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GENERALIZED REVERSE CAUCHY INEQUALITY

AND APPLICATIONS TO OPERATOR MEANS

HIROYUKI OSAKA, YUKIHIRO TSURUMI AND SHUHEI WADA

(Communicated by J. Mićić Hot)

Abstract. Let σ be an operator mean in the sense of Kubo-Ando and let ∇α be a weighted arith-
metric mean. If Tr(AσB) � Tr(A∇α B−max{α ,1−α}|A−B|) holds for all positive semidefi-
nite matrices A,B , then there exists β ∈ [0,1] such that σ = ∇β .

1. Introduction

It is well-known as Young inequality that for 0 � ν � 1 and a,b � 0,

νa+(1−ν)b � aνb1−ν � a+b−|a−b|
2

.

When ν = 1
2 , the inequality a

1
2 b

1
2 � a+b−|a−b|

2 is called the reverse Cauchy in-
equality. A natural matrix form of the reverse Cauchy inequality could be written as

A
1
2 (A− 1

2 BA− 1
2 )

1
2 A

1
2 � A+B

2
− |A−B|

2
,

where A,B are positive semidefinite matrices. Furuichi, however, pointed out in [2]
that the trace inequality Tr(A

1
2 (A− 1

2 BA− 1
2 )

1
2 A

1
2 ) � 1

2 Tr(A+B−|A−B|) is not true in

general. Recall that A�B = A
1
2 (A− 1

2 BA− 1
2 )

1
2 A

1
2 is the geometric mean and A∇αB =

(1−α)A+ αB (0 � α � 1) is the α -weighted arithmetric mean of A and B , respec-
tively.

Very recently, in [7], Hoa, Khue and the first author show that the inequality

AσB � A∇B− 1
2
|A−B| (1)

holds for any operator mean σ and positive semidefinite matrices A and B with AB+
BA � 0. Later Hoa [6] shows that if σ is symmetric, that the inequality (1) holds for
any positive semidefinite matrices A and B implies that σ = ∇ . (See Remark 15.)
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Motivatied by this, we study a characterization of operator means σ which satisfy
a generalized reverse Cauchy inequality (1).

Our main result is the following: For α ∈ [0,1] ,

{σ | AσB � A∇αB−max{α,1−α}|A−B| for all A,B � 0}
= {σ | Tr(AσB) � Tr(A∇αB−max{α,1−α}|A−B|) for all A,B � 0}
= {∇β | 0 � β � 1}.

We next introduce an operator inequality for an operator mean σ such that for all
positive semidefinite matrices A and B ,

φ1(A)σφ1(B) � φ1(A∇νB)−φ2(|A−B|), (�)

where φ1 and φ2 are nonnegative continuous functions on [0,∞) with φ1(0) = 0 and
φ1(1) = 1 and φ2(0) = 0 and limt↓0 φ2(t)/t = 0, and we show the characterization of
σ to hold that σ = ∇ν .

The paper is organized as follows. In section 2 we show our main theorem stated
above. In section 3 some of equivalent conditions are provided for a given operator
mean σ to be a weighted operator mean ∇ν . In section 4 we investigate the gen-
eralized Cauchy inequality and we point out a counterexample for the inequality (�)

when φ1(t) = t2 , φ2(t) =
(

1
2
t

)2

, and some positive definite matrices A and B with

AB+BA � 0.

2. Weighted Cauchy reverse inequality

THEOREM 1. Let σ be an operator mean in the sense of Kubo-Ando. Then the
following are equivalent:

1. There exists β ∈ [0,1] such that σ = ∇β ;

2. AσB � A∇αB−max{α,1−α}|A−B| holds for all positive semi-definite matri-
ces A,B;

3. Tr(AσB)� Tr(A∇αB−max{α,1−α}|A−B|) holds for all positive semi-definite
matrices A,B.

We need the following result in proving Theorem 1.

PROPOSITION 2. Let α ∈ [0,1] and let α0 = max{α,1−α} . If for positive semi-
definite matrices A,B, A∇αB � α0|A−B| , then

AσB � A∇αB−α0|A−B|

holds for any operator mean σ .
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Proof. Note that

A = (1−α)A+ αB+ α(A−B)
� A∇αB−α|A−B|
� A∇αB−α0|A−B|

and

B = (1−α)A+ αB− (1−α)(A−B)
� A∇αB− (1−α)|A−B|
� A∇αB−α0|A−B|.

Thus

AσB � (A∇αB−α0|A−B|)σ(A∇αB−α0|A−B|)
= A∇αB−α0|A−B|. �

COROLLARY 3. [7] Let A and B be positive semi-definite matrices such that
AB+BA � 0 . Then

AσB � A∇B− 1
2
|A−B|

holds for all operator means σ .

Proof. In Proposition 2, take α = 1
2 . Since AB+BA � 0, we have

A+B
2

=

(
A2 +B2 +(AB+BA)

)1
2

2

�
(
A2 +B2− (AB+BA)

)1
2

2

=
|A−B|

2
. �

LEMMA 4. Let α ∈ [0,1] and α0 = max{α,1−α} , and let σ be an operator
mean. If the following inequality

Tr(A∇αB−α0|A−B|) � Tr(AσB)

holds for every positive semi-definite matrices A and B, then σ = ∇β for some β ∈
[0,1] .

Proof. Let P , Q be orthogonal projections on a Hilbert space H with P∧Q = 0,
where P∧Q is the orthogonal projection on PH ∩QH . From the assumption, we have

Tr(P∇αQ−α0|P−Q|) � Tr(PσQ). (2)
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Furthermore, P σ Q = aP+ bQ [1], where a = inf
x

1σx, b = lim
x→∞

1σx
x

. Choose

two orthogonal projections

P :=
[
1 0
0 0

]
, Q :=

[
cos2 θ cosθ sinθ

cosθ sinθ sin2 θ

] (
0 < θ <

π
2

)

in the realization of the 2×2 matrix algebra in the set B(H) of all bounded operators
on H . Then P∧Q = 0,

P ∇α Q =
([

(1−α)+ α cos2 θ α cosθ sinθ
α cosθ sinθ α sin2 θ

])

and

|P−Q| =
[
sinθ 0

0 sinθ

]
.

Letting θ → 0+ from (2), we get

lim
θ→0

{Tr(P ∇α Q−α0|P−Q|)} � lim
θ→0

Tr

([
a+bcos2 θ bcosθ sinθ
bcosθ sinθ bsin2 θ

])

or

Tr

([
1 0
0 0

])
= Tr

([
(1−α)+ α 0

0 0

]
−

[
0 0
0 0

])
� Tr

([
a+b 0

0 0

])
.

Then, we have
1 � a+b. (3)

Furthermore, since 1σ t is an operator monotone function, there is a positive
Radon measure μ on [0,∞] such that

1σ t = a+bt +
∫

(0,∞)

(x+1)t
x+ t

dμ(x).

Therefore,

1σ1 = a+b+
∫
(0,∞)

dμ(t) = 1,

hence μ = 0 by (3). We have then

1σ t = a+bt, 1 = a+b.

Thus σ = ∇β for some β ∈ [0,1] . �

Proof of Theorem 1. 1 ⇒ 2: Put α0 := max{α,1−α} . From the proof of Propo-
sition 2, we have

A � A∇αB−α0|A−B|
and

B � A∇αB−α0|A−B|.
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Then

AσB = A∇β B

= (1−β )A+ βB

� (1−β )(A∇αB−α0|A−B|)+ β (A∇αB−α0|A−B|)
= A∇αB−α0|A−B|.

2 ⇒ 3: Immediate.
3⇒ 1: From Lemm 4, the operatormean σ should be ∇β for some β ∈ [0,1] . �

3. Characterization of weighted arithmetric means

PROPOSITION 5. Let φ1 be a nonnegative continuous function on [0,∞) such
that φ1(0) = 0 , φ1(1) = 1 and φ1(t) has non-zero derivative at t = 1 . Let φ2 be a
nonnegative continuous function on [0,∞) such that φ2(0) = 0 and limt↓0 φ2(t)/t = 0 .
If σ is an operator mean satisfying

φ1(A)σφ1(B) � φ1(A∇λ B)−φ2 (|A−B|) (4)

for A,B � 0 , then σ = ∇λ .

LEMMA 6. Let φ be a nonnegative continuous function on [0,∞) which has non-
zero derivative at 1and let ψ be a continuous function on [0,∞)× [0,∞) such that
t �→ ψ(1, t) has derivative at t = 1 . Let σ be an operator mean satisfying

φ(x)σφ(y) � ψ(x,y)

for all scalars x,y � 0 and the equality hold when (x,y)= (1,1) . Then d
dt (1σ t)

∣∣
t=1

dφ
dt

∣∣
t=1

= d
dt ψ(1, t)

∣∣
t=1 .

Proof. It is enough to assume φ(1) = ψ(1,1) = 1. By assumption, the inequality

1σφ(t)−1σφ(1)
t −1

� ψ(1,t)−ψ(1,1)
t−1

holds for all t > 1, which implies that

lim
t↓1

1σφ(t)−1σφ(1)
t −1

=
d
dt

(1σ t)
∣∣∣
t=1

dφ
dt

∣∣∣
t=1

� d
dt

ψ(1,t)
∣∣
t=1.

We also obtain

lim
t↑1

1σφ(t)−1σφ(1)
t −1

=
d
dt

(1σ t)
∣∣∣
t=1

dφ
dt

∣∣∣
t=1

� d
dt

ψ(1, t)
∣∣
t=1. �
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Proof of Proposition 5. As in the proof of Lemma 4 we have

1σ t = a+bt, 1 = a+b.

Moreover, for A = xIH and B = yIH (x,y � 0) , the inequality (4) in Proposition 5
becomes

φ1(x)σφ1(y) � φ1(x∇λ y)−φ2 (|x− y|) .
Put ψ(x,y) = φ1(x∇λ y)− φ2 (|x− y|) . Then the functions φ1 and ψ satisfy the

condtions in Lemma 6. Indeed, it follows from the following equation:

ψ(t,1)−1
t−1

=
φ1(1∇λ t)−φ2(|1− t|)−1

t−1

=
φ1(1∇λ t)−1

t−1
− φ2(|1− t|)

t−1
.

Thus
d
dt

(1σ t)
∣∣
t=1

dφ1

dt

∣∣
t=1 =

d
dt

ψ(1,t)
∣∣
t=1 = λ

dφ1

dt

∣∣
t=1,

which implies d
dt (1σ t)

∣∣
t=1 = λ and σ = ∇λ . �

The following are immediate.

COROLLARY 7. Let r > 1 , λ ∈ [0,1] , and let φ be a nonnegative continuous
function on [0,∞) such that φ(0) = 0 , φ(1) = 1 and φ(t) has non-zero derivative at
t = 1 . Assume that φ ′

+(0) exists. If

φ(A)σφ(B) � φ(A∇λ B)−φ (|A−B|r)

for A,B � 0 , then σ = ∇λ .

COROLLARY 8. Let r > 0 , λ ∈ [0,1] and φ be a nonnegative continuous function
on [0,∞) such that φ(0) = 0 , φ(1) = 1 and φ(t) has non-zero derivative at t = 1 .
Assume φ ′

+(0) = 0 . If

φ(A)σφ(B) � φ(A∇λ B)−φ (r|A−B|)

for A,B � 0 , then σ = ∇λ .

Proof. Put φ1 = φ and φ2(t) = φ(rt) . The functions φ1 and φ2 satisfy the condi-
tions in Proposition 5, since φ2(0) = 0 and limt↓0 φ2(t)/t = rφ ′

+(0) = 0. �

THEOREM 9. Let r > 1 , λ ∈ [0,1] , and σ be an operator mean. Suppose that φ
is nonnegative operator convex with with φ(0) = 0 and φ(1) = 1 , and φ ′

+(0) exists.
Then the following are equivalent:

1. σ = ∇λ ;
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2. φ(A)σφ(B) � φ(A∇λ B)−φ (|A−B|r) for A,B � 0 .

Proof. It follows from Corollary 7. �
From the above, we can see that if r > 1 and σ �= ∇λ , then the inequality

AσB � A∇λ B−|A−B|r

does not hold for some A,B � 0.

THEOREM 10. Let r > 0 , λ ∈ [0,1] , and σ be operator mean. Suppose that φ
is nonnegative operator convex with with φ(0) = 0 and φ(1) = 1 . Assume φ ′

+(0) = 0 .
Then the following are equivalent:

1. σ = ∇λ ;

2. φ(A)σφ(B) � φ(A∇λ B)−φ (r|A−B|) for A,B � 0 .

Proof. It follows from Corollary 8. �
We have the following theorem if r = 1

2 in Theorem 10.

THEOREM 11. Let λ ∈ [0,1] and σ be operator mean. Suppose that φ is non-
negative operator convex with with φ(0) = 0 , φ(1) = 1 , and φ ′

+(0) = 0 . Then the
following are equivalent:

1. σ = ∇λ ;

2. φ(A)σφ(B) � φ(A∇λ B)−φ
( |A−B|

2

)
for A,B � 0 .

4. Generalized Cauchy reverse inequality

From the proof of Proposition 5 we have the following observation.

PROPOSITION 12. Let λ ∈ [0,1] and σ be an operator mean. If

AσB � A∇λ B− |A−B|
2

for every A,B � 0 , then there exists β ∈ [0,1] such that σ = ∇β .

Using this observation we have the following characterization.

PROPOSITION 13. Let λ ∈ [0,1] and OM1
+ be the set of all operator means. Then

we have {
σ ∈ OM1

+ | A,B � 0 → AσB � A∇λ B− |A−B|
2

}

=
{

∇β | max

{
λ − 1

2
,0

}
� β � min

{
1
2

+ λ ,1

}}
.
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Proof. Let σ ∈
{

σ ∈ OM1
+ | A,B � 0 → AσB � A∇λ B− |A−B|

2

}
. Then there ex-

ists β ∈ [0,1] such that σ = ∇β by Proposition 12.
For any A,B � 0,

(1−β )A+ βB � (1−λ )A+ λB− |A−B|
2

⇔ (λ −β )A+(β −λ )B � −|A−B|
2

⇔ (λ −β )(A−B) � −|A−B|
2

.

Set A = a and B = b for any positive number a,b . Then (λ − β )(a− b) �
−|a−b|

2 . If a > b , then (λ − β )(a− b) � − a−b
2 , and β � λ + 1

2 . If a < b , then
(λ −β )(a−b) � a−b

2 , and λ − 1
2 � β . Hence λ − 1

2 � β � λ + 1
2 . This implies that

σ ∈ {
∇β | max{λ − 1

2 ,0} � β � min{ 1
2 + λ ,1}} .

Conversely, when β ∈ [0,1] and λ − 1
2 � β � λ + 1

2 , for any A,B � 0,

A∇β B−A∇λB = (λ −β )A+(β −λ )B

= (λ −β )(A−B)

� −1
2
|A−B|,

because that (β −λ )(A−B) � |β −λ ||A−B|� 1
2 |A−B| . Hence we have the conclu-

sion. �

COROLLARY 14.
{

σ ∈ OM1
+ | A,B � 0 → AσB � A+B

2
− |A−B|

2

}
=

{
∇β | 0 � β � 1

}
.

REMARK 15.

1. When σ is symmetry, we know that

{
σ = σ ′ ∈ OM1

+ | A,B � 0 → AσB � A+B
2

− |A−B|
2

}
= {∇}

by [6].

2. When the correspondent operator monotone fσ satisfies that fσ (0) = 0, σ =
∇ . Indeed, since 0 = fσ (0) = infx fσ (x) = a in the condition of the proof of
Proposition 5, we have β = 1, that is, σ = ∇1 .

In the rest of this section we present the sufficient condition for the inequality (4)
in Proposition 5 to hold.
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DEFINITION 16. Let H and K be Hilbert spaces and B(H)+ (resp. B(K)+ ) be
the set of all bounded positive linear operators on H (resp. on K ). A map Φ : B(H)+ →
B(H)+ is called a positive order preservingmap if Φ(A)� Φ(B) for A,B∈B(H)+ with
A � B .

THEOREM 17. Let f be a positive operator monotone function on [0,∞) with
f ((0,∞)) ⊂ (0,∞) and f (1) = 1 and let α ∈ [0,1] and α0 = max{α,1−α} . Let Φ
be a positive order preserving and strong-topology continuous map on B(H) . Then for
any positive invertible operators A and B in B(H) with AB+BA � 0 ,

Φ(A)σ f Φ(B) � Φ(A∇αB−α0|A−B|).

Proof. As in the proof of Proposition 2 we have

Φ(A) � Φ(A∇αB−α0|A−B|)

and

Φ(B) � Φ(A∇αB−α0|A−B|).

Thus

Φ(A)σΦ(B) � (Φ(A∇αB−α0|A−B|))σ(Φ(A∇αB−α0|A−B|))
= Φ(A∇αB−α0|A−B|). �

REMARK 18.

1. It is obvious that a positive linear map on B(H) is positive order preserving.

2. Let f be a strictly positive operator monotone function on (0,∞) . Define Φ f on
B(H)+ by Φ f (A) = f (A) . Then Φ f is positive order preserving.

Related to Theorem 17, we recall Corollary 8 as followings.

PROPOSITION 19. Let r > 0 , λ ∈ [0,1] and φ be a nonnegative continuous func-
tion on [0,∞) such that φ(0) = 0 , φ(1) = 1 and φ(t) has non-zero derivative at t = 1 .
Assume φ ′

+(0) = 0 . If

φ(A)σφ(B) � φ(A∇λ B)−φ (r|A−B|)

for A,B � 0 , then σ = ∇λ .

Note that when 0 � r < 1
2 and φ(t) = t2 , the inequality φ(

√
ab) � φ( a+b

2 )−
φ(r|a−b|) does not hold. Consider a = 1 and b = 0. Therefore, we may consider the
case that r = 1

2 .
Compared with Theorem 17 and Proposition 19 the following is the natural ques-

tion:
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PROBLEM 20. Let f be an operator monotonewith f ((0,∞))⊂ (0,∞) and f (1)=
1. For φ(t) = t2 , is it true that for any A,B ∈ B(H)+ with AB+BA � 0,

φ(A)σ f φ(B) � φ(A∇B)−φ
(

1
2
|A−B|

)
? (��)

LEMMA 21.

1. If f (t) =
√

t , the inequality (��) holds when A = a, B = b for any a,b∈ (0,∞) .

2. If f (t) = tα for α ∈ (0,1)\{ 1
2} , the inequality (��) does not hold for some

nonnegative real number A = a, B = b.

From Lemma 21, we may consider Problem 20 when f (t) =
√

t . However, we
have a counterexample as follows.

PROPOSITION 22. There are positive definite matrices A and B such that AB+
BA is nonnegative, and

Tr(φ(A)�φ(B)) < Tr

(
φ(A∇B)−φ

(
1
2
|A−B|

))
.

Proof. Let A =
(

1 0
0 2

)
and B =

(
1 1
1 2

)
. Then AB + BA =

(
2 3
3 8

)
, which is

positive definite. Then we have

φ(A)�φ(B) = A(A−1B2A−1)
1
2 A

= A

{
1
4

(
8 6
6 5

)} 1
2

A

=
1
2
A

(
a b
b c

)
A

=
1
2

(
a 2b
2b 4c

)
,

where a2+b2 = 8, ab+bc= 6, and b2+c2 = 5. Hence, we have a =
10√
17

, b =
6√
17

,

and c =
7√
17

. Then

2×Tr(φ(A)�φ(B)) = a+4c

=
38√
17

< 10.
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On the contrary,

2×Tr

(
φ(A∇B)−φ

(
1
2
|A−B|

))
= 2×Tr

(
1
2
(AB+BA)

)

= Tr

((
2 3
3 8

))
= 10.

Hence,

Tr(φ(A)�φ(B)) < Tr

(
φ(A∇B)−φ

(
1
2
|A−B|

))
. �
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