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Abstract. The Berezin symbol Ã of operator A acting on the reproducing kernel Hilbert space
H = H (Ω) over some set Ω is defined by

Ã(λ) =
〈
Ak̂H ,λ , k̂H ,λ

〉
, λ ∈ Ω,

where k̂H ,λ =
kH ,λ

‖kH ,λ‖H

is the normalized reproducing kernel of H . The Berezin number of

operator A is the following number:

ber(A) := sup
{∣∣∣Ã(λ)

∣∣∣ : λ ∈ Ω
}

.

Clearly, ber(A) � w(A), where w(A) = sup{|〈Ax,x〉| : x ∈ H , ‖x‖H = 1} is the numerical
radius of A. The power inequality for the numerical radius of Hilbert space operator A is the
following:

w(An) � (w(A))n , ∀n � 1.

Since ber(A) � w(A), the following question naturally arises: is it true that ber(An) � (ber(A))n

for any operator A and any integer n > 1?
Although we do not solve this question, in this paper, by using some Hardy type inequality,

we prove the inverse power inequality for ber(A) for positive operators on H (Ω); namely, we
prove that (ber(A))n �C(n,m)ber(An) for any positive operator A on H (Ω), where C(n,m) >
1 is the constant depending only on n and its conjugate m , where 1

n + 1
m = 1.

1. Introduction

If p > 1, 1
p + 1

q = 1, an , bn � 0 satisfy 0 <
∞
∑

n=1
ap

n < +∞ and 0 <
∞
∑

n=1
bq

n, then

the classical Hardy-Hilbert inequality [10, 11] asserts that

∞

∑
m=1

∞

∑
n=1

ambn

m+n
<

π

sin
(

π
p

) { ∞

∑
n=1

ap
n

} 1
p
{

∞

∑
n=1

bq
n

} 1
q

(1)
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and an equivalent from is

∞

∑
n=1

(
∞

∑
m=1

am

m+n

)p

<

⎡⎣ π

sin
(

π
p

)
⎤⎦p

∞

∑
n=1

ap
n , (2)

where the constants π
sin
(

π
p

) and

[
π

sin
(

π
p

)
]p

are the best possible in the sense that they

can not be replaced by some smaller numbers such that the inequalities remain true for
all (even finite) sequences of non-negative real numbers. The Hardy-Hilbert inequalities
(1), (2) are important in analysis and its applications (see Mitrinovic et al. [16], Garayev
et al. [7]).

Recently many generalizations and refinements of these inequalities have been
also obtained, see [9, 15, 16, 18], and references therein.

Hardy et al. [10] proved an inequality, under the same condition of (1), similar to
(1) as

∞

∑
m=1

∞

∑
n=1

ambn

max{m,n} < pq

{
∞

∑
n=1

ap
n

} 1
p
{

∞

∑
n=1

bq
n

} 1
q

(3)

and an equivalent form is

∞

∑
n=1

(
∞

∑
m=1

am

max{m,n}

)p

< [pq]p
∞

∑
n=1

ap
n , (4)

where the constant factors pq and (pq)p are the best possible. Some new inequalities
similar to Hardy-Hilbert inequality, are given recently by Das and Sahoo [4, 5].

In the present article, we apply inequalities (3), (4) in one question of operator
theory; namely, we will use these inequalities to estimate Berezin number of the powers
of operators acting in the Reproducing Kernel Hilbert Space (shortly, RKHS).

Let Ω be a subset of some topological space. Recall that the Reproducing Kernel
Hilbert Space is a Hilbert Space H : = H (Ω) of complex valued functions on the set
Ω such that the evaluation f → f (λ ) at any point λ ∈ Ω is continuous on H . Then
the classical Riesz representation theorem ensures that a functional Hilbert space H
has a reproducing kernel, that is, a function kH ,λ : Ω×Ω → C with defining property〈
f ,kH ,λ

〉
= f (λ ) for all f in H and λ ∈ Ω, where k(z)

H ,λ = kH (z,λ ) ∈ H . Let

k̂H ,λ =
kH ,λ

‖kH ,λ‖ be the normalized reproducing kernel of H .

For any bounded linear operator A on H , its Berezin symbol Ã is defined by (see
Berezin [2, 3]):

Ã(λ ) :=
〈
Ak̂H ,λ , k̂H ,λ

〉
, λ ∈ Ω.

The Berezin symbol of an operator provides important information about the operators.
Namely, it is well known, in particular, that on the most familar RKHS, including the
Hardy, Bergman and Fock spaces, the Berezin symbol uniquely determines the operator
(i.e., A = 0 if and only if Ã = 0).
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Recall that if B(H ) is the C∗ -algebra of all bounded linear operators on H ,
then the numerical range and numerical radius of A∈B(H ) is defined respectively by
W (A) := {〈Ax,x〉 : x ∈ H , ‖x‖H = 1} and w(A) := sup{|〈Ax,x〉| : x ∈ H , ‖x‖H = 1} .
Since

1
2
‖A‖ � w(A) � ‖A‖ ,

the numerical radius w(.) defines a norm on B(H ) , which is equivalent to the usual
operator norm ‖.‖ . An important inequality for w(A) is the power inequality stating
that w(An) � w(A)n (n = 1,2, . . .) (see Halmos [8]). About numerical radius inequali-
ties the readers can be found, for example, in [1, 6, 17]. Note that (see Karaev [12, 13])
the Berezin set and Berezin number for A ∈ B(H (Ω)) is defined as

Ber(A) := Range(Ã) =
{

Ã(λ ) : λ ∈ Ω
}

(Berezin set)

and
ber(A) := sup

{∣∣∣Ã(λ )
∣∣∣ : λ ∈ Ω

}
(Berezin number).

Clearly, Ber(A) ⊂W (A) and ber(A) � w(A).
Note that there are many questions regarding to these new concepts (more detailly,

see Karaev [13]). In particular, we do not know:
(i) Is it true that

ber(An) � (ber(A))n (5)

for any operator A ∈ B(H (Ω)) and any integer n > 1?
(ii) Is it true that

(ber(A))n � Cber(An) (6)

for any operator A ∈ B(H (Ω)), n > 1 and for some C = C(n) > 0?
The main goal of this article is to investigate inequality (6). Namely, we partially

solve question (ii) for some special operators acting in RKHS (see Theorem 2 below).

2. Hardy-Hilbert type inequalities and Berezin number of some operators

We start to prove inequalities for some self-adjoint and positive operators on a
RKHS H = H (Ω) , which are similar to the inequalities (3) and (4).

THEOREM 1. Let p > 1 and 1
p + 1

q = 1. Let f ,g be two continuous functions
defined on an interval Δ ⊂ (0,+∞) and f ,g � 0. Then the following are true:

(i)

˜( f g)(A)(λ )+
1
2
g̃(B)(μ) ˜f (A)(λ )+

1
2

f̃ (B)(μ)g̃(A)(λ )+
1
2

˜( f g) (B)(μ)

< pq
[
( f (A)p + f (B)p)

1
p (g(A)q +g(B)q)

1
q

]∼
(λ )

for all self-adjoint operators A,B∈B(H (Ω)) with spectra contained in Δ and for all
μ , λ ∈ Ω .

(ii) (ber( f (A)))2 < 4(pq−1)ber( f (A)2) for any self-adjoint operator A∈B(H (Ω))
with spectrum contained in Δ; in particular, (ber (A))2 < 4(pq−1)ber

(
A2
)
.
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Proof. (i) Let a1 , a2 , b1 , b2 be positive scalars. Then using (3), we have

a1b1 +
a1b2

2
+

a2b1

2
+

a2b2

2
< pq

(
ap

1 +ap
2

) 1
p
(
bq

1 +bq
2

) 1
q . (7)

Let x,y ∈ Δ. By the hypophyses of the theorem f (x) � 0, g(x) � 0 for all x ∈ Δ . If we
put a1 = f (x) , a2 = f (y) , b1 = g(x) , b2 = g(y) in (7), then we have (see also [14])

f (x)g(x)+
1
2

f (x)g(y)+
1
2

f (y)g(x)+
1
2

f (y)g(y)

< pq( f (x)p + f (y)p)
1
p (g(x)q +g(y)q)

1
q (8)

for all x,y ∈ Δ. Let A be self-adjoint operator. Then by using the functional calculus
and inequality (8) we have (for simplicity, we will identify λ I with a scalar λ )

f (A)g(A)+
1
2
g(y) f (A)+

1
2

f (y)g(A)+
1
2

f (y)g(y)

< pq( f (A)p + f (y)p)
1
p (g(A)q +g(y)q)

1
q ,

and therefore 〈
f (A)g(A)k̂H ,λ , k̂H ,λ

〉
+

1
2
g(y)

〈
f (A)k̂H ,λ , k̂H ,λ

〉
+

1
2

f (y)
〈
g(A)k̂H ,λ , k̂H ,λ

〉
+

1
2

f (y)g(y)

< pq
〈
( f (A)p + f (y)p)

1
p (g(A)q +g(y)q)

1
q k̂H ,λ , k̂H ,λ

〉
for all λ ∈ Ω and any y ∈ Δ.

Using the functional calculus once more to the self-adjoint operator B , we get〈
f (A)g(A)k̂H ,λ , k̂H ,λ

〉
+

1
2
g(B)

〈
f (A)k̂H ,λ , k̂H ,λ

〉
+

1
2

f (B)
〈
g(A)k̂H ,λ , k̂H ,λ

〉
+

1
2

f (B)g(B)

< pq
〈
( f (A)p + f (B)p)

1
p (g(A)q +g(B)q)

1
q k̂H ,λ , k̂H ,λ

〉
(9)

Hence, we have from (9) that〈
f (A)g(A)k̂H ,λ , k̂H ,λ

〉
+ 1

2

〈
g(B)k̂H ,μ , k̂H ,μ

〉〈
f (A)k̂H ,μ , k̂H ,μ

〉
+ 1

2

〈
f (B)k̂H ,μ , k̂H ,μ

〉〈
g(A)k̂H ,μ , k̂H ,μ

〉
+ 1

2

〈
f (B)g(B)k̂H ,μ , k̂H ,μ

〉
< pq

〈
( f (A)p + f (B)p)

1
p (g(A)q +g(B)q)

1
q k̂H ,λ , k̂H ,λ

〉
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which means that

˜f (A)g(A)(λ )+
1
2
g̃(B)(μ) f̃ (A)(λ )+

1
2

f̃ (B)(μ)g̃(A)(λ )+
1
2

˜f (B)g(B)(μ)

< pq
[
( f (A)p + f (B)p)

1
p (g(A)q +g(B)q)

1
q

]∼
(λ ) (10)

for all self-adjoint operators A,B ∈ B(H (Ω)) and for all λ ,μ ∈ Ω. This proves (i).
(ii) In particular, for B = A, g = f and μ = λ , we have from inequality (10) that

f̃ (A)2(λ )+
1
2

f̃ (A)2(λ )+
1
2

[
f̃ (A)(λ )

]2
+

1
2

f̃ (A)2(λ )

< pq2
1
p + 1

q f̃ (A)2(λ ) = 2pq f̃ (A)2(λ )

or equivalently [
f̃ (A)(λ )

]2
< 4(pq−1) f̃ (A)2(λ ) (11)

for all λ ∈Ω. Since, pq−1 > 0 and f̃ (A)(λ ) is the real number for all λ ∈ Ω (because

f (A) is self-adjoint), and therefore
[
f̃ (A)(λ )

]2
� 0, ∀λ ∈ Ω, we deduce from (11)

that f̃ (A)2(λ ) � 0 for all λ ∈ Ω. Then we have that

[ f̃ (A)(λ )]2 < 4(pq−1) sup
λ∈Ω

f̃ (A)2(λ ) = 4(pq−1)ber( f (A)2)

for all λ ∈ Ω. This obviously implies that

(ber( f (A)))2 < 4(pq−1)ber( f (A)2);

in particular, for f (x) = x, we have that (ber(A))2 < 4(pq−1)ber(A2), as desired. �

Our next result is the following theorem which partially solves the above raised
question (ii).

THEOREM 2. Let p > 1 and 1
p + 1

q = 1. Let f be a continuous function defined
on an interval �⊂ (0,+∞) and f � 0. Let A : H (Ω)→H (Ω) be a positive operator
on a RKHS H (Ω) with spectrum contained in � . Then there exists a constant C =
C(p,q) > 1 such that

[ber( f (A))]p � Cber( f p(A));

in particular, ber(A)p � Cber(Ap).

Proof. Let a1 , a2 , b1 , b2 be positive numbers. Then using (4), we have that(
a1 +

a2

2

)p
+
(a1

2
+

a2

2

)p
< [pq]p[ap

1 +ap
2 ]. (12)
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Let x,y ∈� . Since f (x) � 0 for all x ∈�, by putting a1 = f (x) , a2 = f (y) in (12),
we have (

f (x)+
f (y)
2

)p

+
(

f (x)
2

+
f (y)
2

)p

< [pq]p[ f p(x)+ f p(y)]. (13)

So, by using the same functional calculus arguments as in the proof of Theorem 1,
finally we get from (13) that[〈

f (A)k̂H ,λ , k̂H ,λ

〉
+

1
2

〈
f (B)k̂H ,μ , k̂H ,μ

〉]p

+
[
1
2

〈
f (A)k̂H ,λ , k̂H ,λ

〉
+

1
2

〈
f (B)k̂H ,μ , k̂H ,μ

〉]p

< [pq]p
[〈

f p(A)k̂H ,λ , k̂H ,λ

〉
+
〈

f p(B)k̂H ,μ , k̂H ,μ

〉]
and hence [

f̃ (A)(λ )+
1
2

f̃ (B)(μ)
]p

+
[
1
2
( f̃ (A)(λ )+ f̃ (B)(μ))

]p

< [pq]p
[
f̃ p(A)(λ )+ f̃ p(B)(μ)

]
(14)

for all positive operator B which spectrum contained in � and all λ ,μ ∈ Ω. Now by
replacing B = A and μ = λ , we have from (14) that[(

3
2

)p

+1

][
f̃ (A)(λ )

]p
< 2[pq]p

[
f̃ p(A)(λ )

]
,

and hence [
f̃ (A)(λ )

]p
< 2

[(
3
2

)p

+1

]−1

[pq]p
[
f̃ p(A)(λ )

]
for all λ ∈ Ω. Since f̃ p(A)(λ ) � 0 for all λ ∈ Ω and for all p > 1, the last inequality
shows that [

f̃ (A)(λ )
]p

< 2

[(
3
2

)p

+1

]−1

[pq]pber( f p(A))

for all λ ∈ Ω and p > 1. This implies that

[ber( f (A))]p � 2

[(
3
2

)p

+1

]−1

[pq]pber( f p(A)),

in particular,

[ber(A)]p � 2

[(
3
2

)p

+1

]−1

[pq]pber(Ap),

and since C = C(p,q) := 2
[( 3

2

)p +1
]−1

[pq]p > 1 for all p,q with 1
p + 1

q = 1, this

proves the theorem. �
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