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(Communicated by V. Gupta)

Abstract. Very recently, in [4] Chen et. al introduced and considered a new generalization of
Bernstein polynomials depending on a patameter o.. As classical Bernstein operators, these op-
erators also provide interpolation at the end points of [0,1] and they have the linear precision
property which means those reproduce the linear functions. In this paper we introduce genuine
o -Bernstein-Durrmeyer operators. Some approximation results, which include local approxi-
mation, error estimation in terms of Ditzian-Totik modulus of smoothness are obtained. Also,
the convergence of these operators to certain functions is shown by illustrative graphics using
MAPLE algorithms.

1. Introduction and preliminaries

Bernstein polynomials have many useful properties, such as, positivity, interpola-
tion property at the end points of [0,1]. With these properties, their simple structures
and advantages in calculations make them interesting area of researches. These opera-
tors were introduced by S. N. Bernstein in 1912 (see [2]) and it was used to prove the
fundamental theorem of Weierstrass. For more details on this topic we can refer the
readers to excellent monographs [9] and [10].

The Bernstein operators are given by

B, CO.1 €01 B3 =37 (%) st O
k=0

where
pust) = (-0, xe o1

The genuine Bernstein-Durrmeyer operators (see [3], [8]) are defined as follows:

n—1
Un(f3x)=(1—x)"f(0)+x"f(1)+(n—1) 2 (/lf(t)pn;kl(t)dt) Pni(x), f€C0,1].
k=1 \’0
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These operators can be written as a composition of Bernstein operators and Beta
operators, namely U, = B, oB,. The Beta-type operators B, were introduced by A.
Lupag [12]. For n=1,2,3,... and f € C[0,1], the explicit form of Beta operators is
given by

f(0>7 x=0,

iny 1 ! nx—1 n—1-nx

B, (f;x) := mA 14 (1—1) f(t)de, 0<x<1,
f(1>7 x=1,

where B(-,-) is the Euler’s Beta function. These operators were studied widely by a
numbers of authors (see [1], [6], [7], [13]).

Very recently, in [4] Chen et. al introduced and considered a new generalization
of Bernstein polynomials depending on a parameter o as follows

Thalfix) = 2f() J(x), xe[0,1], fe0,1] 2)

for each positive integer n and any fixed real ¢, where the Bernstein type basis func-
tions are considered

(n;2>(l—a)x+ (Z:;)(l—a)(l—xH— (Z)ax(l_x)} (1T,
forn>2.

The operators (2) are called as o -Bernstein operators which are positive and
monotone in the case of o € [0,1]. In the particular case, when o = 1, o-Bernstein
operators reduce to well-known Bernstein polynomials. As classical Bernstein opera-
tors, a-Bernstein operators provide interpolation at the end points of [0,1] and they
have the linear precision property which means those reproduce the linear functions.
The authors of [4] have deeply studied many approximation properties of o -Bernstein
operators such as uniform convergence, rate of convergence in terms of modulus of con-
tinuity, Voronovskaya type pointwise convergence, shape preserving properties, etc.

Our aim in this paper is to introduce genuine ¢ -Bernstein-Durrmeyer operators as
a composition of ¢¢-Bernstein operators and Beta operators, namely

Un7a - Tn,a Oﬁn.

These operators are given in explicit form by

n—1
Una(f1x) = pig (0.£(0) + pi3 () f (1) + (= 1) Y p% () /0 ()t
k=1
(3



APPROXIMATION OF FUNCTIONS BY GENUINE BD TYPE OPERATORS 977

2. Basic results

This section is devoted to calculate moments and central moments of the operators
(3). Also, the uniform convergence of the operators via Korovkin theorem is presented
in this section.

LEMMA 2.1. Let ej(x) =x', i =0,1,2,3,4, and n > 2. Then moments of the
operators Uy ¢ are as follows:

i) Unaleosx)=1;

ii) Upg(er;x) =x;

2 I-o
iii) Ung(ex;x) =x>+—— (1 + T) x(L—x);

n+1
iv) Upole 'x)=x3+M[n2x+(l+x—ax)n+2(l—x)(l—a)]'
e n(n+1)(n+2) :
) A 12x(1 —x) 3.2 2 2 2
V) Unalesd) =24 oo Gy 1+ (0 - a4 3an

—(4x* 4 60x — 5x — 2 — 50x%)n+6(1 — at)(1 —x)z] .

COROLLARY 2.1. As an immediate result of Lemma 2.1, we obtain central mo-
ments as following:

2(n+1—o0)x(1—x)

5>

i) Uno ((1—x)%x) =

n(n+1)
.. 12x(1—x) 2 2 2
Uno ((t—x)*x) = - —5x+20% —20x+2+45
ii) Uno ((1—x)%x) A (2 (1 53) [x(1—x)n®+(—5x+20x" —20x+2+5x")n
+24x% — 24x — 60— 240x* + 240x + 6] ;
2x(1—x)
Upo ((t —x)%x) < 2
iii) Uno ((1 —x)%x) .

LEMMA 2.2. Let f € C[0,1], x € [0,1] and n € N. Then
[Una(f3) < AL
where || - || is the uniform norm on [0, 1].
Proof. Since Uy ¢(e9;x) = 1, we get
Una(f:2)| < Unaleo:0) If] = [I7]- B

REMARK 2.1. According Bohman-Korovkin theorem, since lim Uy, ¢ (e;;x) =X,
n—s oo

i=0,1,2, the sequence (U, «(f)) converges to f uniformly on [0,1] for any f €
lo,1].
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EXAMPLE 2.1. Let f(x) = sin(27x) and oo = 0.5. In Figure | are given the
graphs of function f and operator U, for n = 10 and n = 20, respectively. This
example explains the convergence of the operators U, o that are going to the function
f if the values of n are increasing.

1
0.5 ;/ \<..'
y AW
0
0.2 0.4
-0.5
-1
| f(x) =sin(2 ) == Uno,o5 """ Uzo,o,5|

Figure 1: The convergence of Uy, o(f;x) to f(x)

1
EXAMPLE 2.2. Let f(x) = sin(27x) 4 2sin X and n = 10. In Figure 2 we

have seen that the choice of & = 0.9 gives better approximation of f by genuine o -
Bernstein-Durrmeyer operators than o = 0.1.

TN
7N /
L5 / \ /
/ ..... /
1/ \ /
/ N/
/
os{ /
0
0 0.2 04 0.6 0.8 1
— - f(x) =sin(2 mx) +25in[%mc] seee Ung0a(f x)
Utoos(fix)

Figure 2: The convergence of Uy o(f;x) to f(x)
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Choosing o = 0.9 we compute in Table 1 the error of approximation of genuine

o -Bernstein-Durrmeyer operators.

TABLE 1. Error of approximation for Uy o

x V20,0 (f3%) = f(X)] | [Uso,a(f3%) = f(X)] | [Utoo,e(f5%) — f(x)]
0.10 | 0.119780164 0.046025979 0.022398022
0.15 | 0.201222945 0.083492574 0.042050802
0.20 | 0.272183862 0.118366586 0.060845800
0.25 | 0.317887961 0.142618970 0.074312981
0.30 | 0.328747703 0.150595558 0.079192881
0.35 | 0.301259559 0.139756237 0.073917663
0.40 | 0.238085339 0.110909279 0.058796858
0.45 | 0.147342879 0.067932809 0.035893486
0.50 | 0.041215809 0.017041614 0.008620233
0.55 | 0.065935177 0.034284832 0.018875513
0.60 | 0.159724367 0.078555151 0.042440029
0.65 | 0.227893334 0.109518925 0.058641675
0.70 | 0.262200455 0.123239161 0.065386128
0.75 | 0.259812435 0.118826266 0.062320649
0.80 | 0.224015403 0.098717529 0.050958557
0.85 | 0.164135892 0.068444202 0.034494237
0.90 | 0.094646991 0.035893873 0.017322996

3. Rate of convergence

In this section we study the rate of convergence of genuine o -Bernstein-Durrmeyer
operators in terms of the Ditzian-Totik first order modulus of smoothness defined as fol-
lows:

0y (f5t) = sup {‘f()ﬂ—%(x))—f(x—h(p—()C))',xi%(x)e[o,l]}, 4)

0<h<t 2

where ¢(x) = /x(1 —x) and f € C[0,1]. The corresponding K -functional of the
Ditzian-Totik first order modulus of smoothness is given by

Ko(ra) = it {117l +1ll0g/I} (>0, ©

where Wy[0,1] = {g: g € AC;c[0,1],]|9g'|| < e} and ACj,[0,1] is the class of abso-
lutely continuous functions on every interval [a,b] C [0,1]. Between K -functional and
the Ditzian-Totik first order modulus of smoothness there is the following relation

Ky (f31) < Cay(f1), (6)

where C > 0 is a constant.
Now, we establish a global approximation theorem by means of Ditzian-Totik
modulus of smoothness.
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THEOREM 3.1. Ler f € C[0,1] and ¢(x) = \/x(1 —x), then for every x € [0,1],
we have

1
Una(F) = 701 < Co ().
where C is a constant independent of n and x.

Proof. From the next representation

h(t) = h(x) + / "W (w)du,

we get
!
|Un,o(h;x) — h(x)| = U,,ﬂ(/ h/(u)du;x) . @)
Forany x € (0,1) and ¢ € [0, 1] we find that
[ <liow]| [ <7~ ®
u)du| < ul.
x x ¢(u)
But,
/t ! du—/t;du< /t<i+#>du ©))
x O(u) x yu(l—u) Sl \We Vi—u
<2(|Vi-vE |+ VT=i- VT3] )
= 2t—x< ! + ! )
B Vityx o VT—t+V1—x
1 1 2V/2 |t — x|
2lt —x|| —=+ ) < .
(=) <25
Combining (7)—(9) and using Cauchy-Schwarz inequality, we get
|Unoc(3) = h(x)| < 2V2||9H||9" (x)Up.a(|t = x];)
1/2
<2vallonlo~ ) (Unal-2P0))
Now using Corollary 2.1, we obtain
4
[Un.a () = h(x)| < (|07 (10)

Using Lemma 2.2 and (10) we can write

| Una(f3%) = (%) | <[ Una(f = 1:2) | +1(x) = h(x) [+ | Un,oe(h:x) = h(x) |

1
<4 —h||+—=||oH]|| ;.
{itr=nil+ w1}
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From the definition of the K -functional (5), we get

1
|Una(f3%) = f(x)] < 4Ky (f; m)

and considering the relation (6), the proof is completed. [

The next result proposes a quantitative Voronovskaja type theorem by means of
Ditzian-Totik modulus of smoothness.

THEOREM 3.2. For any g € C*(0,1] the following inequalities hold

1— 1

i) Un,a(g;x)—g(X)—%W(x)g(z)(x) < —Coy (3%,0(n712),
1— 1

i) |Unalgix)—50) =02 (W) < Cotxmg (5 7).

Proof. Let g € C?[0,1] be given and ¢,x € [0, 1]. Then by Taylor’s expansion, we

have
t

8(t) —g(x) = (1 —x)g' () + | (1 —u)g® (w)du.

Applying U, «(-;x) to both sides of the above relation, we get

n+1—o

D 0 s

Un,a(g:%) =8 (%)
/xt

1
[ 162260~ @) s~ uld

o

[ 1=l )~ g i)
) (1)

was estimated in [11, p. 337] as follows:

The quantity g (u) —g? (x)’ |t — u|du

<2[|g"® = hll(r —x)* + 2[99~ ()t =, (12)

where h € Wy[0,1].
Using Corallary 2.1 it follows that there exists a constant C > 0 such that

Unar (1 =x)"5%) < —592 (). (13)
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Therefore, combining (11)—(13) and applying Corollary 2.1 and the Cauchy-Schwarz
inequality, we get

< 2)g® = 1| Una (¢ = 2)%52) + 21919 (x)Unr (|1 —xI5)

<% 2(x)]1g® hH+2H<Z5h’H<Z>71(x){Un,oc(t—X)2;x}l/2{Uw((t—x)“;x)}l/2
dn+1—0o) , @ n+l—a C,
n(n+1) ")l hl+4 nn+1) ¢(x)n”¢h |
n+1—a 2 2) l n"‘l—(x ,
<C{—n(n+l)¢ Ol =+ 7 [ =) o }
C

< {0 @llg™ =l +n~" o ()i |}
Since ¢2(x) < ¢(x) < 1,x € [0, 1], we obtain

n+l—o

m¢2(x)g(2) (x)

C
Una(g:)=g(x) - <= {lg®=nll+n o)

Also, the following inequality can be obtained

n+l—o

L= 2 0@y
) O W)

C
Unal:x)~g(x) - <=6 {l1s® = nll+n"2on'|}.

Taking the infimum on the right hand side of the above relations over i € W;[0, 1], the
theorem is proved. [

4. Bézier variant of genuine o -Bernstein Durrmeyer type operators

In this section we propose a Bézier variant of genuine o -Bernstein Durrmeyer as

n
UVE}/OZ (g;x) - 2 Fn,kQE,\;k) (X), (14)
k=0
where
(n=1) Jo Pa—2i—1(t)g(t)dt, 1 <k <n—
Foe= g(0), k=0,
g(l)7 k =n,

O () = [Sua@)]” — [Snaer1 )] =1 with S, 4(x) = Ty pi (x), when k < n
and 0 otherwise. Obviously, U,E‘;Z is a sequence of linear positive operators and for
v = 1, these operators reduce to the operators U, q .
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Next, our goal is to study the rate of convergence of the operators (14) for functions
g whose derivative g’ are of bounded variation on [0, 1]. In order to prove the main
results we will give the folowing two lemmas:

LEMMA 4.1. a) If g € C[0, 1], then |[USg]l < |lgll.
b)If x€[0,1] and g € C[0,1] such that g >0 on [0, 1] then U,E}g (g:%) < VUpn0(g:x).

An integral representation of the operators U,E‘;Z can be given as follows:

') / K (x)g(1)d, (15)
where K,(lvoz is defined as
n—1
Ka(et) = 3 O @)pu-a i1 () + Q10 (0)8(1) + 0 (x)8(1 1),
k=1

6(u) being the Dirac-delta function.

LEMMA 4.2. For a sufficiently large n and a fixed x € (0,1), it follows

R P L () 2vx(1 —x)
(i) Snalx,y) _/o Ky (x,1)d1 < =R 0<y<u
.. ! 2vx(l —x
(ii) 1—5,52(x,z) :/Z K,SYOZ(x,t)dt < #, x<z<l.

Denote DBV [0,1] the class of differentiable functions g defined on [0,1], whose
derivatives g’ are of bounded variation on [0,1]. Let \/% ¢ be the total variation of g
on [a,b] and g’ is defined by

g1 —g(x-), 0<1 <x
g.(t)= 0, t=x (16)
g(t)—g(x+) x<r<1.
The next results give us a rate of convergenge for a function g € DBV|0,1].

THEOREM 4.1. If ¢ € DBV[0,1], then for every x € (0,1) and sufficiently large
n, the folowing inequality

082050) — 81 < X (I (e /0] 16/ 0) — ()1}
) WA
REIAIRU )
k=1

xX—

i

holds.
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Proof. Since U,S}Q(l;x) =1, forevery x € (0,1) we can write

X X 1 t
A =[] [ ¢ Ko s = [ [ ¢ Ko
t X X
For any g € DBV|0, 1], we decompose g'() as follows:

£ = (g 00b) +¢/)) + 1)+ 5(8' () ~ g (- Dsgnlr —x) (17)

+8.0)[¢/0) - 3¢ o) +60)|.

where
l,t=x

Therefore, we get

X
Since / Ox(u)du =0, we get
t

1 (x) = w /Ox(x—t)K,(l}/OZ(xJ)dt-i- OX [ txg;(u)du] K,(l:/a(x,t)dt
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Using a similar method, we find that

() = w / l(z_x)K,EYa(x,z)dH Xl [ / [g;(u)} K (v 1)

Therefore,
— A1 (x)+ A(x)

= P T) N grfilonans S ZEED i nar

/ [/ 8(u du]Kf (x,1)dt + Xl [/xtg;(u)du} K\ (x,1)dt.

Then,
UL (g:%) — g(x)
/ I 1 / ol (y— 1
M [o- X)K,gva(x,gmw [ - alk i nar
0

/[/g" d"] xrd’ﬂ‘/ [/gx d“]Ky(,vxt)dt

From the above relation it follows

UL (g:%) —g(X)‘

<[l

ULt —x; x)’-i—

‘ /[/ gxu)du]l(v (x,0)dt| +

According to Lemma 4.2, we write

g’(er);g’(x—)‘ U (e —x; )’

/X1 [/xtg;(u)du} K (x|

(18)

Thus,
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Since g/.(x) =0 and 5,5‘2 (x,¢) < 1, one has

Vit
* N[ x o\ /

< v<x>/ ===V (&)
x—- T \/_x £
Vi Vi

From Lemma 4.2, we can write

U e W) 2vx(1—x) /"’ﬁ ' dt

t Hdt < ——= t
| golg) Ol

2vx(1—x) [* v, , dt
= 1) — R
O
2vx(l —x) /"*ﬁ t
== =
pamgt \t/(gx)
Using the change of variables 7 = x — 3, we have

x(l—x x— e X “x vn o ox
2v (rll )/0 f\t/(g;)(xitt)zz / \/ <) du\M \/ (g}

and hence, we get

x x " 2v(1—x) W
- dwan] Kidaa) < 22V @0+ 22U SV @)
t Vi Y (S = A
N 3
2x 2v(1—x) 2(v+(1—v) ) F
<ES V() LISy () < ZVELEVI S s 1o
= P n k=1 n k=1
Using a similar method, we get
Pl P
LTt T—x V" 2vx Y
/ (V < /! =" /!
[ st wtiena] < <2V @0+ SV 60
1—x 1—x
2(1—x) T 2vx U
<(n) V +=—=3 V (&)
k=1 x k=1 «x
1—x
v+ (1—v), ] e
< [ (n )+] \/ (g;) (20)
k=1 x

The relations (18), (19) and (20) complete the proof of the theorem. [J
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