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GENERALIZED REVERSE CAUCHY INEQUALITY
AND APPLICATIONS TO OPERATOR MEANS

HIROYUKI OSAKA, YUKIHIRO TSURUMI AND SHUHEI WADA

(Communicated by J. Mic¢i¢ Hot)

Abstract. Let ¢ be an operator mean in the sense of Kubo-Ando and let V, be a weighted arith-
metric mean. If Tr(AcB) > Tr(AV 4B — max{o,1 — ot}|A — B|) holds for all positive semidefi-
nite matrices A, B, then there exists 3 € [0,1] such that o = V.

1. Introduction

It is well-known as Young inequality that for 0 < v <1 and a,b >0,

a+b—la—Db|

va+(1-v)b=a"b'"" > 3

. 1l “la—b| - .
When v = 1, the inequality a2b2 > M is called the reverse Cauchy in-

equality. A natural matrix form of the reverse Cauchy inequality could be written as

AT(A"EBAT1)IAT > A—;B - ‘A;B‘,

where A,B are positive semidefinite matrices. Furuichi, however, pointed out in [2]
that the trace inequality Tr(A% (A’%BA’% ) %A%) > 1 Tr(A+B—|A—B)) is not true in
general. Recall that AfB = A2 (A_%BA_%)%A% is the geometric mean and AVyB =
(1—a)A+oaB (0 < a < 1) is the a-weighted arithmetric mean of A and B, respec-
tively.

Very recently, in [7], Hoa, Khue and the first author show that the inequality

1
AGB > AVB— 5 |A—B| (1)

holds for any operator mean ¢ and positive semidefinite matrices A and B with AB+
BA > 0. Later Hoa [6] shows that if ¢ is symmetric, that the inequality (1) holds for
any positive semidefinite matrices A and B implies that 0 = V. (See Remark 15.)
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Motivatied by this, we study a characterization of operator means ¢ which satisfy
a generalized reverse Cauchy inequality (1).
Our main result is the following: For a € [0, 1],
{0 |AoB > AVyB —max{o,1 — o }|A— B|forall A,B > 0}
={0 | Tr(AoB) > Tr(AV4B — max{co,1 — a}|A —B|) forall A,B > 0}
={Vg|0<B <1}

We next introduce an operator inequality for an operator mean ¢ such that for all
positive semidefinite matrices A and B,

01(A)o¢1(B) = ¢1(AVyB) — ¢a2(|A - BY), (%)

where ¢; and ¢, are nonnegative continuous functions on [0,c0) with ¢;(0) =0 and
¢1(1) =1 and ¢,(0) =0 and lim, o ¢>(¢)/t = 0, and we show the characterization of
o tohold that 6 = V,,.

The paper is organized as follows. In section 2 we show our main theorem stated
above. In section 3 some of equivalent conditions are provided for a given operator
mean o to be a weighted operator mean V. In section 4 we investigate the gen-
eralized Cauchy inequality and we point out a counterexample for the inequality (*)

1\2
when ¢, (1) =12, $p(t) = <§t> , and some positive definite matrices A and B with
AB+BA > 0.

2. Weighted Cauchy reverse inequality

THEOREM 1. Let ¢ be an operator mean in the sense of Kubo-Ando. Then the
following are equivalent:

1. There exists B € [0, 1] such that 6 =Vg;

2. AoB > AVyB—max{a,1— a}|A— B| holds for all positive semi-definite matri-
ces A,B;

3. Tr(AoB) > Tr(AV B —max{ o, 1 — o }|A— B|) holds for all positive semi-definite
matrices A,B.

We need the following result in proving Theorem 1.

PROPOSITION 2. Let o € [0,1] and let op = max{a,1—o}. If for positive semi-
definite matrices A,B, AV 4B > 0y|A — B|, then

AGB > AV B — oA — B|

holds for any operator mean o .
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Proof. Note that

A=(1-—a)A+oB+o(A—B)
> AV4B — o)A —B|
>AVaB_O‘O|A_B|

and
B=(1—-a)A+aB—(1—0a)(A—B)
>AVyB—(1—a)|A—B|
> AVyB— oylA—B|.
Thus

AGB > (AV B — ap|A — B|)6(AV (B — ap|A — BY)
=AVyB—oplA—B|. O

COROLLARY 3. [7] Let A and B be positive semi-definite matrices such that
AB+BA > 0. Then

1
AGB > AVB — -|A~B|

holds for all operator means ©.

Proof. In Proposition 2, take o = % . Since AB+ BA > 0, we have

Nl—

A+B _ (A’+B’+(AB+BA))
=

2
1
_ (A48~ (AB+BA))®
- 2

_ |[A—B|
=

O

LEMMA 4. Let o € [0,1] and o = max{c,1 — a}, and let © be an operator
mean. If the following inequality

Tr(AV 4B — a|A — B|) < Tr(AGB)

holds for every positive semi-definite matrices A and B, then 6 = Vg for some Be
[0,1].

Proof. Let P, Q be orthogonal projections on a Hilbert space H with PAQ =0,
where P A Q is the orthogonal projection on PH N QH . From the assumption, we have

Tr(PVaQ — aolP - Qf) < Tr(PoQ). 2
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lo
Furthermore, P ¢ Q = aP + bQ [1], where a = inflox, b = lim —x. Choose

X—oo X

two orthogonal projections

10 cos?0 cosHsinO T
P:= [00]’ Q:= Los@sin@ sin 0 } <O<0<§)

in the realization of the 2 x 2 matrix algebra in the set B(H) of all bounded operators
on H. Then PAQ =0,

([0 =)+ acos? 6 ocosOsin 6
PVQQ_([ ocos Osin 0 asin® @

and
sin@ 0
P_Q_[ 0 sine}'

Letting 8 — 0" from (2), we get

. . a+bcos? O bcosOsinb
— — <
el)lgz){Tr(P Va 0—00lP =0} < gg})“([bcos@sin@ bsin? 0 ])

ool )= (17 87 5] ool <= (['9"6])

Then, we have

or

1<a+b. (3)

Furthermore, since 10t is an operator monotone function, there is a positive
Radon measure g on [0,ec] such that

du(x).

1
16t=a—|—bt+/ (et Ly
(00) X+1

Therefore,

l6l=a+b+ ( )du(t): 1,
0,00

hence u =0 by (3). We have then
lot=a-+bt, 1 =a+b.
Thus 6 = Vg forsome 8 € [0,1]. O

Proof of Theorem 1. 1 = 2: Put o := max{c, 1 — a}. From the proof of Propo-
sition 2, we have
A>AVyB— op|A—B|

and
B> AVyB— 0p|A —B|.
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Then

AGB=AVyB
= (1-B)A+BB
> (1—B)(AVeB — 0oo|A — B|) + B(AVeB — ao|A - B|)
= AVB — 0p|A — B|.

2 = 3: Immediate.
3= 1: From Lemm 4, the operator mean ¢ should be Vg forsome € [0,1]. [

3. Characterization of weighted arithmetric means

PROPOSITION 5. Let ¢; be a nonnegative continuous function on [0,0) such
that ¢1(0) =0, ¢1(1) =1 and ¢1(t) has non-zero derivative at t = 1. Let ¢ be a
nonnegative continuous function on [0,e0) such that ¢,(0) =0 and lim,|o ¢>(t)/t = 0.
If o is an operator mean satisfying

$1(A)0¢1(B) = ¢1(AV,B) — ¢ (|A — BY) 4)

for AJB>0, then 6 =V,.

LEMMA 6. Let ¢ be a nonnegative continuous function on [0,e) which has non-
zero derivative at 1and let @ be a continuous function on [0,e) X [0,e0) such that
t — y(Ll,t) has derivative at t = 1. Let ¢ be an operator mean satisfying

¢(x)od(y) = wix,y)

Sforall scalars x,y > 0 and the equality hold when (x,y) = (1,1). Then % (lot) |t=1 ‘fl—‘f |t=1

= %W(l’t)’tzl'
Proof. Tt is enough to assume ¢(1) = w(1,1) = 1. By assumption, the inequality

160(1) ~166(1) _ w(l.0)—~ (L)
t—1 - t—1

holds for all # > 1, which implies that

. log(t)—1o¢(1) _d do d
lim —————— = —(1 —| ==y,
tlﬁl r—1 dt( o) =1dt lr=1" dt v I)L*l
We also obtain
. log(t)—1o¢(1) d do d
lim ——————— = —(1 <y . O
tlTI? r—1 dt( o) =1dt lr=1 ~ dt v t)}ffl
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Proof of Proposition 5. As in the proof of Lemma 4 we have
lot=a-+bt, 1 =a+b.

Moreover, for A = xIy and B = yly (x,y > 0), the inequality (4) in Proposition 5
becomes

01(x)01(y) = ¢1(xVay) — ¢ (Jx —y]).

Put yw(x,y) = ¢1(xV,y) — ¢2(]x—y|). Then the functions ¢; and y satisfy the
condtions in Lemma 6. Indeed, it follows from the following equation:

)~ 1 _ 61V, ~a(|1—t) 1

i—1 —1
(V-1 (1]
r—1 r—1
Thus 4 a6 4 a6
1 1
o0l 5 e = vl =275

which implies 4(1o7)|_, =A and 6 =V,. O
The following are immediate.

COROLLARY 7. Let r > 1, A €[0,1], and let ¢ be a nonnegative continuous
Sunction on [0,e) such that $(0) =0, ¢(1) =1 and ¢(t) has non-zero derivative at
t = 1. Assume that ¢!, (0) exists. If

$(A)o9(B) > ¢(AVyB) — ¢ (|A—B[)

for AJ/B>0, then 6 =V,.

COROLLARY 8. Let r>0, A €[0,1] and ¢ be a nonnegative continuous function
on [0,00) such that $(0) =0, ¢(1) =1 and ¢(t) has non-zero derivative at t = 1.
Assume ¢!, (0)=0. If

¢(A)o9(B) > ¢(AVyB) — ¢ (r|A - B|)

for AJB>0, then 6 =V,.

Proof. Put ¢; = ¢ and ¢,(1) = ¢(rt). The functions ¢; and ¢, satisfy the condi-
tions in Proposition 5, since ¢,(0) =0 and lim, o ¢»(¢)/t = r¢/ (0)=0. O

THEOREM 9. Let r> 1, A € [0,1], and © be an operator mean. Suppose that ¢
is nonnegative operator convex with with ¢(0) =0 and ¢(1) =1, and (Z)jr(O) exists.
Then the following are equivalent:

1. G:V)L,‘
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2. 9(A)od(B) = ¢(AV,B)— ¢ (|A—B]|") for A,B>0.
Proof. It follows from Corollary 7. [J
From the above, we can see that if » > 1 and o # V, then the inequality
AcoB > AV,;B—|A—B|
does not hold for some A,B > 0.

THEOREM 10. Let r >0, A €(0,1], and 6 be operator mean. Suppose that ¢
is nonnegative operator convex with with ¢(0) =0 and ¢(1) = 1. Assume ¢/ (0) =0.
Then the following are equivalent:

1. o= V}L N
2. 9(A)oo(B) = ¢(AVyB) — ¢ (r|A—B|) for A,B>0.

Proof. 1t follows from Corollary 8. [l

We have the following theorem if r = % in Theorem 10.

THEOREM 11. Let A € [0,1] and 6 be operator mean. Suppose that ¢ is non-
negative operator convex with with ¢(0) =0, ¢(1) =1, and ¢/ (0) = 0. Then the
following are equivalent:

1. GZVA;

2. 9(A)00(B) > 9(aV,B) — ¢ (252) for A, > 0.

4. Generalized Cauchy reverse inequality
From the proof of Proposition 5 we have the following observation.

PROPOSITION 12. Let A € [0,1] and & be an operator mean. If
[A— B

2
for every A,B >0, then there exists 3 € [0,1] such that 6 = Vyg.

AocB > AV}LB —

Using this observation we have the following characterization.

PROPOSITION 13. Let A €[0,1] and OM". be the set of all operator means. Then
we have

A-B
{onMi |A,B>O—>AGB>AV;LB—‘ 5 |}

1 1
— ——0Y< B <min! = .
{Vﬁmax{k 270}\ﬁ\mln{2+/l7l}}
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Proof. Let o € {0 € OML|A,B>0—A0B>AV; B~ U521 Then there ex-
ists B € [0,1] such that 6 = Vg by Proposition 12.
Forany A,B > 0,

(1—B>A+BB>(1—A)A+13_@

@(/I—B)A+(B—/I)B>—‘A;—B‘
@(A—ﬁ)(A—B»—@.

Set A =a and B = b for any positive number a,b. Then (A — fB)(a —b) >
_lat, Ifa>b then (A — B)(a— b) > —4L, and B < x+2 If a < b, then
(A=B)a—b) > , and /l— 1 <PB.Hence A — % < B <A+ 3. This implies that
o€ {Vg | max{A — 2,O} m1n{2—|—7L,1}}.
Conversely, when 8 € [0, 1] and 4 — % <B<KA —|—%,f0r any A,B >0,
AVgB—AV;B=(A—-B)A+(B—A)B
=~ B)A-B)

> I\A B|
= 2 b

because that (8 —A)(A—B) < |B —A||A—B| < 1|A — B|. Hence we have the conclu-
sion. [

COROLLARY 14.

A+B |A-B
{GEOM#A,B}OeAGB}L—| |}:{Vﬁ|0<[3<1}.

2 2

REMARK 15.
1. When o is symmetry, we know that

A+B |A-B|
2

=)

{G:G’EOM}F|A,B>O—>AGB>

by [6].

2. When the correspondent operator monotone fy satisfies that f5(0) =0, 0 =
V. Indeed, since 0 = f5(0) = inf, fo(x) = a in the condition of the proof of
Proposition 5, we have 8 = 1, thatis, 0 = V.

In the rest of this section we present the sufficient condition for the inequality (4)
in Proposition 5 to hold.



OPERATOR MEANS 1037

DEFINITION 16. Let H and K be Hilbert spaces and B(H)™ (resp. B(K)") be
the set of all bounded positive linear operators on H (resp. on K). Amap ®: B(H)" —
B(H)™ is called a positive order preserving map if ®(A) > ®(B) for A,B € B(H)" with
AZ>2B.

THEOREM 17. Let f be a positive operator monotone function on [0,00) with
F((0,00)) C (0,00) and f(1) =1 and let a € [0,1] and op = max{a,l —o}. Let ®
be a positive order preserving and strong-topology continuous map on B(H). Then for
any positive invertible operators A and B in B(H) with AB+ BA >0,

D(A)o,;D(B) > B(AV,B — oplA — B)).

Proof. As in the proof of Proposition 2 we have

B(A) > B(AV,B — /A — B])

and
®(B) > ®(AVyB— op|A — B)).
Thus
D(4)0D(B) > (B(AVB — 0|A — B|)) o (®(AVB — 0|4 — B)))
= ®(AV4B—aplA—B|). O
REMARK 18.

1. Tt is obvious that a positive linear map on B(H) is positive order preserving.

2. Let f be a strictly positive operator monotone function on (0,e0). Define ®; on
B(H)* by ®f(A) = f(A). Then ®y is positive order preserving.

Related to Theorem 17, we recall Corollary 8 as followings.

PROPOSITION 19. Let r>0, A €(0,1] and ¢ be a nonnegative continuous func-
tion on [0,00) such that $(0) =0, ¢(1) =1 and ¢(t) has non-zero derivative at t = 1.
Assume ¢!, (0)=0. If

¢(A)od(B) > ¢(AV,B) — ¢ (r|A—B|)
for AJB>0, then 6 =V,.

Note that when 0 < r < 1 and ¢(r) =2, the inequality ¢(v/ab) > ¢(%t2) —
¢ (rla—b|) does not hold. Consider a = 1 and b = 0. Therefore, we may consider the
case that r = % .

Compared with Theorem 17 and Proposition 19 the following is the natural ques-

tion:
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PROBLEM 20. Let f be an operator monotone with f((0,e)) C (0,0) and f(1) =
1. For ¢(¢) =12, is it true that for any A,B € B(H)" with AB+ BA >0,

04110 (8) > 6(aVE)~ ¢ (1A~ B): ()

LEMMA 21.

1. If f(t) = \/t, the inequality (%) holds when A= a, B="b for any a,b € (0,).

2. If f(t) = t* for a € (0,1)\{3}, the inequality (x) does not hold for some
nonnegative real number A =a, B=0D0.

From Lemma 21, we may consider Problem 20 when f(¢) = \/t. However, we
have a counterexample as follows.

PROPOSITION 22. There are positive definite matrices A and B such that AB +
BA is nonnegative, and

Tro(a)50(8)) <Tr (0(aVE) ¢ (514-5]) ).

10 11 23 Lo
Proof. Let A = 0 2) and B = (1 2). Then AB+ BA = <3 8)’ which is
positive definite. Then we have

0(A)10(B) =A(A"'B2A™1)2A
()
=34(52)4

- % <2ab ilc’) )

where a?+b*> =8, ab+bc =6, and b*>+c? =5. Hence, we have a =

=

\o}

V17
7
and ¢ = ——. Then
V17

2 xTr(¢p(A)4¢(B)) = a+4c
38
V17

< 10.
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On the contrary,

2><Tr<¢(AVB)—¢ <%|A—B|>) :2><Tr<%(AB+BA))

() -

Hence,

[1]
[2]

Toa)z0(8) <o (0av8) o (3a-51)). O
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