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Abstract. Given a family of operators that act like approximations of the identity, we obtain
weighted estimates for the Marcinkiewicz integrals with non-smooth kernels on spaces of ho-
mogeneous type. As applications of weighted estimates, we also establish the boundedness of
these operators on the homogeneous Herz spaces over Euclidean spaces, and on the homoge-
neous weak Herz spaces for the endpoint case. We also study the boundedness of commutators
of Marcinkiewicz integrals and BMO functions on various spaces.

1. Introduction

Let (X , d, μ) be a space of homogeneous type, endowed with a metric distance
d on X ×X satisfying

d(x, z) � κ (d(x, y)+d(y, z)) for some fixed constant κ � 1 and for all x,y,z ∈ X ,
(1.1)

and a regular Borel measure μ on X such that the doubling property

μ(B(x; 2r)) � Cμ(B(x; r)) < ∞ (1.2)

holds for some fixed constant C � 1, for all x ∈ X and for all r > 0, where B(x; r) =
{y ∈ X : d(x, y) < r} . The above property implies that there exist some fixed constants
C � 1, n > 0 such that

μ(B(x; λ r)) � Cλ nμ(B(x; r)), (1.3)

uniformly for all λ � 1, x∈X , and r > 0. The parameter n measures the “dimension”
of the space X . There also exist constants C , N (C � 1, 0 � N � n ) such that

μ(B(y; r)) � C

(
1+

d(x, y)
r

)N

μ(B(x; r)) (1.4)

Mathematics subject classification (2010): 42B20, 42B25, 42B35.
Keywords and phrases: Commutators, Muckenhoupt weights, Marcinkiewicz integrals, singular inte-

grals, sharp maximal functions, BMO functions, Herz spaces, spaces of homogeneous type.

c© � � , Zagreb
Paper JMI-12-80

1041

http://dx.doi.org/10.7153/jmi-2018-12-80


1042 H. VIET LE

uniformly for all x, y ∈ X and all r > 0. The reader can find more information on this
subject in [1, 2].

Let T be a bounded linear operator on L2(X ) with an associated kernel K(x, y)
in the sense that

T f (x) =
∫

X
K(x, y) f (y)dμ(y), (1.5)

where f is a continuous function with compact support, x /∈ supp f ; and K(x, y) is a
measurable function defined on (X ×X )�Δ with Δ = {(x, x) : x ∈ X } .

The authors in [3, 4] assumed that there exists a class of operators At (t > 0)
which can be represented by the kernels at(x, y) in the sense that

Atu(x) =
∫

X
at(x, y)u(y)dμ(y), for every function u ∈ L1(X )∩L2(X ).

Moreover, the kernels at(x, y) satisfy the following conditions

|at(x, y)| � ht(x, y), for all x, y ∈ X , (1.6)

where ht(x, y) = (μ(B(x; t1/m)))−1s((d(x, y))mt−1) for some positive constant m.
(1.7)

Here s is a positive, bounded, decreasing function satisfying

lim
r→∞

rn+σ s(rm) = 0, (1.8)

for some σ > N , where n and N appear in (1.3) and (1.4) respectively.

REMARK 1.1. The functions ht above satisfy the following properties (see [4, 5]):
i) There exist positive constants C1 and C2 such that

C1 �
∫

X
ht(x, y)dμ(x) � C2 uniformly in t and y.

ii) There exists a positive constant C such that∫
X

ht(x, y) | f (x)|dμ(x) � CM f (y) and
∫

X
ht(x, y) | f (y)|dμ(y) � CM f (x).

Here M f (x) , the Hardy-Littlewood maximal function, is defined by

M f (x) = sup
B�x

{
1

μ(B)

∫
B
| f (y)|dμ(y)

}
,

where the supremum is taken over all balls B containing x .

The class of operators At plays the role of approximation to the identity. The
existence of such a class of operators At was verified in [3]. Now let At and Bt (t > 0)
be two classes of operators which satisfy (1.6)–(1.8). Denote by K(x, y)−Kt(x, y) the
kernels of the operators (T −TBt) , and K(x, y)−Kt(x, y) as the kernels of (T −AtT )
respectively. We state below a list of assumptions which lead to interesting results:
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(i) T is a bounded linear operator from L2(X ) to L2(X ) ;
(ii) There exist positive constants c1 and CA such that

∫
d(x,y)�c1t1/m

|K(x, y)−Kt(x,y)|dμ(x) � CA, for all y ∈ X ;

(iii) There exist positive constants c2 and CA such that

∫
d(x,y)�c2t1/m

|K(x, y)−Kt(x,y)|dμ(y) � CA, for all x ∈ X ;

(iv) There exist positive constants c2 , c4 and β such that

|K(x, y)−Kt(x,y)| � c4

μ(B(x;d(x,y)))
tβ/m

[d(x,y)]β
, whenever d(x,y) � c2t

1/m.

Using assumptions (i), (ii) and (iii), Duong and McIntosh [3] obtained the Lp -
boundedness of the singular integral operator T . Afterward, Martell [16] extended
their results to weighted spaces with weights w∈ Ap , under hypotheses (i), (ii) and (iv).
Based on a set of hypotheses that are almost similar to the assumptions (i), (ii) and (iv)
above, the author in [12] recently obtained the Lp -boundedness of the Marcinkiewicz
integral

ν( f )(x) =

{∫ ∞

0

∣∣∣∣
∫

d(x,y)<τ
K(x, y) f (y)dμ(y)

∣∣∣∣
2 dτ

τ3

}1/2

, (1.9)

and the commutator

ν�b( f )(x) =

⎧⎨
⎩
∫ ∞

0

∣∣∣∣∣
∫

d(x,y)<τ

(
k

∏
i=1

(bi(x)−bi(y))

)
K(x, y) f (y)dμ(y)

∣∣∣∣∣
2
dτ
τ3

⎫⎬
⎭

1/2

,

(1.10)
where bi ∈BMO(X ) , 1 � i � k. The reader may further view [4, 11, 12, 13, 14, 15, 19]
for several interesting results about this topic.

The purpose of this paper is to extend the results of [12] to homogeneous Herz
spaces K̇α , p

q (Rn) . In order to do so, we first obtain the weighted Lp estimates for ν( f )
and ν�b( f ) . We then use these estimates to further extend to homogeneous Herz spaces
K̇α , p

q (Rn) and to homogeneous weak Herz spaces WK̇α , p
q (Rn) for the endpoint case.

The plan of this paper is as follows. Section 2 describes some background information
such as definitions, notations and preliminary theorems. Our main theorems are given
in sections 3–5. In the last section, we give an example about a classical kernel K(x, y)
that satisfies the hypotheses of our theorems. For the rest of this paper, the letter C de-
notes a positive constant which may vary at each occurrence; however, it is independent
of any essential variable.
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2. Preliminaries

2.1. Approximation of the identity

Denote by L∞
b (X ) the set of all functions in L∞(X ) with bounded support. Note

that L∞
b (X ) is dense in Lp(X ) for p ∈ (0, ∞) (see [6, 7] for example). For f ∈

L∞
b (X ) , define the linear operator F by

F( f )(x, τ) =
∫

d(x,y)<τ
K(x, y) f (y)dμ(y), (2.1)

where K(x, y) is a measurable function defined on (X ×X )�Δ with Δ = {(x,x) :
x ∈ X } . Define the Marcinkiewicz integral ν( f ) by

ν( f )(x) =
{∫ ∞

0
|F( f )(x, τ)|2 dτ

τ3

}1/2

. (2.2)

Denote B1 = C and B2 = L2

(
R+;

dτ
τ3

)
, where R+ = (0, ∞) .

Then ν( f )(x)= ||F( f )(x, ·)||B2 , so that ||ν( f )||Lp(X ) =
∣∣∣∣‖F( f )‖B2

∣∣∣∣
Lp(X ) := ||F( f )||Lp(X ;B2

Note also that Lp(X ; B1) = Lp(X ) .
In the sequel, we assume the existence of two classes of operators At and Bt

(t > 0) , both of which can be represented by kernels at(x, y) and bt(x, y) respectively
in the sense that

Atu(x) =
∫

X
at(x, y)u(y)dμ(y),

for every function u ∈ L1(X )∩Lr(X ) and for some r > 1 and similar definition for
Bt . Moreover, both kernels at(x, y) and bt(x, y) are assumed to satisfy inequalities
(1.6)–(1.8). Let Kt(x, y) and Kt(x, y) represent the kernels of the operators FBt and
AtF (t > 0) respectively. We may assume that both FBt and AtF have integral forms

(FBt)( f )(x, τ) =
∫

d(x,y)<τ
Kt (x, y) f (y)dμ(y)

and
(AtF)( f )(x, τ) =

∫
d(x,y)<τ

Kt(x, y) f (y)dμ(y). (2.3)

To see this, consider the kernel bt of the operator Bt defined in [3] by

bt(y, z) = χB(z;t1/m)(y)[μ(B(z; t1/m))]−1.

Now, let Bt,τ be the operator whose kernel bt,τ (y, z) is defined by bt,τ(y, z)= χB(z;τ)(y)bt(y, z).
Then |bt,τ (y, z)| � |bt(y, z)| � ht(y, z) for all t, τ > 0 and y, z ∈ X . Moreover,

‖(FBt,τ)( f )(x, ·)‖B2 =
∣∣∣∣
∣∣∣∣
∫

d(x,z)<2κτ
Kt(x, z) f (z)dμ(z)

∣∣∣∣
∣∣∣∣
B2

= 2κ
∣∣∣∣
∣∣∣∣
∫

d(x,z)<τ
Kt(x, z) f (z)dμ(z)

∣∣∣∣
∣∣∣∣
B2

,
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where κ appears in (1.1). Similarly, if we let At,τ be the operator whose kernel
at,τ(x, y) is given by

at,τ(x, y) = χB(x;τ)(y)at(x, y) = χB(x;τ)(y)χB(x;t1/m)(y)[μ(B(x; t1/m))]−1,

then the above equation also holds for ‖(At,τF)( f )(x, ·)‖B2 (with Kt(x, z) instead of
Kt(x, z)). Therefore, for simplicity, we will assume that (2.3) holds true; and we will
work with the operators At and Bt for the rest of this paper.

For a ball B ⊂ X , denote the radius of the ball B by rB . Let tB = rm
B , where

m appears in (1.7)–(1.8). For g ∈ L∞
b (X ; B2) , we define the sharp maximal function

M�
A(||g||B2) by

M�
A(||g||B2)(x) = sup

B�x

{
1

μ(B)

∫
B
||(g−AtBg)(y, ·)||B2 dμ(y)

}
. (2.4)

We now state the following assumptions for our theorems:
(a) ν is a bounded operator from Lr(X ) to Lr(X ) with the bound Cr for some

r > 1;
(b) there exist positive constants c1 and CA such that

∫
d(x,y)�c1t1/m

|K(x, y)−Kt(x, y)|
d(x, y)

dμ(x) � CA, for all y ∈ X ;

˜(b) there exist positive constants c1 and c3 such that

|K(x, y)−Kt(x, y)|
d(x, y)

� c3

μ(B(x; d(x, y)))
tβ/m

(d(x, y))β whenever d(x, y) � c1t
1/m;

(c) there exist positive constants c2 and c4 such that

|K(x, y)−Kt(x, y)|
d(x, y)

� c4

μ(B(x; d(x, y)))
tβ/m

(d(x, y))β whenever d(x, y) � c2t
1/m.

REMARK 2.1. Note that hypothesis ˜(b) implies hypothesis (b). Assumption ˜(b)
will be used to prove weak type (1, 1) inequality for the Marcinkiewicz integral.

2.2. Muckenhoupt weights

For p ∈ (1, ∞), let p′ be the dual exponent of p . That is, 1
p + 1

p′ = 1. A weight
w is said to belong to the Muckenhoupt class Ap(X ) , 1 < p < ∞ , if there exists a
positive constant C such that

(
1

μ(B)

∫
B
w(x)dμ(x)

)(
1

μ(B)

∫
B
w−p′/p(x)dμ(x)

)p/p′

� C < ∞,
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for all balls B ⊂ X . The smallest constant C for which the above inequality holds is

the Ap bound of w . For a ball B ⊂ X and any weight w , let w(B) =
∫

B
w(x)dμ(x).

The class A1(X ) consists of non-negative functions w such that

w(B)
μ(B)

� Cess infx∈Bw(x)

for all balls B ⊂ X . A weight w belongs to A∞(X ) if there exist positive constants
Cw and δw (0 < δw < 1) such that, for any ball B ⊂ X and any measurable subset
E ⊂ B ,

w(E)
w(B)

� Cw

(
μ(E)
μ(B)

)δw

. (2.5)

If w ∈ Ap(X ) (1 � p < ∞) , we denote Lp(X , w) to be the space of all measurable
functions f on X whose norms are finite:

‖ f‖Lp(X ,w) :=
{∫

X
|| f (x)||p w(x)dμ(x)

}1/p

< ∞.

For more information on topics of weights, the reader may view [17, 18].

2.3. Preliminary lemmas and theorems

The following lemmas and theorems are necessary for the proof of our theorems.

LEMMA 2.2. [2] Let f∈L1(X ) with bounded support and α>‖ f‖L1(X )(μ(X ))−1.
Then there exist positive constants C, M1 depending only on X and a sequence of
metric balls {Bi}i ≡ {B(xi, ri)}i such that

Ωα := {x ∈ X : M ( f )(x) > CX α} =
⋃
i

Bi,

and
a) f (x) = g(x)+b(x), where

g(x) = f (x)χΩc
α (x)+∑

i

(
1

μ(Bi)

∫
Bi

f (y)ηi(y)dμ(y)
)

χBi(x),

ηi(x) =
χBi(x)

∑
j

χBj(x)
, b(x) = ∑

i

bi(x),

bi(x) = f (x)ηi(x)−
(

1
μ(Bi)

∫
Bi

f (y)ηi(y)dμ(y)
)

χBi(x)

for all x ∈ X ;
b) |g(x)| � Cα for almost all x ∈ X ;
c) ||g||L1(X ) � C || f ||L1(X ) ;
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d) for all i ∈ N, supp(bi) ⊂ Bi and ∑
i

μ(Bi) � Cα−1|| f ||L1(X ) ;

e) for all i ∈ N,
∫

X
bi(x)dμ(x) = 0 ;

f) for all i ∈ N,
1

μ(Bi)

∫
Bi

|bi(x)|dμ(x) � Cα , and ∑
i

||bi||L1(X ) � C || f ||L1(X ) ;

g) every point of X belongs to no more than M1 balls of {Bi}i .

LEMMA 2.3. [12] Assume that hypotheses (a) and (c) (as stated in section 2.1)
hold true. Then there exists a positive constant c9 such that, for every f ∈ L∞

b (X ) and
any r > 1 ,

M�
A(||F( f )||B2)(x) � c9 Mr f (x),

where the definitions of ||F( f )(x, ·)||B2 and M�
A were given by equations (2.1) and

(2.4) respectively; and

Mr f (x) := sup
B�x

{
1

μ(B)

∫
B
| f (y)|r dμ(y)

}1/r

= {M (| f |r)(x)}1/r .

THEOREM 2.4. [12] Assume that hypotheses (a), (b) and (c) (as stated in section
2.1) hold true. Then the operator ν has well-defined extensions on Lp(X ) for 1 �
p < ∞ . Moreover, there exist positive constants CX and C (where C depends on p,
CX , CA and Cr ) such that

||ν( f )||L1,∞(X ) � CX (CA +Cr) || f ||L1(X ),

and
||ν( f )||Lp(X ) � C || f ||Lp(X ) for 1 < p < ∞.

THEOREM 2.5. [13, 16] Let p ∈ (0, ∞) , w ∈ A∞ and g ∈ L1
b(X ;B2) . Assume

that M (||g(·)||B2) ∈ Lp(X ,w) . Then

(i) ‖M (||g(·)||B2)‖Lp(X ,w) � C‖M�
A(||g(·)||B2)‖Lp(X ,w) if X is unbounded.

(ii) ‖M (||g(·)||B2)‖Lp(X ,w) � C‖M�
A(||g(·)||B2)‖Lp(X ,w) +C ||g||L1(X ;B2) if X

is bounded.

3. Weighted estimates for Marcinkiewicz integrals

We need this lemma below in order to obtain weighted estimates of Marcinkiewicz
integrals.

LEMMA 3.1. Let w ∈ Ap (1 < p < ∞) and f ∈ L∞
b (X ) , where L∞

b (X ) denotes
the set of all functions f ∈ L∞(X ) that have bounded support. Assume that hypotheses
(a), (b) and (c) hold true. Then ν( f ) ∈ Lp(X , w) .
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Proof. We will employ some ideas in [16] to prove this lemma. Recall that ν( f )(x)
= ||F( f )(x, ·)||B2 . We may assume that supp( f ) ⊂ B(xo; R) for some xo ∈ X and
some R > 0. By Reverse’s Hölder’s inequality, there exists ε > 0, depending on p and
the Ap bound for w , such that

(
1

μ(B)

∫
B
w(x)1+ε dμ(x)

) 1
1+ε

� C
μ(B)

∫
B
w(x)dμ(x) for every ball B ⊂ X .

An application of Hölder’s inequality (with q = 1+ ε ) yields∫
B(xo;2R)

||F( f )(x, ·)||pB2
w(x)dμ(x)

�
∣∣∣∣||F( f )||B2

∣∣∣∣p
Lp(1+ε)′

(∫
B(xo;2R)

w(x)1+ε dμ(x)
) 1

1+ε

� C
w(B(xo; 2R))

μ(B(xo; 2R))
ε

1+ε
||ν( f )||p

Lp(1+ε)′

� C
w(B(xo; 2R))

μ(B(xo; 2R))
ε

1+ε
|| f ||p

Lp(1+ε)′ , (3.1)

where the last inequality follows from Theorem 2.4. Let tk = (2k−1R)m. We write∫
B(xo;2R)c

||F( f )(x, ·)||pB2
w(x)dμ(x)

=
∞

∑
k=1

∫
d(x,xo)∼=2kR

||F( f )(x, ·)||pB2
w(x)dμ(x)

� Cp

∞

∑
k=1

∫
d(x,xo)∼=2kR

||(F( f )−AtkF( f ))(x, ·)||pB2
w(x)dμ(x)

+Cp

∞

∑
k=1

∫
d(x,xo)∼=2kR

||AtkF( f ))(x, ·)||pB2
w(x)dμ(x)

≡ J1 + J2, (3.2)

where d(x, xo) ∼= 2kR means
{
x ∈ X : 2kR � d(x, xo) < 2k+1R

}
. By Minkowski’s in-

equality,

||(F( f )−AtkF( f ))(x, ·)||B2 =

{∫ ∞

0

∣∣∣∣
∫

d(x,z)<τ

(
K(x,z)−Ktk (x,z)

)
f (z)dμ(z)

∣∣∣∣
2 dτ

τ3

}1/2

�
∫

d(x,z)�t1/m
k

|K(x, z)−Ktk(x, z)|
d(x, z)

f (z)dμ(z)

� C
∫

d(x,z)�t1/m
k

tβ/m
k

d(x, z)β
f (z)

μ(B(x; d(x, z)))
dμ(z)

� C
∞

∑
j=0

2−β j

μ(B(x; 2 j+1t1/m
k ))

∫
d(x,z)∼=2 jt1/m

k

| f (z)|dμ(z)

� CM f (x),
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where the second and third inequalities follow from hypothesis (c) and (1.3) respec-
tively. Therefore,

J1 � C
∞

∑
k=1

∫
d(x,xo)∼=2kR

[M f (x)]pw(x)dμ(x) � C
∫

X
[M f (x)]pw(x)dμ(x)

� C
∫

X
| f (x)|pw(x)dμ(x) � C || f ||pL∞(X ) w(B(xo : R)) < ∞. (3.3)

Note that w ∈ Ap ⇒ w ∈ Ap/s for some s > 1 with p/s > 1. By Minkowski’s in-
equality, Hölder’s inequality, inequality (1.7), Remark 1.1-i and by Theorem 2.4, we
obtain

||AtkF( f ))(x, ·)||B2 =

(∫ ∞

0

∣∣∣∣
∫

X
atk(x, y)F( f )(y, t)dμ(y)

∣∣∣∣
2 dt

t3

)1/2

�
∫

X
|atk(x, y)|

(∫ ∞

0
|F( f )(y, t)|2 dt

t3

)1/2

dμ(y)

�
∫

X
htk(x, y) ||F( f )(y, ·)||B2dμ(y)

� ||F( f )||Ls(X ;B2)

(∫
X

(htk (x, y))s′−1 htk (x, y)dμ(y)
)1/s′

� ||ν( f )||Ls(X )
C

μ(B(x; t1/m
k ))

s′−1
s′

(∫
X

htk(x, y)dμ(y)
)1/s′

� C || f ||Ls(X )[μ(B(x; t1/m
k ))]−1/s.

From Remark 5.6 [16], we see that

J2 � C || f ||pLs(X )

∞

∑
k=1

∫
d(x,xo)∼=2kR

w(x)

[μ(B(x; t1/m
k ))]p/s

dμ(x) � C || f ||pLs(X ). (3.4)

It follows from (3.1)–(3.4) that F( f )∈Lp(X , w; B2), or equivalently, ν( f )∈Lp(X , w) .
Lemma 3.1 is proved. �

THEOREM 3.2. Let w ∈ Ap, 1 < p < ∞. Assume that hypotheses (a), (b) and (c)
hold true. Then there exists a positive constant Cp,w , depending on p and w, such that

||ν( f )||Lp(X ,w) � Cp,w || f ||Lp(X ,w).

Proof. It suffices to prove the theorem for f ∈ L∞
b (X ), since this space is densely

contained in Lp(X , w) for 1 � p < ∞. Recall that w ∈ Ap ⇒ w ∈ Ap/s for some
s > 1 with p/s > 1. We first consider the case that X is unbounded. By Lemma 3.1,
ν( f ) = ||F( f )(·)||B2 ∈ Lp(X , w), and thus M (||F( f )(·)||B2 ) ∈ Lp(X , w) . We then
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have ∫
X

|ν( f )(x)|pw(x)dμ(x) =
∫

X
||F( f )(x, ·)||pB2

w(x)dμ(x)

�
∫

X
[M (||F( f )(·)||B2)(x)]

pw(x)dμ(x)

� C
∫

X
[M�

A(||F( f )(·)||B2 )(x)]
pw(x)dμ(x)

� C
∫

X
[Ms f (x)]pw(x)dμ(x)

� C
∫

X
| f (x)|pw(x)dμ(x),

where the second and third inequalities follow from Theorem 2.5 and Lemma 2.3 re-
spectively.

We now consider the case that X is bounded. Recall from Theorem 2.4 that ν is
a bounded operator on Lq(X ) for q > 1. Since X is bounded, ν is also bounded on
L1(X ) . By Theorem 2.5 and by Lemma 2.3, we have

||ν( f )||Lp(X ,w) =
∣∣∣∣||F( f )||B2

∣∣∣∣
Lp(X ,w) �

∣∣∣∣M (||F( f )||B2)
∣∣∣∣

Lp(X ,w)

� C
∣∣∣∣∣∣M�

A(||F( f )||B2)
∣∣∣∣∣∣

Lp(X ,w)
+C

∣∣∣∣||F( f )||B2

∣∣∣∣
L1(X )

� C ||Ms f ||Lp(X ,w) +C ||ν( f )||L1(X )

� C || f ||Lp(X ,w) +C ||ν( f )||L1(X ) � C || f ||Lp(X ,w).

The last inequality is a consequence of successive applications of Hölder’s inequality:

||ν( f )||L1(X ) � ||ν( f )||Ls(X ) [μ(X )]1/s′ � C || f ||Ls(X ) [μ(X )]1/s′

� C || f ||Lp(X ,w) [μ(X )]1/s′
(∫

X
{w(x)}−r′/r dμ(x)

)1/(sr′)
(r = p/s)

� C || f ||Lp(X ,w).

The proof of this theorem is finished. �

THEOREM 3.3. Let w ∈ A1 . Assume that hypotheses (a), ˜(b) and (c) hold true.
Then there exists a positive constant Cw , depending on w, such that

||ν( f )||L1,∞(X ,w) � Cw || f ||L1(X ,w).

Proof. It is enough to prove the theorem for f ∈ L∞
b (X ) . Observe that hypothesis

˜(b) implies hypothesis (b). Thus we may conclude from Theorem 3.2 that if w ∈A1 ⊂
Ar for some fixed r > 1, then there exists a positive constant Cr,w such that

||ν( f )||Lr(X ,w) � Cr,w || f ||Lr(X ,w).
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Now suppose that λ >Cr,w|| f ||L1(X )(μ(X ))−1 . We apply Lemma 2.2 to f ∈ L∞
b (X )

at the height α = C−1
r,wλ to obtain a sequence of metric balls {Bi}i ≡ {B(xi, ri)}i such

that Ωλ :=
{
x ∈ X : M f (x) > CX C−1

r,wλ
}

=
⋃
i

Bi , and f (x) = g(x)+∑
i

bi(x) .

Let B̃i = B(xi; r̃i) := B(xi; (1 + c1)ri) , where c1 appears in hypothesis ˜(b) . We
have

w({x ∈ X : |ν( f )(x)| > λ}) � w

({
x ∈ X : ||F(g)(x, ·)||B2 >

λ
2

})

+w

({
x ∈ X : ||F(b)(x, ·)||B2 >

λ
2

})
≡ Z1 +Z2.

The Lr -boundedness of ν together with properties (b) and (c) of Lemma 2.2 imply that

Z1 �
(λ

2

)−r ∫
X

||F(g)(x, ·)||rB2
w(x)dμ(x) =

(λ
2

)−r ∫
X

|ν(g)(x)|r w(x)dμ(x)

� Cr
r,w

(λ
2

)−r ∫
X

|(g)(x)|r w(x)dμ(x) � C
Cr,w

λ

∫
X

|g(x)|w(x)dμ(x)

� C
Cr,w

λ

{
|| f ||L1(X ,w) +

∫
X

∑
i

(∫
Bi

| f (y)|w(y)dμ(y)
)

(w(Bi))−1w(x)χBi(x)dμ(x)

}

� C
Cr,w

λ

{
|| f ||L1(X ,w) +∑

i

∫
Bi

| f (y)|w(y)dμ(y)

}

� C
Cr,w

λ

{
|| f ||L1(X ,w) +M1

∫
∪iBi

| f (y)|w(y)dμ(y)
}

� C
Cr,w

λ
|| f ||L1(X ,w),

where M1 appears in part (g) of Lemma 2.2. Observe that

Z2 � Z3 +Z4 +Z5,

where Z3 = w
(⋃

i B̃i
)
, Z4 = w

({
x /∈⋃i B̃i : ∑i ||(F −FBti)(bi)(x, ·)||B2 > λ/4

})
, and

Z5 = w
({

x ∈ X : ||∑i FBtibi(x, ·)||B2 > λ/4
})

.
We choose ti = rm

i , where m is the constant appearing in (1.7). It follows from the
doubling property of w , properties (d) and (g) of Lemma 2.2, and weak type (1, 1) of
the Hardy-Littlewood maximal operator that

Z3 = w
(∪iB̃i

)
� ∑

i
w(B̃i) � C∑

i
w(Bi) � CM1 w(∪iBi) = CM1 w(Ωλ )

= CM1 w
({

x ∈ X : M f (x) > CX C−1
r,wλ

})
� C

Cr,w

λ
|| f ||L1(X ,w).
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We now estimate Z4 . If y ∈ Bi and x /∈⋃i B̃i , then d(x, y) � c1ri = c1t
1/m
i . Note that

||(F −FBti)(bi)(x, ·)||B2 =

{∫ ∞

0

∣∣∣∣
∫

d(x,y)<τ
(K(x, y)−Kti(x, y))bi(y)dμ(y)

∣∣∣∣
2 dτ

τ3

}1/2

�
∫

Bi

|K(x, y)−Kti(x, y)|(d(x, y))−1|bi(y)|dμ(y).

Thus we have

Z4 � 4
λ

∫
(⋃i B̃i)c ∑

i
||(F −FBti)(bi)(x, ·)||B2 w(x)dμ(x)

� 4
λ

∫
(⋃i B̃i)c

(
∑
i

∫
Bi

|K(x, y)−Kti(x, y)|(d(x, y))−1|bi(y)|dμ(y)

)
w(x)dμ(x)

=
4
λ ∑

i

∫
Bi

{∫
d(x,y)�c1t

1/m
i

|K(x, y)−Kti(x, y)|(d(x, y))−1 w(x)dμ(x)
}
|bi(y)|dμ(y).

By assumption ˜(b) and inequalities (1.3)–(1.4), we obtain

Z4 � C
λ ∑

i

∫
Bi

{
∞

∑
j=0

2−β j
∫

d(x,y)∼=2 jc1t
1/m
i

w(x)
μ(B(x;d(x, y)))

dμ(x)

}
|bi(y)|dμ(y)

� C
λ ∑

i

∫
Bi

{
∞

∑
j=0

2−β j

μ(B(y;2 j+1c1t
1/m
i ))

∫
B(y;2 j+1c1t

1/m
i )

w(x)dμ(x)

}
|bi(y)|dμ(y)

� C
λ ∑

i

∫
Bi

Mw(y) |bi(y)|dμ(y) � C
λ ∑

i

∫
Bi

|bi(y)|w(y)dμ(y)

� C
λ

{
∑
i

∫
Bi

| f (y)|w(y)dμ(y)+∑
i

∫
Bi

(
1

μ(Bi)

∫
Bi

w(y)dμ(y)
)
| f (z)|dμ(z)

}

� C
λ

{
M1

∫
∪Bi

| f (y)|w(y)dμ(y)+∑
i

∫
Bi

| f (z)|w(z)dμ(z)

}
� C

λ
|| f ||L1(X ,w).

It remains to estimate Z5 . It follows from inequality (1.6), Lemma 2.2-f and Proposition
2.5 [5] (or see Lemma 1 [3]) that

|Btibi(x)| �
∫

X
hti(x, y)|bi(y)|dμ(y) � sup

y∈Bi

hti(x, y)
∫

Bi

|bi(y)|dμ(y)

� CC−1
r,w λ μ(Bi) sup

y∈Bi

hti(x, y) � CC−1
r,w λ μ(Bi) inf

y∈Bi
hθti(x, y)

� CC−1
r,w λ

∫
X

hθti(x, y)χBi(y)dμ(y), (3.5)

where θ � 1 is a positive constant (see Lemma 1 [3]). Recall that w ∈ A1 ⊂ Ar ⇒
w1−r′ ∈Ar′ . Now take a function u � 0, u∈ Lr′(X ,w) with ||u||Lr′ (X ,w) � 1. Then the
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function v = uw∈ Lr′(X ,w1−r′) and ||v||Lr′ (X ,w1−r′ ) = ||u||Lr′ (X ,w) � 1. By inequality
(3.5) and Remark 1.1-ii, we obtain∣∣∣∣∣

∫
X

∑
i

|Btibi(x)|u(x)w(x)dμ(x)

∣∣∣∣∣ (3.6)

� CC−1
r,w λ ∑

i

∫
X

(∫
X

hθti(x,y)u(x)w(x)dμ(x)
)

χBi(y)dμ(y)

� CC−1
r,w λ ∑

i

∫
X

M (uw)(y)χBi(y)dμ(y)

� CM1C−1
r,w λ

∫
∪iBi

M (uw)(y)dμ(y)

� CM1C−1
r,w λ

{∫
X

|M (uw)(y)|r′w(y)1−r′ dμ(y)
}1/r′

{w(∪iBi)}1/r

� CC−1
r,w λ ||u||Lr′ (X ,w)w(Ωλ )1/r

� CC−1
r,w λ

{
w
({

x ∈ X : M f (x) > CX C−1
r,wλ

})}1/r

� C

{
λ

Cr,w

}1/r′

|| f ||1/r
L1(X ,w).

Therefore,∣∣∣∣∣
∣∣∣∣∣∑i

|Btibi|
∣∣∣∣∣
∣∣∣∣∣
Lr(X ,w)

= sup
||u||

Lr′ (X ,w)�1

{∣∣∣∣∣
∫

X
∑
i
|Btibi(x)|u(x)w(x)dμ(x)

∣∣∣∣∣
}

� C

{
λ

Cr,w

}1/r′

|| f ||1/r
L1(X ,w).

Since w ∈ A1 ⊂ Ar , it follows from the Lr - boundedness of ν and from the estimate
above that

Z5 �
( 4

λ

)r ∫
X

‖F(∑
i

Btibi)(x, ·)‖r
B2

w(x)dμ(x)

� C

(
Cr,w

λ

)r ∫
X

∣∣∣∣∣∑i
Btibi(x)

∣∣∣∣∣
r

w(x)dμ(x)

� C

(
Cr,w

λ

)r ∫
X

(
∑
i
|Btibi(x)|

)r

w(x)dμ(x)

� C
Cr,w

λ
|| f ||L1(X ,w).

Summing all of the estimates of Z1, . . . ,Z5 , we obtain for λ >Cr,w|| f ||L1(X )(μ(X ))−1 ,

w({x ∈ X : ν( f )(x) > λ}) � CX

λ
(CA +Cr,w)‖ f‖L1(X ,w).
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If X is unbounded, then the above inequality holds for all λ > 0; and thus we are
done. Now suppose that X is bounded. Then for 0 < λ � Cr,w|| f ||L1(X )(μ(X ))−1 ,
we have

w({x ∈ X : ν( f )(x) > λ}) � w(X ) � Cr,w

λ
w(X )
μ(X )

|| f ||L1(X ) � Cr,w

λ
|| f ||L1(X ,w).

The proof of this theorem is complete. �

4. Commutators of BMO functions and Marcinkiewicz integrals

Given a fixed positive integer k , let�b = (b1, b2, . . . , bk) , where each bi ∈BMO(X )
(1 � i � k) . For each bi (1 � i � k) , denote by ||bi||∗ the BMO norm of bi ; and let
||�b||∗ = ∏k

i=1 ||bi||∗ .

Let �λ = (λ1, . . . , λk) = ((b1)B, . . . , (bk)B) , where (bi)B =
1

μ(B)

∫
B
bi(x)dμ(x),

1�i�k . Let Ck
j (1� j�k) stand for the family of all finite subsets σ={σ(1), . . .,σ( j)}

of j different elements of {1, . . . ,k} . For any σ ∈ Ck
j , we denote the complement

sequence of σ by σ ′ = {1, . . . , k} \σ . Let �bσ = (bσ(1), . . . ,bσ( j)) and let the product

bσ = bσ(1) · · ·bσ( j) . Similarly, denote (�b−�λ)σ = (bσ(1)−λσ(1), . . . ,bσ( j)−λσ( j)) and
(b−λ )σ = (bσ(1)−λσ(1)) · · · (bσ( j)−λσ( j)) .

For f ∈ L∞
b (X ) , define the linear operator F�b( f ) by

F�b( f )(x, τ) =
∫

d(x,y)<τ

{
k

∏
i=1

(bi(x)−bi(y))

}
K(x, y) f (y)dμ(y),

where K(x, y) is a measurable function defined on (X ×X )�Δ with Δ = {(x, x) :
x ∈ X } .

Define the commutator of Marcinkiewicz integral and BMO functions, ν�b( f ) , by

ν�b( f )(x) =
{∫ ∞

0
|F�b( f )(x, τ)|2 dτ

τ3

}1/2

.

We have the following theorem.

THEOREM 4.1. Let X have infinite measure. Let ν�b( f ) be the commutator of
Marcinkiewicz integral and BMO functions with non-smooth kernel satisfying hypothe-
ses (a), (b) and (c). Let w ∈ Ap , 1 < p < ∞. Then there exists a positive constant C
(depending on p and w) such that, for all f ∈ Lp(X ) ,

||ν�b( f )||Lp(X ,w) � C ||�b||∗ || f ||Lp(X ,w).

Proof. In order to prove this theorem, we need the following lemma.
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LEMMA 4.2. [12] Let tB = rm
B , where rB is the radius of the ball B, and m ap-

pears in (1.7)–(1.8). Given any r > 1 , there exists a positive constant C (depending on
r ) such that

M�
A(||F�b( f )||B2)(x) = sup

B�x

{
1

μ(B)

∫
B
||F�b( f )(y, ·)−AtBF�b( f )(y, ·)||B2 dμ(y)

}

� C ||�b||∗
{
Mr f (x)+Mr(||F( f )||B2)(x)

}
+C

k−1

∑
i=1

∑
σ∈Ck

i

ck,i

(
i

∏
l=1

||bσ(l)||∗
)

Mr(||F�bσ ′ ( f )||B2)(x).

Given w ∈Ap , 1 < p < ∞ , there exists ε > 0 such that w∈Ap−ε , where p−ε >

1. We choose r > 1 such that 1 < r <
p

p− ε
< p . Note that w ∈ Ap−ε ⇒ w ∈ Ap/r

since p− ε <
p
r

.

By Theorem 2.5, Lemma 4.2, Theorem 3.2 and by induction argument, we may
conclude that

||ν�b( f )||Lp(X ,w) � ||M (ν�b f )||Lp(X ,w) = ||M (||F�b( f )||B2)||Lp(X ,w)

� C ||M�
A(||F�b( f )||B2)||Lp(X ,w)

� C ||�b||∗
{||Mr f ||Lp(X ,w) + ||Mr(||F( f )||B2)||Lp(X ,w)

}
+C

k−1

∑
i=1

∑
σ∈Ck

i

ck,i

(
i

∏
l=1

||bσ(l)||∗
)

||Mr(||F�bσ ′ ( f )||B2)||Lp(X ,w)

� C||�b||∗|| f ||Lp(X ,w)+C
k−1

∑
i=1

∑
σ∈Ck

i

ck,i

(
i

∏
l=1

||bσ(l)||∗
)
||ν�bσ ′ ( f )||Lp(X ,w)

� C ||�b||∗ || f ||Lp(X ,w). �

5. Marcinkiewicz integrals on homogeneous Herz spaces

5.1. Homogeneous Herz spaces

For k∈Z , let Ak =
{
x ∈ Rn : 2k−1 < |x| � 2k

}
. Denote the characteristic function

χAk on the set Ak by χk . For α ∈ R , 0 < p, q � ∞ , the homogeneous Herz spaces
K̇α , p

q (Rn) are defined by

K̇α , p
q (Rn)=

⎧⎨
⎩ f ∈ Lq

loc(R
n \ {0}) : || f ||K̇α, p

q (Rn) :=

(
∑
k∈Z

2kα p|| f χk||pLq(Rn)

)1/p

< ∞

⎫⎬
⎭ ,

with usual modifications when p = ∞ or q = ∞ . Observe that K̇α/q,q
q (Rn)= Lq(Rn, |x|α) ,

and K̇0,q
q (Rn) = Lq(Rn) .
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Denote mk(λ , f ) := |{x ∈ Rn : | f (x)| > λ}|, where λ > 0. For α ∈ R , 0 < p �
∞ and 0 < q < ∞ , the homogeneous weak Herz spaces WK̇α , p

q (Rn) consist of all
measurable functions f on Rn whose norms are finite:

|| f ||WK̇α, p
q (Rn) := sup

λ>0

⎧⎨
⎩λ

(
∑
k∈Z

2kα p (mk(λ , f ))p/q

)1/p
⎫⎬
⎭< ∞ (0 < p < ∞),

and

|| f ||WK̇α,∞
q (Rn) := sup

λ>0

{
λ sup

k∈Z

{
2kα (mk(λ , f ))1/q

}}
< ∞.

Note that WK̇α/q,q
q (Rn)= Lq,∞(Rn, |x|α ) and WK̇0,q

q (Rn)= Lq,∞(Rn), where Lq,∞(Rn,w)
is the space of all measurable functions f such that

sup
λ>0

{
λ (w(x ∈ Rn : | f (x)| > λ ))1/q

}
< ∞.

For topics related to Herz spaces, the reader may view [8, 9, 10] among many other
good references.

In order to obtain the boundedness of Marcinkiewicz integrals and their commu-
tators on homogeneous Herz spaces, we need the following theorems.

THEOREM 5.1. [9] If a sublinear operator T is bounded on Lq(Rn, |x|β ) for
some q ∈ (1, ∞) and for all β ∈ (β1, β2) , where β1, β2 ∈ R , then T is also bounded
on K̇α , p

q (Rn) for all α ∈ (β1/q, β2/q) and all p ∈ (0, ∞].

THEOREM 5.2. Suppose that a sublinear operator T is bounded from L1(Rn, |x|β )
to L1,∞(Rn, |x|β ) for all β ∈ (β1, β2) , where β1, β2 ∈ R . Then T is bounded from
K̇α , p

1 (Rn) to WK̇α , p
1 (Rn) for all α ∈ (β1, β2) and all p ∈ (0, ∞] . That is, there exists

a positive constant C , depending on p and α , such that

||TF ||WK̇α, p
1 (Rn) � C || f ||K̇α, p

1 (Rn) for all α ∈ (β1, β2) and all p ∈ (0, ∞].

Proof. We apply some ideas in [9] to prove this theorem. Note that

||TF ||WK̇α, p
1 (Rn) = sup

λ>0

⎧⎨
⎩λ

(
∑
k∈Z

2kα pmk(λ , T f )p

)1/p
⎫⎬
⎭ , 0 < p < ∞, (5.1)

and

||TF ||WK̇α,∞
1 (Rn) = sup

λ>0

{
sup
k∈Z

{
2kαmk(λ , T f )

}}
, (5.2)

where mk(λ , T f ) = |{x ∈ Ak : |T f (x)| > λ}| and Ak = {x ∈ Rn : 2k−1 < |x| � 2k} ,
k ∈ Z.
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For j ∈ Z, denote f j = f χ j ≡ f χAj . Pick α1, α2 ∈ (β1, β2) such that β1 < α1 <
α < α2 < β2. We first consider the case 0 < p < ∞. By hypothesis, we have

Jλ := λ

(
∑
k∈Z

2kα pmk(λ , T f )p

)1/p

� Cp λ

(
∑
k∈Z

2kα p

∣∣∣∣∣
{

x ∈ Ak :

∣∣∣∣∣T
(

k

∑
j=−∞

f j

)
(x)

∣∣∣∣∣> λ
2

}∣∣∣∣∣
p)1/p

+Cp λ

(
∑
k∈Z

2kα p

∣∣∣∣∣
{

x ∈ Ak :

∣∣∣∣∣T
(

∞

∑
j=k+1

f j

)
(x)

∣∣∣∣∣> λ
2

}∣∣∣∣∣
p)1/p

� C

{
∑
k∈Z

2k(α−α2)p

(
k

∑
j=−∞

|| f j||L1(Rn, |x|α2 )

)p}1/p

+C

{
∑
k∈Z

2k(α−α1)p

(
∞

∑
j=k+1

|| f j||L1(Rn, |x|α1 )

)p}1/p

≡ J3 + J4.

(5.3)

If 0 < p � 1, then

J3 � C

{
∑
k∈Z

k

∑
j=−∞

2(k− j)(α−α2)p2 jα p|| f j||pL1(Rn)

}1/p

= C

{
∑
j∈Z

(
∞

∑
k= j

2(k− j)(α−α2)p

)
2 jα p|| f j||pL1(Rn)

}1/p

= C

{
∑
j∈Z

(
∞

∑
k=0

2k(α−α2)p

)
2 jα p|| f j||pL1(Rn)

}1/p

� C

{
∑
j∈Z

2 jα p|| f j||pL1(Rn)

}1/p

= C || f ||K̇α, p
1 (Rn).

Similarly,

J4 � C

{
∑
k∈Z

∞

∑
j=k+1

2(k− j)(α−α1)p2 jα p|| f j||pL1(Rn)

}1/p

= C

{
∑
j∈Z

(
j−1

∑
k=−∞

2(k− j)(α−α1)p

)
2 jα p|| f j||pL1(Rn)

}1/p
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= C

{
∑
j∈Z

( −1

∑
k=−∞

2k(α−α1)p

)
2 jα p|| f j||pL1(Rn)

}1/p

� C

{
∑
j∈Z

2 jα p|| f j||pL1(Rn)

}1/p

= C || f ||K̇α, p
1 (Rn).

Hence,
Jλ � J3 + J4 � C || f ||K̇α, p

1 (Rn).

If 1 < p < ∞ , then we apply Hölder’s inequality to obtain

Jλ � C

⎧⎨
⎩∑

k∈Z

(
k

∑
j=−∞

2(k− j)(α−α2)p/22 jα p|| f j||pL1(Rn)

)(
k

∑
j=−∞

2(k− j)(α−α2)p′/2

)p/p′
⎫⎬
⎭

1/p

+C

⎧⎨
⎩∑

k∈Z

(
∞

∑
j=k+1

2(k− j)(α−α1)p/22 jα p|| f j||pL1(Rn)

)(
∞

∑
j=k+1

2(k− j)(α−α1)p′/2

)p/p′
⎫⎬
⎭

1/p

= C

⎧⎨
⎩∑

k∈Z

(
k

∑
j=−∞

2(k− j)(α−α2)p/22 jα p|| f j||pL1(Rn)

)(
∞

∑
j=0

2 j(α−α2)p′/2

)p/p′
⎫⎬
⎭

1/p

+C

⎧⎨
⎩∑

k∈Z

(
∞

∑
j=k+1

2(k− j)(α−α1)p/22 jα p|| f j||pL1(Rn)

)(
−1

∑
j=−∞

2 j(α−α1)p′/2

)p/p′
⎫⎬
⎭

1/p

� C

{
∑
k∈Z

k

∑
j=−∞

2(k− j)(α−α2)p/22 jα p|| f j||pL1(Rn)

}1/p

+C

{
∑
k∈Z

∞

∑
j=k+1

2(k− j)(α−α1)p/22 jα p|| f j||pL1(Rn)

}1/p

� C

{
∑
j∈Z

2 jα p|| f j||pL1(Rn)

}1/p

=C|| f ||K̇α, p
1 (Rn),

where the last inequality follows from similar calculations as in the case 0 < p < 1.
Therefore, for 0 < p < ∞,

||TF ||WK̇α, p
1 (Rn) = sup

λ>0
{Jλ} � C || f ||K̇α, p

1 (Rn).

When p = ∞ , we have

Jλ � J3 + J4

� C
k

∑
j=−∞

2(k− j)(α−α2)2 jα || f j||L1(Rn) +C
∞

∑
j=k+1

2(k− j)(α−α1)2 jα || f j||L1(Rn)
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� C sup
j∈Z

{
2 jα || f j||L1(Rn)

}( k

∑
j=−∞

2(k− j)(α−α2)

)

+C sup
j∈Z

{
2 jα || f j||L1(Rn)

}( ∞

∑
j=k+1

2(k− j)(α−α1)

)

= C sup
j∈Z

{
2 jα || f j||L1(Rn)

}( ∞

∑
j=0

2 j(α−α2)

)

+C sup
j∈Z

{
2 jα || f j||L1(Rn)

}( −1

∑
j=−∞

2 j(α−α1)

)

� C sup
j∈Z

{
2 jα || f j||L1(Rn)

}
= C || f ||K̇α,∞

1 (Rn).

Hence,

||TF ||WK̇α,∞
1 (Rn) � sup

λ>0

{
sup
k∈Z

{J3 + J4}
}

� C || f ||K̇α,∞
1 (Rn).

The proof of this theorem is finished. �

THEOREM 5.3. Assume that hypotheses (a), (b) and (c) hold true. Then there
exist positive constants C1 and C2 (depending on p, q and α ) such that

||ν( f )||K̇α, p
q (Rn) � C1 || f ||K̇α, p

q (Rn), (5.4)

and

||ν�b( f )||K̇α, p
q (Rn) � C2 ||�b||∗ || f ||K̇α, p

q (Rn), (5.5)

for 1 < q < ∞ , 0 < p � ∞ , and −n
q

< α <
n
q′

, where
1
q

+
1
q′

= 1.

If hypotheses (a), ˜(b) and (c) hold true, then there exists a positive constant C3

(depending on p and α ) such that

||ν( f )||WK̇α, p
1 (Rn) � C3 || f ||K̇α, p

1 (Rn) (5.6)

for all α ∈ (−n, 0) and all p ∈ (0, ∞] .

Proof. Recall that w(x) = |x|a ∈ Ap if and only if −n < a < n(p− 1) for 1 <
p < ∞ ; and w(x) = |x|a ∈ A1 if and only if −n < a � 0 (see [6]). Inequality (5.4)
follows from Theorem 3.2 and Theorem 5.1. By Theorem 4.1 and Theorem 5.1, we
obtain inequality (5.5). Finally, inequality (5.6) is a consequence of Theorem 3.3 and
Theorem 5.2. �
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5.2. Example

We will need the following propositions for the example below.

PROPOSITION 5.4. Suppose that there exist constants δ1 > 1, C5 > 0 and β > 0
such that

|K(x, y)−K(x, z)|
d(x, y)

� C5

μ(B(x; d(x, y)))

{
d(y,z)
d(x, y)

}β
whenever d(x, y) � δ1 d(y,z).

(5.7)
Then there exist positive constants C6 and δ2 such that

|K(x, y)−Kt(x, y)|
d(x, y)

� C6

μ(B(x; d(x, y)))
tβ/m

(d(x, y))β whenever d(x, y) � δ2 t1/m.

PROPOSITION 5.5. Suppose that there exist constants δ3 > 1, C7 > 0 and β > 0
such that

|K(x, y)−K(z, y)|
d(x, y)

� C7

μ(B(x; d(x, y)))

{
d(x,z)
d(x, y)

}β
whenever d(x, y) � δ3 d(x,z).

(5.8)
Then there exist positive constants C8 and δ4 such that

|K(x, y)−Kt(x, y)|
d(x, y)

� C8

μ(B(x; d(x, y)))
tβ/m

(d(x, y))β whenever d(x, y) � δ4 t1/m.

We omit the proofs of these propositions since they are essentially similar to the
proof of Proposition 2 in [3].

Now let X = Rn, n � 2. Let Ω be homogeneous of degree zero, Ω(x) = Ω( x
|x| )

for every nonzero x ∈ Rn, and satisfy the cancellation condition∫
Sn−1

Ω(x′)dσ(x′) = 0.

Assume further that Ω satisfies the β -Hölder’s continuity:
There exist constants C > 0 and β ∈ (0, 1] such that for all nonzero x, y ∈ Rn,

|Ω(x)−Ω(y)| � C

∣∣∣∣ x
|x| −

y
|y|
∣∣∣∣
β
. (5.9)

Let K be the convolution kernel defined by K(x) =
Ω(x)
|x|n−1 , n � 2. Let

FΩ( f )(x,t) =
∫
|x−y|<t

K(x− y) f (y)dy,

and

FΩ,�b( f )(x,t) =
∫
|x−y|<t

(
k

∏
i=1

(bi(x)−bi(y))

)
K(x− y) f (y)dy,
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where each bi ∈ BMO(Rn) , 1 � i � k . Recall that the Marcinkiewicz integral and its
commutator are given by

νΩ( f )(x)=
(∫ ∞

0
|FΩ( f )(x,t)|2 dt

t3

)1/2

and νΩ,�b( f )(x)=
(∫ ∞

0
|FΩ,�b( f )(x,t)|2 dt

t3

)1/2

.

Since K is a convolution kernel satisfying the cancellation condition, it can be
shown via Fourier transform that νΩ( f ) is bounded on L2(Rn). Thus hypothesis (a) is
satisfied. Moreover, it is straightforward to obtain inequalities (5.7)–(5.8) from inequal-
ity (5.9). By propositions 5.4–5.5, hypotheses ˜(b) and (c) are fulfilled. Consequently,
we may infer from Theorem 5.3 that there exist positive constants C1 , C2 and C3 such
that

||νΩ( f )||K̇α, p
q (Rn) � C1 || f ||K̇α, p

q (Rn),

||νΩ,�b( f )||K̇α, p
q (Rn) � C2 ||�b||∗ || f ||K̇α, p

q (Rn),

for 1 < q < ∞ , 0 < p � ∞ , and −n
q

< α <
n
q′

, where
1
q

+
1
q′

= 1, and

||νΩ( f )||WK̇α, p
1 (Rn) � C3 || f ||K̇α, p

1 (Rn)

for all α ∈ (−n, 0) and all p ∈ (0, ∞] .
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