(bcλ +(b+ c)2)(acλ +(a+ c)2)(abλ +(a+b)2),

f4(a,b,c,x,y,z) =(λ +4)
(
f41(a,b,c)x2 + f42(c,a,b)xy+ f41(b,c,a)y2

+ f42(a,b,c)yz+ f41(c,a,b)z2 + f42(b,c,a)xz
)

−6a2b2c2(bcλ +(b+ c)2)(acλ +(a+ c)2)(abλ +(a+b)2),

f21(a,b,c) =b2c2
(
a2

(
a4b2 +a4c2−2a2b4 +4a2b2c2−2a2c4 +b6 +3b4c2

+3b2c4 + c6
)

λ 2 + σ
(
2a6 +a4b2 +a4c2 +4a2b4 +8a2b2c2

+4a2c4 +b6−b4c2 −b2c4 + c6
)

λ +2(σ −2bc)(σ +2bc)σ2
)

,

f31(a,b,c) =b2c2 (
bcλ +(b+ c)2)(

a(b+ c)(a4−2a2b2 +8a2bc−2a2c2 +b4

−2b2c2 + c4)λ +2a6 +2a5b+2a5c+5a4b2 +5a4c2−4a3b3

+12a3b2c+12a3bc2−4a3c3 +8a2b2c2 +2ab5 +2ab4c−4ab3c2

−4ab2c3 +2abc4 +2ac5 +b6−b4c2−b2c4 + c6
)

,

f41(a,b,c) =b2c2
(
abc

(
(b+ c)a4 +4(b2 + c2)a3 +2(b+ c)(b− c)2a2

+(b− c)2(b+ c)3)λ 2 +(2a6bc+(b+ c)(5b2+4cb+5c2)a5

+17bc(b2 + c2)a4 +2(b+ c)(b4 +4b3c−6b2c2 +4bc3 + c4)a3

+(b− c)2(b+ c)2(4bca2 +ab3 +5ab2c+5abc2 +ac3 +b3c

+bc3))λ +(6b2 +4cb+6c2)a6 +2(b+ c)(5b2 +2cb+5c2)a5

+(b2 + c2)(5b2 +18cb+5c2)a4 +4(b+ c)(b4 +2b3c−2b2c2
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+2bc3 + c4)a3 +(4b6 +8b5c−16b3c3 +8bc5 +4c6)a2

+2(b− c)2(b+ c)5a+(b2 + c2)(b− c)2(b+ c)4
)

,

f22(a,b,c) =4a2b2c2(σ −2a2)(a2λ + σ)(b2λ + c2λ +2σ),

f32(a,b,c) =8a2b2c2(σ −2a2)
(
(c+a)2 + λca

)(
(a+b)2 + λab

)
,

f42(a,b,c) =4a2b2c2(σ −2a2)((b+ c)2 + cbλ )
(
aλ (b+ c)+ (a+ c)2+(a+b)2) .

To add the assumption a � b � c , we need verify some equations like (18). Calculation
shows that for i = 2,3,4, there exist

fi(a,b,c,x,y,z) = fi(b,c,a,y,z,x) = fi(c,a,b,z,x,y)
= fi(a,c,b,x,z,y) = fi(c,b,a,z,y,x) = fi(b,a,c,y,x,z). (29)

Then substitute (19), (21) and z = 1− x− y sequentially into fi(a,b,c,x,y,z) , i =
2,3,4, the equivalents of fi(a,b,c,x,y,z) � 0 are as follows,

Gi =
gi2 · x2 +gi1 · x+gi0

(2+ s)10 (2+ s+ t)10 � 0. (30)

Here gi1 and gi0 are all polynomials of λ , y , s , t and gi2 are polynomials of λ , s ,
t with positive-coefficient terms including positive constants. Therefore, gi2 are all
positive. Let δ ix denote 4gi2gi0−g2

i1 for i = 2,3,4. Then we have

δ2x =64(4+2s+ t)2(s2 + st +4s+ t +4)2(λ +3) · (h22y
2 +h21y+h20), (31)

δ3x =64(4+2s+ t)2(s2 + st +4s+ t +4)2(λ +4) · (h32y
2 +h31y+h30), (32)

δ4x =64(4+2s+ t)2(s2 + st +4s+ t +4)2(λ +4) · (h42y
2 +h41y+h40). (33)

For i = 2,3,4, hi2y2 + hi1y + hi0 could be treated as quadratic polynomials with re-
spect to y and hi2 , hi1 , hi0 are polynomials of λ , s , t . Since hi2 are polynomials
with positive-coefficient terms including positive constant terms, they are all positive.
Therefore, if we prove δiy = 4hi2hi0 − h2

i1 � 0, we could obtain the positive semidefi-
nition of δix . Calculation shows that δiy (i = 2,3,4) are polynomials of λ , s , t with
positive coefficients. They are all non-negative. Therefore, δ2x , δ3x , δ4x are all non-
negative and so are G2 , G3 , G4 . Consequentially, F2 , F3 , F4 are all non-negative
when a � b � c . According to Theorem 1 and (29), Fi � 0, i = 2,3,4 hold for every
(a,b,c,x,y,z) ∈ Ω×Ψ . From all above, we finish the proofs to Proposition 2–4.

3. Conclusion

We prove four parameterized conjectures presented in [6]. As we know, there are
kinds of methods to transform a geometric problem to an algebraic one. The prov-
ing procedure in Section 2 shows that an appropriate method could make things much
easier. Meanwhile, Theorem 1 provides theoretic support to make useful assumption
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which reduces the range of variables. Actually, a similar procedure has been applied to
some others problems.
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