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DURRMEYER TYPE (p,q)–BASKAKOV
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(Communicated by V. Gupta)

Abstract. The present paper deals with the construction of Baskakov Durrmeyer operators, which
preserve the linear functions, in (p,q) -calculus. More precisely, using (p,q) -Gamma function
we introduce genuine mixed type Baskakov Durrmeyer operators having Baskakov and Szász ba-
sis functions. After construction of the operators and calculations of their moments and central
moments, rate of convergence of the operators by means of appropriate modulus of continuity,
approximation behaviors for functions belong to Lipschitz class and weighted approximation are
explored.

1. Introduction

In the theory of approximation by linear positive operators, no doubtly, Bernstein
polynomials have a crucial role. Beyond the fact that they are first sample of the theory,
they have been still taken much attention because of their simple, useful and applicable
structure. However, Bernstein polynomials have role for approximation of functions on
bounded intervals. As a generalization of Bernstein polynomials, in 1932 Chlodowsky
[10] introduced Bernstein type polynomials, however the intervals of approximating
functions are depend on increasing sequence of positive numbers. To approximate the
functions by linear positive operators on unbounded intervals, in 1957 Baskakov [8]
introduced the sequence of linear positive operators, defined for functions f ∈C [0,∞) ,
by

Bn ( f ;x) =
∞

∑
k=0

(
n+ k−1

k

)
xk

(1+ x)n+k f

(
k
n

)
, x ∈ [0,∞) .

The Baskakov operators and their generalizations have been intensively studied. After-
ward the construction of Bernstein type polynomials by Durrmeyer [12], which allows
us to approximate the Lebesgue integrable functions, this construction was carried over
to other many well-known sequence of linear positive operators. We can mention, for
instance, the Szász-Durrmeyer operators were introduced by Mazhar and Totik [19] and
the Baskakov-Durrmeyer operators were introduced by Sagai and Prasad [26].
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Beside the extensions of the class of approximating functions, another main pro-
pose of the researches in approximation theory is to construct modification of corre-
sponding operators which presents better approach than the existing one. At this point,
the construction of Bernstein polynomials by Phillips [24] is the pioneer of approxi-
mation by linear positive operators in quantum calculus. Along last two decades, q -
analogues of the sequence of linear positive operators have been studied deeply and the
advantages of q -analogues of the operators have been investigated. The researches in
quantum calculus show that the rate of convergence of q -analogues of corresponding
operators is at least as good as the classical ones.

Very recently, around two years, approximation by linear positive operators have
been intensively started to study in post-quantum calculus. As q -analogues of lin-
ear positive operators present better degree of approximation than classical ones, their
(p,q)-analogues also present better degree than q -analogues one. The pioneer of the
studies of approximation by linear positive operators is Mursaleen and his research
group. For more details of the comprehensive literature information about (p,q)-
analogues of linear positive operators, among the others, we can refer the readers
to: (p,q)-Bernstein operators by Mursaleen et al. [21] (see also [22]), (p,q)-Lorentz
polynomials on a compact disk by Mursaleen et al. [23], (p,q)-Szász-Mirakyan op-
erators by Acar [1], (p,q)-Baskakov-Kantorovich operators by Acar et al. [2], King
type (p,q)-Szász-Mirakyan operators by Acar et al. [4], bivariate (p,q)-Bernstein-
Kantorovich operators by Acar et al. [3], (p,q)-Meyer-König-Zeller operators by Mau-
rya et al. [18] and references therein.

One of the other recent study in this direction is (p,q)-analogue of Baskakov-
Durrmeyer operators having Baskakov and Szász basis functions by Acar et al. [5].
The aim of this paper is to construct the another modification of (p,q)-analogue of
Baskakov-Durrmeyer operators which preserve the linear functions. Such a construc-
tion of Baskakov-Durrmeyer operators present a better degree of approximation than
classical ones and q -analogues ones. The paper is organized as follows. Section 2
contains the basic concepts of (p,q)-calculus, construction of the operators and some
preliminary results such as moments and central moments of the operators. The fun-
damental concepts of approximation theory which will be used throughout the paper
are presented as well. The Section 3 is devoted to approximation properties of new
operators. The uniform convergence of the operators, rate of convergence by means of
modulus of continuity, weighted approximation properties and approximation behav-
iors of the operators for the functions belong to Lipschitz classes are studied.

2. Preliminaries and construction of the operators

Let us first recall some fundamental notations of (p,q)-calculus which can be
found in the papers [14, 15, 25]. Set N0 := {0}∪N , The (p,q)-numbers are defined
for n ∈ N as

[n]p,q := pn−1 + pn−2q+ · · ·+ pqn−2 +qn−1 =
pn−qn

p−q
.
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The (p,q)-factorial of a natural number n is given by

[n]p,q! :=
{

[n]p,q [n−1]p,q . . .1 , n � 1,

1, n = 0

and the (p,q)-binomial is[
n
k

]
p,q

:=
[n]p,q!

[n− k]p,q! [k]p,q!
, n � k � 0.

Further, the (p,q)-power basis is defined

(x⊕a)n
p,q = (x+a)(px+qa)(p2x+q2a) · · · (pn−1x+qn−1a),

and
(x�a)n

p,q = (x−a)(px−qa)(p2x−q2a) · · · (pn−1x−qn−1a).

Also the (p,q)-derivative of a function f , denoted by Dp,q f , is defined by

(Dp,q f ) (x) :=
f (px)− f (qx)

(p−q)x
, x �= 0, (Dp,q f ) (0) := f ′ (0)

provided that f is differentiable at 0. The formula for the (p,q)-derivative of a product
is

Dp,q (u(x)v(x)) := Dp,q (u(px))v(x)+Dp,q (u(x))v(qx) .

There are two (p,q)-analogues of the exponential function, see [15],

ep,q (x) =
∞

∑
n=0

p
n(n−1)

2 xn

[n]p,q!
,

and

Ep,q (x) =
∞

∑
n=0

q
n(n−1)

2 xn

[n]p,q!
, (2.1)

which satisfy the equality ep,q (x)Ep,q (−x)= 1. For p = 1, ep,q (x) and Ep,q (x) reduce
to q -exponential functions. Further, it is obvious that by (p,q)-derivative formula that

Dp,qEp,q (x) = Ep,q (qx) ,
Dp,qEp,q (ax) = aEp,q (aqx) .

To introduce Durrmeyer type generalizations of (p,q)-operators, one would need
to (p,q)-analogues of well-known Beta and Gamma functions. The (p,q)-analogue of
well-known Gamma function has been recently introduced in [6] as

Γp,q (n) =
∞∫

0

p(n−1)(n−2)/2xn−1Ep,q (−qx)dp,qx (2.2)

and it was shown in [6] that

Γp,q (n+1) = [n]p,q!. (2.3)



964 S. A. MOHIUDDINE, T. ACAR AND A. ALOTAIBI

Considering the (p,q)-Gamma function, they introduced Durrmeyer type generaliza-
tion of (p,q)-Szász-Mirakyan operators defined in [1].

Further, another (p,q) analogue of most important operators of approximation
theory, that is, Baskakov operators were introduced by Aral et al. [7] as

Bn,p,q ( f ;x) =
∞

∑
k=0

bp,q
n,k (x) f

(
pn−1[k]p,q

qk−1[n]p,q

)
, (2.4)

where x ∈ [0,∞) , 0 < q < p � 1 and

bp,q
n,k (x) =

[
n+ k−1

k

]
p,q

pk+n(n−1)/2qk(k−1)/2 xk

(1⊕ x)n+k
p,q

.

In the recent paper, Acar et al. [5] introduced Durrmeyer modification of (p,q)-
Baskakov operators having Baskakov and Szász basis functions as

Bp,q
n ( f ;x) = [n]p,q

∞

∑
k=0

bp,q
n,k (x)

∫ ∞

0

(
p(k−1)/2[n]p,qt

)k

[k]p,q!
Ep,q (−q[n]p,qt) f

(
pk+n−1t
qk−1

)
dp,qt.

(2.5)
In the present paper, we consider the following modifications of the operators (2.5)

by

Gp,q
n ( f ;x) = [n]p,q

∞

∑
k=1

bp,q
n,k (x)

∫ ∞

0
p(k−1)(k−2)/2 ([n]p,qt)k−1

[k−1]p,q!
Ep,q (−q[n]p,qt)

× f
(
q1−k pk+n−2t

)
dp,qt +

pn(n−1)/2

(1⊕ x)n
p,q

f (0) , (2.6)

which reproduce the linear functions.

3. Auxiliary results

In this section, we calculate the moments, and upper estimate for second central
moment. We recall some notations which will be used throughout the paper. Some
lemmas are also proved.

LEMMA 1. ([7]) Starting with the following relations between (p,q)-calculus
and q-calculus: [

n+ k−1
k

]
p,q

= pk(n−1)
[

n+ k−1
k

]
q/p

and
(x⊕a)n

p,q = pn(n−1)/2(x+a)n
q/p

and using moments of q-Baskakov operators, it can easily be verified by simple com-
putation that

Bn,p,q (1;x) = 1,Bn,p,q (t;x) = x,Bn,p,q
(
t2;x

)
= x2 +

pn−1x
[n]p,q

(
1+

p
q
x

)
.
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LEMMA 2. For x ∈ [0,∞) , 0 < q < p � 1 , we have

Gp,q
n (1;x) = 1,

Gp,q
n (t;x) = x,

Gp,q
n

(
t2;x

)
= x2

(
1+

pn

q[n]p,q

)
+ x

pn−2q
[n]p,q

(p+q)

Proof. Using the definition of the operators (2.6) we immediately have

Gp,q
n (1;x) = [n]p,q

∞

∑
k=1

bp,q
n,k (x)

∫ ∞

0
p(k−1)(k−2)/2 ([n]p,qt)

k−1

[k−1]p,q!
Ep,q (−q[n]p,qt)dp,qt

+
pn(n−1)/2

(1⊕ x)n
p,q

=
∞

∑
k=1

bp,q
n,k (x)

Γ(k)
[k−1]p,q!

+
pn(n−1)/2

(1⊕ x)n
p,q

=
∞

∑
k=1

bp,q
n,k (x)+

pn(n−1)/2

(1⊕ x)n
p,q

=
∞

∑
k=0

bp,q
n,k (x) = 1,

Gp,q
n (t;x) = [n]p,q

∞

∑
k=1

bp,q
n,k (x)

∫ ∞

0
p(k−1)(k−2)/2 ([n]p,qt)k−1

[k−1]p,q!

×Ep,q (−q[n]p,qt)
(
q1−k pk+n−2t

)
dp,qt

=
∞

∑
k=1

bp,q
n,k (x)q

1−k pn−1
∫ ∞

0
pk(k−1)/2 ([n]p,qt)k

[k−1]p,q!
Ep,q (−q[n]p,qt)dp,qt

=
∞

∑
k=1

bp,q
n,k (x)q

1−k pn−1 Γ(k+1)
[n]p,q[k−1]p,q!

=
∞

∑
k=1

bp,q
n,k (x)q

1−k pn−1
[k]p,q

[n]p,q

=
∞

∑
k=1

bp,q
n,k (x)

pn−1

qk−1

[k]p,q

[n]p,q

= x.

Also using the equality [k+1]p,q = qk + p[k]p,q and Lemma 1 we have

Gp,q
n

(
t2;x

)
= [n]p,q

∞

∑
k=1

bp,q
n,k (x)

∫ ∞

0
p(k−1)(k−2)/2 ([n]p,qt)

k−1

[k−1]p,q!

×Ep,q (−q[n]p,qt)
(
q2−2kp2k+2n−4t2

)
dp,qt

=
1

[n]p,q

∞

∑
k=1

bp,q
n,k (x)q

2−2k p2n−3
∫ ∞

0
pk(k+1)/2 ([n]p,qt)

k+1

[k−1]p,q!
Ep,q (−q[n]p,qt)dp,qt
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=
1

[n]2p,q

∞

∑
k=1

bp,q
n,k (x)q

2−2k p2n−3 Γ(k+2)
[k−1]p,q!

=
1

[n]2p,q

∞

∑
k=1

bp,q
n,k (x)q

2−2k p2n−3 [k]p,q [k+1]p,q

=
1

[n]2p,q

∞

∑
k=1

bp,q
n,k (x)q

2−2k p2n−3 [k]p,q

(
qk + p[k]p,q

)

=
1

[n]2p,q

∞

∑
k=1

bp,q
n,k (x)q

2−2k p2n−3 [k]p,q qk

+
1

[n]2p,q

∞

∑
k=1

bp,q
n,k (x)q

2−2kp2n−3 [k]p,q p[k]p,q

=
1

[n]2p,q

∞

∑
k=1

bp,q
n,k (x)q

2−k p2n−3 [k]p,q +
p

[n]2p,q

∞

∑
k=1

bp,q
n,k (x)q

2−2kp2n−3 [k]2p,q

=
1

[n]p,q

∞

∑
k=1

bp,q
n,k (x)q

2−k p2n−3 [k]p,q

[n]p,q
+ p

∞

∑
k=1

bp,q
n,k (x)q

2−2kp2n−3 [k]2p,q

[n]2p,q

=
pn−2q
[n]p,q

∞

∑
k=1

bp,q
n,k (x)

pn−1

qk−1

[k]p,q

[n]p,q
+

∞

∑
k=1

bp,q
n,k (x)

p2n−2

q2k−2

[k]2p,q

[n]2p,q

=
pn−2q
[n]p,q

x+ x2 +
pn−1x
[n]p,q

(
1+

p
q
x

)
. �

COROLLARY 1. Using Lemma 2 we set

Gp,q
n (t− x;x) = 0, (3.1)

Gp,q
n

(
(t− x)2 ;x

)
= x2 pn

q[n]p,q
+ x

pn−2q
[n]p,q

(p+q) (3.2)

� 2x2

q[n]p,q
+

2x
[n]p,q

� 2x(1+ x)
q[n]p,q

� 2(1+ x)2

q[n]p,q
.

4. Quantitative results

Let CB [0,∞) denote the space of all real valued continuous and bounded functions
on [0,∞) . In this space we consider the norm

‖ f‖CB
= sup

x∈[0,∞)
| f (x)| .

Let us consider the following K -functional:

K2 ( f ,δ ) = inf
g∈W2

{
‖ f −g‖CB

+ δ
∥∥g′′∥∥CB

}
,
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where δ > 0 and W 2 = {g ∈CB [0,∞) : g′,g′′ ∈CB [0,∞)} . By [11, p. 177, Theorem
2.4] there exists an absolute constant C > 0 such that

K2 ( f ,δ ) � Cω2

(
f ,
√

δ
)

, (4.1)

where
ω2 ( f ,δ ) = sup

0<h�
√

δ
sup

x∈[0,∞)
| f (x+2h)−2 f (x+h)+ f (x)|

is the second order modulus of smoothness of f ∈ CB [0,∞) . The usual modulus of
continuity of f ∈CB [0,∞) is defined by

ω ( f ,δ ) = sup
0<h�δ

sup
x∈[0,∞)

| f (x+h)− f (x)| .

LEMMA 3. Let p,q ∈ (0,1) such that 0 < q < p � 1. Then the inequality

|Gp,q
n ( f ;x)| � ‖ f‖CB

holds, which implies the sequence of the operators Gp,q
n acts from CB [0,∞) into CB [0,∞) .

Proof. Using the definition of the operators Gp,q
n and Lemma 2 we obtain

|Gp,q
n ( f ;x)| � [n]p,q

∞

∑
k=1

bp,q
n,k (x)

∫ ∞

0
p(k−1)(k−2)/2 ([n]p,qt)

k−1

[k−1]p,q!

×Ep,q (−q[n]p,qt)
∣∣∣ f (q1−k pk+n−2t

)∣∣∣dp,qt +
pn(n−1)/2

(1⊕ x)n
p,q

| f (0)|

� sup
x∈[0,∞)

| f (x)|Gp,q
n (1;x)

= ‖ f‖CB

which is desired. �
For f ∈CB [0,∞) the Steklov mean is defined by

fh (x) =
4
h2

∫ h/2

0

∫ h/2

0
[2 f (x+u+ v)− f (x+2(u+ v))]dudv.

Hence the following holds:

‖ fh − f‖CB
� ω̃2 ( f ,h) (4.2)

If f is continuous, then f ′h, f ′′h ∈CB [0,∞) and∥∥ f ′h
∥∥

CB
� 5

h
ω ( f ;h) , (4.3)

∥∥ f ′′h
∥∥

CB
� 9

h2 ω̃2 ( f ,h) , (4.4)

where ω (·;h) and ω̃2 (·,h) are the first and second order modulus of continuity and
respectively given by

ω ( f ;h) = sup
x,u,v�0
|u−v|<h

| f (x+u)− f (x+ v)| ,
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ω̃2 (·,h) = sup
x,u,v�0
|u−v|<h

| f (x+2u)−2 f (x+u+ v)+ f (x+2v)| , h � 0.

THEOREM 1. Let p,q ∈ (0,1) . Then the inequality

|Gp,q
n ( f ;x)− f (x)| � 9

2
ω̃2

(
f ,
√

1/[n]p,q

)[
2+

2(1+ x)2

q

]
,

holds for f ∈CB [0,∞) .

Proof. Using Steklov function, for x � 0 and n ∈ N we have

|Gp,q
n ( f ;x)− f (x)| � Gp,q

n (| f − fh| ;x)+ |Gp,q
n ( f − fh (x) ;x)|+ | fh (x)− f (x)| .

Considering the inequality (4.2) we get

Gp,q
n (| f − fh| ;x) � ‖Gp,q

n ( f − fh)‖CB

� ‖ f − fh‖CB

� ω̃2 ( f ,h) .

On the other hand, since Gp,q
n are linear positive operators, by Taylor’s expansion we

obtain

|Gp,q
n ( f − fh (x) ;x)| �

∣∣ f ′h (x)
∣∣Gp,q

n ((t − x) ;x)+
1
2

∥∥ f ′′h
∥∥

CB
Gp,q

n

(
(t− x)2 ;x

)
.

By Lemma 2 we have

|Gp,q
n ( f − fh (x) ;x)| � 9

2h2 ω̃2 ( f ,h)Gp,q
n

(
(t− x)2 ;x

)
and using the inequality (3.2), choosing h =

√
1/[n]p,qwe obtain

|Gp,q
n ( f − fh (x) ;x)| � 9

2
ω̃2

(
f ,
√

1/[n]p,q

)[
2+

2(1+ x)2

q

]
,

which is desired. �

THEOREM 2. Let f ∈CB [0,∞) . Then for every x∈ [0,∞) , there exists a constant
C > 0 such that

|Gp,q
n ( f ;x)− f (x)| � Cω2

(
f ,

√
2(1+ x)√
q[n]p,q

)
.

Proof. Since g ∈C2
B [0,∞) , using the Taylor’s expansion for x ∈ [0,∞) we have

g(t) = g(x)+g(x) (t− x)+
t∫

x

(t−u)g′′ (u)du.
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Applying the operators Gp,q
n to both sides of above equality and considering the fact

(3.1) we obtain

Gp,q
n (g;x)−g(x) = Gp,q

n

⎛
⎝ t∫

x

(t−u)g′′ (u)du;x

⎞
⎠ . (4.5)

Also we get∣∣∣∣∣∣
t∫

x

(t−u)g′′ (u)du

∣∣∣∣∣∣�
∣∣∣∣∣∣

t∫
x

|t−u|∣∣g′′ (u)
∣∣du

∣∣∣∣∣∣�
∥∥g′′∥∥CB

∣∣∣∣∣∣
t∫

x

|t−u|du

∣∣∣∣∣∣�
∥∥g′′∥∥CB

(t − x)2 .

(4.6)
Using the inequalities (4.6) in (4.5) and considering the inequality (3.2) we immediately
have

|Gp,q
n (g;x)−g(x)| � ∥∥g′′∥∥CB

2(1+ x)2

q[n]p,q
.

On the other hand, using Lemma 3 we get

|Gp,q
n ( f ;x)− f (x)| � |Gp,q

n ( f −g;x)− ( f −g)(x)|+ |Gp,q
n (g;x)−g(x)|

� 2‖ f −g‖CB
+
∥∥g′′∥∥CB

2(1+ x)2

q[n]p,q

and passing to infimum over all g ∈ W 2 on the right hand side, the desired results is
obtained. �

THEOREM 3. Let 0 < α � 1 and E be any subset of the interval [0,∞) . Then, if
f ∈CB [0,∞) is locally Lip(α) , i.e., the condition

| f (y)− f (x)| � L |y− x|α , y ∈ E and x ∈ [0,∞) (4.7)

holds, then for each x ∈ [0,∞) we have

|Gp,q
n ( f ;x)− f (x)| � L

{
2α/2 (1+ x)α

(q[n]p,q)α/2
+2(d (x,E))α

}
,

where L is a constant depending on α and f ; and d (x,E) is the distance between x
and E defined by

d (x,E) = inf{|t− x| : t ∈ E} .

Proof. Let E denote the closure of E in [0,∞) . Then, there exists a point x0 ∈ E
such that |x− x0| = d (x,E) . Using the triangle inequality

| f (t)− f (x)| � | f (t)− f (x0)|+ | f (x)− f (x0)|
we immediately have by (4.7) that

|Gp,q
n ( f ;x)− f (x)| � Gp,q

n (| f (t)− f (x0)| ;x)+Gp,q
n (| f (x)− f (x0)| ;x)

� L
{
Gp,q

n

(|t− x0|α ;x
)
+ |x− x0|α

}
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� L
{
Gp,q

n

(|t− x|α + |x− x0|α ;x
)
+ |x− x0|α

}
= L

{
Gp,q

n

(|t− x|α ;x
)
+2 |x− x0|α

}
.

Using Hölder inequality with p = 2/α, q = 2/(2−α) , we obtain

|Gp,q
n ( f ;x)− f (x)| � L

{[
Gp,q

n

(|t− x|α p ;x
)] 1

p +2(d (x,E))α
}

= L

{[
Gp,q

n

(
|t − x|2 ;x

)] α
2 +2(d (x,E))α

}

� L

{
2α/2 (1+ x)α

(q[n]p,q)
α/2

+2(d (x,E))α

}
. �

Next we obtain the local direct estimate of the operators Bp,q
n , using the Lipcshitz

type maximal function of order α introduced by Lenze [17] as

ω̃a ( f ,x) = sup
t �=x,t∈[0,∞)

| f (t)− f (x)|
|t− x|α , x ∈ [0,∞) and α ∈ (0,1] . (4.8)

THEOREM 4. Let f ∈CB [0,∞) and 0 < α � 1. Then, for all x ∈ [0,∞) we have

|Gp,q
n ( f ;x)− f (x)| � ω̃a ( f ,x)

2α/2 (1+ x)α

(q[n]p,q)α/2
.

Proof. From the Eq. (4.8), we have

|Gp,q
n ( f ;x)− f (x)| � ω̃a ( f ,x)Gp,q

n

(|t− x|α ;x
)
.

Applying the Hölder inequality with p = 2/α, q = 2/(2−α) , we get

|Gp,q
n ( f ;x)− f (x)| � ω̃a ( f ,x)

[
Gp,q

n

(
|t− x|2 ;x

)] α
2

� ω̃a ( f ,x)
2α/2 (1+ x)α

(q[n]p,q)α/2
. �

5. Weighted approximation

First, let us recall the definitions of weighted spaces and corresponding modulus
of continuity. Let C [0,∞) be the set of all continuous functions f defined on [0,∞) and
Bx2 [0,∞) the set of all functions f defined on [0,∞) satisfying the condition | f (x)| �
M
(
1+ x2

)
with some positive constant M which may depend only on f . Cx2 [0,∞)

denotes the subspace of all continuous functions in Bx2 [0,∞) . By C∗
x2 [0,∞) , we denote

the subspace of all functions f ∈Cx2 [0,∞) for which limx→∞
f (x)

1+x2 is finite . Bx2 [0,∞)

is a linear normed space with the norm ‖ f‖x2 = supx�0
| f (x)|
1+x2 .

Throughout this section we assume p = pn and q = qn satisfies 0 < qn < pn � 1
and for n sufficiently large pn → 1, qn → 1 and qn

n → 1 and pn
n → 1.
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THEOREM 5. Let pn,qn ∈ (0,1) such that 0 < qn < pn � 1 and for n sufficiently
large pn → 1 , qn → 1, pn

n → 1 , qn
n → 1. Then,

lim
n→∞

‖Gpn,qn
n f − f‖x2 = 0,

for all f ∈Cx2 [0,∞) .

Proof. By weighted Korovkin theorem, it is sufficient to verify the following three
conditions

lim
n→∞

‖Gpn,qn
n (ei)− ei‖x2 = 0, i = 0,1,2.

By Lemma 2, we get

Gpn,qn
n (e0,x)− e0 (x) = 0,

Gpn,qn
n (e1,x)− e1 (x) = 0.

Also we obtain

‖Gpn,qn
n (e2)− e2‖x2 =

pn
n

qn[n]pn,qn

sup
x∈[0,∞)

x2

1+ x2 +
pn−2

n qn

[n]pn,qn

(pn +qn) sup
x∈[0,∞)

x
1+ x2

� pn
n

qn[n]pn,qn

+
pn−2

n qn

[n]pn,qn

(pn +qn)

which implies
‖Gp,q

n (e2)− e2‖x2 → 0 as n → ∞.

Thus the proof is completed. �

THEOREM 6. For each f ∈C∗
x2 [0, ∞) , we have

lim
n→∞

sup
x∈[0,∞)

∣∣Gpn,qn
n ( f ,x)− f (x)

∣∣
(1+ x2)1+α = 0.

Proof. For any fixed x0 > 0,

sup
x∈[0,∞)

∣∣Gpn,qn
n ( f ,x)− f (x)

∣∣
(1+ x2)1+α � sup

x�x0

∣∣Gpn,qn
n ( f ,x)− f (x)

∣∣
(1+ x2)1+α + sup

x�x0

∣∣Gpn,qn
n ( f ,x)− f (x)

∣∣
(1+ x2)1+α

� ‖Gpn,qn
n ( f )− f‖C[0,x0] +‖ f‖x2 sup

x�x0

∣∣Gpn,qn
n

(
1+ t2,x

)∣∣
(1+ x2)1+α

+sup
x�x0

| f (x)|
(1+ x2)1+α ,

where ‖·‖C[0,x0] is the uniform norm on [0,x0] . Since | f (x)| � M
(
1+ x2

)
, we have

sup
x�x0

| f (x)|
(1+x2)1+α � ‖ f‖x2

(1+x2
0)

1+α . Let ε > 0 be arbitrary. We can choose x0 to be so large

that ‖ f‖x2(
1+ x2

0

)1+α <
ε
3
. (5.1)
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On the other hand, in view of Lemma 2 we get

‖ f‖x2 lim
n→∞

∣∣Gpn,qn
n

(
1+ t2,x

)∣∣
(1+ x2)1+α → 0. (5.2)

Hence we can choose x0 > 0 so large that the inequality

sup
x�x0

∣∣Gpn,qn
n

(
1+ t2,x

)∣∣
(1+ x2)1+α <

ε
3
.

Also, the first term of the above inequality tends to zero by well known Korovkin’s
theorem, that is,

‖Gpn,qn
n ( f )− f‖C[0,x0] <

ε
3
. (5.3)

Therefore, combining (5.1)-(5.3) we get the desired result. �

REMARK 1. The further properties of the operators such as convergence proper-
ties via summability methods (see, for example, [9], [13], [20]) can be studied.
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