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Abstract. In this work we obtain a Lyapunov-type inequality for a fractional differential equation
with Caputo-Fabrizio operator subject to Dirichlet-type boundary conditions. As an application,
we obtain a lower bound for the eigenvalues of corresponding equations.

1. Introduction and main results

Lyapunov’s inequality is an outstanding result in mathematics with many appli-
cations – see [1, 2, 3] and references therein. The result, as proved by Lyapunov in
[4], asserts that if q ∈ C ([a,b];R) , then a necessary condition for the boundary value
problem {

u′′(t)+q(t)u(t) = 0, a < t < b,

u(a) = u(b) = 0,
(1.1)

to have a nontrivial solution is given by

b∫
a

|q(s)|ds >
4

b−a
. (1.2)

Looking for a generalization for fractional differential equations, in [5], Ferreira
investigated a Lyapunov-type inequality for the Riemann-Liouville fractional boundary
value problem {

Dα
a u(t)+q(t)u(t) = 0, a < t < b,

u(a) = u(b) = 0,
(1.3)

where Dα
a is the (left) Riemann-Liouville derivative of order α∈(1,2] and q∈C ([a,b];R) .

He proved that, if (1.3) has a nontrivial solution, then

b∫
a

|q(s)|ds > Γ(α)
(

4
b−a

)α−1

. (1.4)
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Very recently, Ma and col. [6] considered the fractional boundary value problem with
Dα

1 Hadamard derivative of order 1 < α � 2{
Dα

1 u(t)−q(t)u(t) = 0, 1 < t < e,

u(1) = u(e) = 0,
(1.5)

and an interesting Lyapunov-type inequality was estabilished

e∫
1

|q(s)|ds > Γ(α)λ α−1 (1−λ )α−1 exp(λ ) (1.6)

where λ = 2α−1−
√

(2α−2)2+1
2 and q ∈C ([1,e];R) .

Moreover, some Lyapunov-type inequalities for fractional boundary value prob-
lems have been obtained in [7, 8, 9, 10, 11, 12, 13].

In this paper we succeeded to generalize inequality (1.2) for the fractional bound-
ary value problem.

Indeed, we stated here below consider the following fractional boundary value
problem {

Dα
a u(t)+q(t)u(t) = 0, a < t < b,

u(a) = u(b) = 0,
(1.7)

where 0 � a < b < ∞ and Dα
a is the Caputo-Fabrizio derivative of order α ∈ (1,2].

The main result of this paper is:

THEOREM 1.1. If the fractional boundary value problem (1.7) has a nontrivial
solution, where q is a real and continuous function in [a,b], then

b∫
a

|q(s)|ds >
4(α −1)(b−a)

((α −1)(b−a)−2+ α)2
. (1.8)

2. Definitions and some properties of Caputo-Fabrizio fractional operator

Recently, Caputo and Fabrizio introduced a new fractional derivative [14]:

Dα
a f (t) =

1
1−α

t∫
a

exp

(
− α

1−α
(t− s)

)
f ′ (s)ds, (2.1)

where the order of the derivative α ∈ (0,1) and f ∈H1(a,b) , −∞ < a < b < +∞. The
interest of this new fractional derivative as justified by Caputo and Fabrizio [14] is due
to the necessity of using it for a model describing the behavior of classical viscoelastic
materials, thermal media, electromagnetic systems, etc.
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In [15], Nieto and Losado have introduced an integral operator corresponding to
the differential operator (2.1) as

I α
a f (t) = (1−α) f (t)+ α

t∫
a

f (s)ds, s � a. (2.2)

Here, we introduce the definition of Caputo-Fabrizio fractional operators of arbitrary
order.

DEFINITION 2.1. Let n− 1 < α < n , n ∈ N and f ∈ Hn(a,b). The Caputo-
Fabrizio fractional derivative of order α is defined by

Dα
a f (t) =

1
n−α

t∫
a

exp

(
−α −n+1

n−α
(t− s)

)
f (n) (s)ds. (2.3)

DEFINITION 2.2. Let α � 0 and f be a real function defined on [a,b]. The
Caputo-Fabrizio fractional integral of order α is defined by

I α
a f (t) = (n−α)I n−1

a f (t)+ (α −n+1)I n
a f (s)ds, s � a. (2.4)

Here I k
a is the Cauchy integral

I k
a f (t) =

1
(k−1)!

t∫
a

(t− s)k−1 f (s)ds

with properties

I k
a f (t) = I k−1

a Ia f (t) = Ia . . .Ia︸ ︷︷ ︸
k

f (t), lim
k→0

I k
a = I, (2.5)

where I is the identify operator I f (t) = f (t).

PROPERTY 2.3. Let α ∈ (n−1,n], it holds

I αDαu(t) = u(t)−
n−1

∑
k=0

(t−a)k

k!
u(k)(a).

Proof. Applying the operator I α to Dαu(t), we obtain

I αDαu(t) = (n−α)I n−1Dαu(t)+ (α −n+1)I nDαu(t)

=
1

(n−2)!

t∫
a

(t− s)n−2

s∫
a

exp

(
−α −n+1

n−α
(s− τ)

)
u(n) (τ)dτds

+
1

(n−1)!
α−n+1
n−α

t∫
a

(t−s)n−1

s∫
a

exp

(
−α−n+1

n−α
(s−τ)

)
u(n) (τ)dτds.
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By (2.5), we have

I αDαu(t) = (n−α)I n−1Dαu(t)+ (α −n+1)I n−1I Dαu(t). (2.6)

We consider I Dαu(t), then by changing the order of integration, we have

I Dαu(t) =
t∫

a

s∫
a

exp

(
−α −n+1

n−α
(s− τ)

)
u(n) (τ)dτds

=
t∫

a

u(n) (τ)
t∫

τ

exp

(
−α −n+1

n−α
(s− τ)

)
dsdτ

= − n−α
α −n+1

t∫
a

u(n) (τ)
[
exp

(
−α −n+1

n−α
(t− τ)

)
−1

]
dτ.

Substituting into (2.6) the last expression we obtain

I αDαu(t) = (n−α)I n−1Dαu(t)+ (α −n+1)I n−1I Dαu(t)

=
1

(n−2)!

t∫
a

(t− s)n−2

s∫
a

exp

(
−α −n+1

n−α
(s− τ)

)
u(n) (τ)dτds

− 1
(n−2)!

t∫
a

(t− s)n−2

s∫
a

[
exp

(
−α −n+1

n−α
(s− τ)

)
−1

]
u(n) (τ)dτds

=
1

(n−2)!

t∫
a

(t− s)n−2

s∫
a

u(n) (τ)dτds = I n−1I u(n)(t) = I nu(n)(t)

= u(t)−
n−1

∑
k=0

(t−a)k

k!
u(k)(a).

The proof is complete. �

3. Proof of main results

LEMMA 3.1. The function u(t) is a solution of the boundary value problem (1.7)
if, and only if, u(t) satisfies the integral equation

u(t) =
b∫

a

G(t,s)q(s)u(s)ds, (3.1)

where

G(t,s) =

{
b−t
b−a ((α −1)(s−a)−2+ α), a � s � x � b,

x−a
b−a ((α −1)(s−a)+2−α), a � x � s � b.
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Proof. By the result in property 2.3, the solution of the Caputo-Fabrizio differen-
tial equation in (1.7) can be written as

u(t) = u(a)+u′(a)(t−a)− (2−α)
t∫

a

q(s)u(s)ds

− (α −1)
t∫

a

(t− s)q(s)u(s)ds, a < t < b.

Using to conditions u(a) = u(b) = 0 in (1.7) we get

u(t) = (2−α)
t−a
b−a

b∫
a

q(s)u(s)ds− (α −1)
t −a
b−a

b∫
a

(t − s)q(s)u(s)ds

−(2−α)
t∫

a

q(s)u(s)ds− (α −1)
t∫

a

(t− s)q(s)u(s)ds, a < t < b. (3.2)

Whereupon

u(t) =
t∫

a

b− t
b−a

((α −1)(s−a)−2+ α)q(s)u(s)ds

+
b∫

t

t−a
b−a

((α −1)(b− s)+2−α)q(s)u(s)ds, a < t < b.

This ends the proof. �

LEMMA 3.2. Let Green function G be defined as in Lemma 3.1, then we have the
estimate

|G(t,s)| � ((α −1)(b−a)−2+ α)2

4(α −1)(b−a)
. (3.3)

Proof. Let
G1(t,s) = G(t,s), a � s � t � b

and
G2(t,s) = G(t,s), a � t � s � b.

For s � t, we observe that

G1(t,s) � b− s
b−a

((α −1)(s−a)−2+ α). (3.4)
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It follows that we only need to get the maximum value of the function

g(s) =
b− s
b−a

((α −1)(s−a)−2+ α).

We have

g′(s) =
1

b−a
((α −1)(b+a−2s)+2−α),

which implies that g′(s) = 0 for s = 1
2

(
b+a+ 2−α

α−1

)
. Since

g′′(s) = −2
α −1
b−a

� 0,

and by (3.4) and discussion above, we can conclude that the maximum value of the
function G2 is obtained at

t = s =
1
2

(
b+a+

2−α
α −1

)
. (3.5)

Similarly, the function G2(t,s) has a maximum value when (3.5) holds. �

Proof of Theorem 1.1. We equip C[a,b] with the Chebyshev norm ‖u‖= sup
t∈[a,b]

|u|.
It follows from Lemma 3.1 that a solution to the fractional boundary value problem (1.7)
satisfies the integral equation (3.1). Hence,

‖u‖ � max
t∈[a,b]

b∫
a

‖u‖|G(t,s)q(s)|ds,

or, equivalently,

1 � max
t∈[a,b]

b∫
a

|G(t,s)q(s)|ds.

Using now to the properties of the Green function G proved in Lemma 3.2, we get

1 � max
t∈[a,b]

b∫
a

|G(t,s)q(s)|ds � ((α −1)(b−a)−2+α)2

4(α −1)(b−a)

b∫
a

|q(s)|ds,

from which the inequality (2.1) follows. �

REMARK 3.3. Note that if we set α = 2 in (2.1), we obtain Lyapunov’s classical
inequality (1.2).
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COROLLARY 3.4. Let λ ∈ R be an eigenvalue of the problem{
Dα

a u(t)+ λu(t) = 0, a < t < b,

u(a) = u(b) = 0.
(3.6)

Then |λ | > 4(α−1)(b−a)
((α−1)(b−a)−2+α)2

.

COROLLARY 3.5. If

|λ | � 4(α −1)(b−a)

((α −1)(b−a)−2+α)2
,

then the system of eigenfunctions of eigenvalue problem (3.6) has no real zeros.
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