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ON THE INVERSE POWER INEQUALITY FOR

THE BEREZIN NUMBER OF OPERATORS

MUBARIZ GARAYEV, SUNA SALTAN, DILARA GUNDOGDU

Abstract. The Berezin symbol Ã of operator A acting on the reproducing kernel Hilbert space
H = H (Ω) over some set Ω is defined by

Ã(λ) =
〈
Ak̂H ,λ , k̂H ,λ

〉
, λ ∈ Ω,

where k̂H ,λ =
kH ,λ

‖kH ,λ‖H

is the normalized reproducing kernel of H . The Berezin number of

operator A is the following number:

ber(A) := sup
{∣∣∣Ã(λ)

∣∣∣ : λ ∈ Ω
}

.

Clearly, ber(A) � w(A), where w(A) = sup{|〈Ax,x〉| : x ∈ H , ‖x‖H = 1} is the numerical
radius of A. The power inequality for the numerical radius of Hilbert space operator A is the
following:

w(An) � (w(A))n , ∀n � 1.

Since ber(A) � w(A), the following question naturally arises: is it true that ber(An) � (ber(A))n

for any operator A and any integer n > 1?
Although we do not solve this question, in this paper, by using some Hardy type inequality,

we prove the inverse power inequality for ber(A) for positive operators on H (Ω); namely, we
prove that (ber(A))n �C(n,m)ber(An) for any positive operator A on H (Ω), where C(n,m) >
1 is the constant depending only on n and its conjugate m , where 1

n + 1
m = 1.
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