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A CAUCHY–BUNYAKOVSKY–SCHWARZ TYPE

INEQUALITY RELATED TO THE MÖBIUS ADDITION

KEIICHI WATANABE

(Communicated by G. Sinnamon)

Abstract. We show a Cauchy-Bunyakovsky-Schwarz type inequality related to the Möbius addi-
tion in complex inner product spaces. The corresponding inequality in real inner product spaces
can be derived easily as well.

1. Introduction and preliminaries

The celebrated Cauchy-Bunyakovsky-Schwarz (CBS in the sequel) inequality

|〈u,v〉| � ||u||||v|| (u, v ∈ V)

in any inner product space V is one of the most fundamental inequality in Mathematics.
Möbius addition is defined on the complex open unit disk D = {z∈ C; |z|< 1} by

a⊕b =
a+b
1+ab

(a, b ∈ D),

which appears in a wide variety of fields of mathematics. In particular, although Möbius
addition is known in the literature as a hyperbolic translation, its group-like structure
had gone unnoticed until it was uncovered by A. A. Ungar in 1988 [5], in the con-
text of Einstein’s special theory of relativity. Furthermore, Ungar extended the Möbius
addition in the complex disk to the ball of an arbitrary real inner product space, and ob-
served that the ball endowed with the Möbius addition is a gyrocommutative gyrogroup
(see [3], [4], [5]).

Let us briefly recall the definition of the Möbius gyrogroup. For precise definitions
and basic results of gyrocommutative gyrogroups and the Möbius gyrogroup, see [2].
For elementary facts on inner product spaces, one can refer [1].
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DEFINITION 1. [2, Definition 3.40] Let V = (V,+, 〈 · , · 〉) be a real inner product
space with a vector addition + and a positive definite inner product 〈 · , · 〉 . Let Vs be
the open ball

Vs = {v ∈ V : ||v|| < s}
for any fixed s > 0, where ||v|| = 〈v,v〉 1

2 . The Möbius addition ⊕M is given by the
equation

u⊕M v =

(
1+ 2

s2
〈u,v〉+ 1

s2
||v||2

)
u+

(
1− 1

s2
||u||2

)
v

1+ 2
s2
〈u,v〉+ 1

s4
||u||2||v||2

for any u,v ∈ Vs . The addition ⊕M in the open interval (−s,s) in the real line is
defined by the equation

a⊕M b =
a+b

1+ 1
s2

ab

for any a,b ∈ (−s,s) .

It is quite elementary to check that both denominators are positive, u⊕M v ∈ Vs

and a⊕M b∈ (−s,s) are well-defined. We simply denote ⊕M in the Möbius gyrogroup
Vs or in the interval (−s,s) by ⊕s .

DEFINITION 2. [2, Definition 2.7, (2.1), (6.286), (6.293)] Obviously, the inverse
element of u with respect to ⊕s coincides with −u in the Möbius gyrogroup. We use
the notation

u�s v = u⊕s (−v)

as in group theory. Moreover, the Möbius gyrodistance function d and Poincaré dis-
tance function h are defined by the equations

d(u,v) = ||v�s u||

h(u,v) = tanh−1 d(u,v)
s

.

Ungar showed that h satisfies the triangle inequality [2, (6.294)].

The following identities are easy consequence of the definition. One can refer [6,
Lemma 14 (i), Lemma 12].

LEMMA 3. Let s > 0 . The following formulae hold

(i)
u
s
⊕1

v
s

=
u⊕s v

s

(ii) ||u⊕s v||2 =
||u||2 +2〈u,v〉+ ||v||2

1+ 2
s2
〈u,v〉+ 1

s4
||u||2||v||2
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for any u,v ∈ Vs .

In this article, we show a CBS type inequality related to the Möbius addition in
complex inner product spaces. Our proof is based on just elementary calculus and al-
gebra. The corresponding inequality in real inner product spaces can be easily derived
from the proof as well. Nevertheless, it might be worthwhile to mention that the in-
equality (8) was found earlier than (1), in the study on real inner product gyrovector
spaces.

2. Result

We begin with an elementary lemma related to a function of two real variables.

LEMMA 4. Let a,b,c be real numbers, 0 < a,b < 1 and 0 < c � 1 . Consider the
following two real variable function

f (X ,Y ) = 1− (1−a2)(1−b2)c2−a2c2X −b2c2Y +a2b2c4XY

on [0,1]× [0,1] . Then

f (X ,Y ) � 0 ((X ,Y ) ∈ [0,1]× [0,1]).

Moreover, if (X ,Y ) ∈ [0,1]× [0,1] , then f (X ,Y ) = 0 if and only if c = 1 and (X ,Y ) =
(1,1) .

Proof. Obviously we have

fX (X ,Y ) = −a2c2(1−b2c2Y ) and fY (X ,Y ) = −b2c2(1−a2c2X).

Therefore, fX (X ,Y ) = fY (X ,Y ) = 0 if and only if X =
1

a2c2 , Y =
1

b2c2 . It follows that

f (X ,Y ) takes its minimum value on the boundary of [0,1]× [0,1] . It is easy to see that
f (1,Y ) is monotone decreasing for 0 � Y � 1 and

f (1,1) = (1−a2b2c2)(1− c2) � 0,

which implies that f (1,Y ) � 0 (0 � Y � 1) . Moreover, f (0,Y ) is also monotone
decreasing and f (0,1) > f (1,1) � 0. Hence f (0,Y ) > 0 (0 � Y � 1) . By symmetry,
f (X ,0) and f (X ,1) is nonnegative as well. Thus f (X ,Y ) � 0 for (X ,Y ) ∈ [0,1]×
[0,1] . It is immediate to check that f (X ,Y ) = 0 on [0,1]× [0,1] if and only if c = 1
and (X ,Y ) = (1,1) . This completes the proof. �

The following theorem is a CBS type inequality related to the Möbius addition in
complex inner product spaces.
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THEOREM 5. Let V be a complex inner product space and let w ∈ V be a fixed
element with ||w||� 1 . For any u, v∈V and for any s > max{||u||, ||v||} , the following
inequality holds∣∣∣∣∣ 〈u,w〉− 〈v,w〉

1− 1
s2
〈u,w〉〈v,w〉

∣∣∣∣∣ �
√

||u||2−2Re〈u,v〉+ ||v||2
1− 2

s2
Re〈u,v〉+ 1

s4
||u||2||v||2 . (1)

The equality holds if and only if one of the following conditions is satisfied:

(i) u = v

(ii) ||w|| = 1 and u = λw, v = μw for some complex numbers λ ,μ .

Proof. If u = 0, then inequality (1) reduces to |〈v,w〉| � ||v|| , which follows from
the classical CBS inequality and ||w|| � 1. If w = 0, then inequality (1) trivially holds.
Thus we may assume u,v,w �= 0. At first, we show that if s = 1 and ||u||, ||v||< 1, then

∣∣∣∣ 〈u,w〉− 〈v,w〉
1−〈u,w〉〈v,w〉

∣∣∣∣
2

� ||u||2−2Re〈u,v〉+ ||v||2
1−2Re〈u,v〉+ ||u||2||v||2 . (2)

We can take real numbers 0 � ρ ,r1,r2 � 1 and 0 � t , x,y � 2π such that

ρeit =
〈u,v〉

||u||||v|| , r1e
ix =

〈u,w〉
||u||||w|| and r2e

iy =
〈v,w〉

||v||||w|| . (3)

Fix an arbitrary pair {u,v} , so ρ ,t are also fixed, and change w according to the con-
dition 0 < ||w||� 1. We denote by D the set of all tuples of 4 real variables (r1,r2,x,y)
obtained by the procedure above, which is a subset of [0,1]× [0,1]× [0,2π ]× [0,2π ] .
Put

a = ||u||,b = ||v||,c = ||w||,uR = u−ar1e
ix w

c
and vR = v−br2e

iy w
c

.

Then it is immediate to see that

u = ar1e
ix w

c
+uR, v = br2e

iy w
c

+ vR

are the orthogonal decompositions of u and v with respect to the closed linear subspace
Cw , respectively. It follows from the Pythagorean identity that

a2 = a2r2
1 + ||uR||2 b2 = b2r2

2 + ||vR||2.

Therefore, we have

ρeit =
〈u,v〉

||u||||v|| =

〈
ar1e

ix w
c

+uR,br2e
iy w

c
+ vR

〉
ab

= r1r2e
i(x−y) +

〈uR,vR〉
ab

.
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It follows from the CBS inequality that

∣∣∣∣ 〈uR,vR〉
ab

∣∣∣∣
2

� ||uR||2||vR||2
a2b2

=
(a2−a2r2

1)(b
2−b2r2

2)
a2b2

= (1− r2
1)(1− r2

2).

Thus, if (r1,r2,x,y) ∈ D , then

|ρeit − r1r2e
i(x−y)|2 � (1− r2

1)(1− r2
2),

in particular, we can obtain

ρ cost−
√

(1− r2
1)(1− r2

2) � r1r2 cos(x− y). (4)

In order to prove the inequality (2), it is sufficient to show

(a2 −2abρ cost +b2)(1−2abc2r1r2 cos(−x+ y)+a2b2c4r2
1r

2
2)

− (1−2abρ cost +a2b2)(a2c2r2
1 −2abc2r1r2 cos(−x+ y)+b2c2r2

2) � 0 (5)

for any (r1,r2,x,y) ∈ D . The left hand side of (5) can be calculated as follows:

a2−2a3bc2r1r2 cos(−x+ y)+a4b2c4r2
1r

2
2

−2abρ cost +4a2b2c2ρr1r2 cost cos(−x+ y)−2a3b3c4ρr2
1r

2
2 cost

+b2−2ab3c2r1r2 cos(−x+ y)+a2b4c4r2
1r

2
2

−a2c2r2
1 +2abc2r1r2 cos(−x+ y)−b2c2r2

2

+2a3bc2ρr2
1 cost−4a2b2c2ρr1r2 cost cos(−x+ y)+2ab3c2ρr2

2 cost

−a4b2c2r2
1 +2a3b3c2r1r2 cos(−x+ y)−a2b4c2r2

2

= a2(1−b4c2r2
2)(1− c2r2

1)+b2(1−a4c2r2
1)(1− c2r2

2)

−2abρ cost(1−a2c2r2
1)(1−b2c2r2

2)

+2abc2r1r2 cos(−x+ y)(1−a2)(1−b2).
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By using (4), we can continue to estimate:

� a2(1−b4c2r2
2)(1− c2r2

1)+b2(1−a4c2r2
1)(1− c2r2

2)

−2abρ cost(1−a2c2r2
1)(1−b2c2r2

2)

+2abc2
{

ρ cost−
√

(1− r2
1)(1− r2

2)
}

(1−a2)(1−b2)

= a2(1−b4c2r2
2)(1− c2r2

1)+b2(1−a4c2r2
1)(1− c2r2

2)

−2abρ cost{(1−a2c2r2
1)(1−b2c2r2

2)− c2(1−a2)(1−b2)}

−2abc2
√

(1− r2
1)(1− r2

2)(1−a2)(1−b2).

Since (1−a2c2r2
1)(1−b2c2r2

2)− c2(1−a2)(1−b2) � 0 by Lemma 4, so we can con-
tinue our estimation:

� a2(1−b4c2r2
2)(1− c2r2

1)+b2(1−a4c2r2
1)(1− c2r2

2)

−2ab{(1−a2c2r2
1)(1−b2c2r2

2)− c2(1−a2)(1−b2)}

−2abc2
√

(1− r2
1)(1− r2

2)(1−a2)(1−b2).

It follows from Arithmetic-Geometric mean inequality that

� a2(1−b4c2r2
2)(1− c2r2

1)+b2(1−a4c2r2
1)(1− c2r2

2)

−2ab{(1−a2c2r2
1)(1−b2c2r2

2)− c2(1−a2)(1−b2)}
−{

a2c2(1− r2
1)+b2c2(1− r2

2)
}

(1−a2)(1−b2)

= a2 +b2−2ab

+(2ab−2a3b−2ab3 +2a3b3−a2 +a4 +2a2b2−a4b2−b2 +b4−a2b4)c2

−a2c2(a−b)2r2
1 −b2c2(a−b)2r2

2 +a2b2c4(a−b)2r2
1r

2
2

= (a−b)2{(1−a2c2r2
1)(1−b2c2r2

2)− c2(1−a2)(1−b2)}
� 0.

Here, we used Lemma 4 again for the last inequality. Thus the desired inequality (2) is
shown.

It is immediate to see that the equality in (5) holds provided the condition (i) or (ii)
is satisfied. Conversely, suppose that the equality in (5) holds. We may assume a �= 0 or
b �= 0. If a = 0, then we have u = 0 and c = r2 = 1, the latter and the equality condition
of the classical CBS inequality implies that v = μw for some complex number μ .
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Similarly, if b = 0, then v = 0 and u = λw for some complex number λ . If a,b �= 0,
then the proof of the inequality (5) above shows that

(ρ cost−1){(1−a2c2r2
1)(1−b2c2r2

2)− c2(1−a2)(1−b2)} = 0 (6)

(a−b)2{(1−a2c2r2
1)(1−b2c2r2

2)− c2(1−a2)(1−b2)} = 0. (7)

If c = r1 = r2 = 1, then ||w|| = 1 and u = λw , v = μw for some complex numbers
λ ,μ . If c = r1 = r2 = 1 doesn’t hold, then the formula (6) and the equality condition
in Lemma 4 yield that ρ cost = 1, while (7) shows that a = b . In this case, we can
conclude that u = v .

Next, let u, v ∈ V be arbitrary elements, and let s > max{||u||, ||v||} . Since∣∣∣∣∣∣u
s

∣∣∣∣∣∣ , ∣∣∣∣∣∣v
s

∣∣∣∣∣∣ < 1,

the inequality (2) shows

∣∣∣∣∣
〈

u
s ,w

〉− 〈
v
s ,w

〉
1− 〈

u
s ,w

〉〈
v
s ,w

〉
∣∣∣∣∣
2

�
∣∣∣∣ u

s

∣∣∣∣2−2Re
〈

u
s ,

v
s

〉
+

∣∣∣∣ v
s

∣∣∣∣2
1−2Re

〈
u
s ,

v
s

〉
+

∣∣∣∣ u
s

∣∣∣∣2 ∣∣∣∣ v
s

∣∣∣∣2 ,

from which we obtain∣∣∣∣∣ 〈u,w〉− 〈v,w〉
1− 1

s2
〈u,w〉〈v,w〉

∣∣∣∣∣
2

� ||u||2−2Re〈u,v〉+ ||v||2
1− 2

s2
Re〈u,v〉+ 1

s4
||u||2||v||2 .

Thus the inequality (1) is shown. It is obvious that the equality condition in (1) is
identical to that in (2). This completes the proof. �

REMARK 6. By taking v = 0, it is immediate to see that Theorem 5 is an extension
of the classical CBS inequality.

REMARK 7. One can easily modify the proof of Theorem 5 to obtain the corre-
sponding CBS type inequality in real inner product spaces. Indeed, we can take real
numbers −1 � ρ , r1,r2 � 1 such that

ρ =
〈u,v〉

||u||||v|| , r1 =
〈u,w〉

||u||||w|| and r2 =
〈v,w〉

||v||||w|| ,

instead of the polar forms (3). It is not necessary to deal with arguments t,x,y , and
the rest of the proof is similar to and easier than the complex case. We state the fol-
lowing theorem for the real inner product spaces, showing relation between the Möbius
addition (subtraction) and inner product.
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THEOREM 8. Let V be a real inner product space and let w ∈ V be a fixed ele-
ment with ||w|| � 1 . For any u, v ∈ V and for any s > max{||u||, ||v||} , the following
inequality holds

|〈u,w〉�s 〈v,w〉| � ||u�s v||.

That is, ∣∣∣∣∣ 〈u,w〉− 〈v,w〉
1− 1

s2
〈u,w〉〈v,w〉

∣∣∣∣∣ �
√

||u||2−2〈u,v〉+ ||v||2
1− 2

s2
〈u,v〉+ 1

s4
||u||2||v||2 . (8)

The equality holds if and only if one of the following conditions is satisfied

(i) u = v

(ii) ||w|| = 1 and u = λw, v = μw for some real numbers λ ,μ .
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