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WEIGHTED ESTIMATES FOR MARCINKIEWICZ
INTEGRALS WITH NON-SMOOTH KERNELS ON SPACES
OF HOMOGENEOUS TYPE AND THEIR APPLICATIONS

HUNG VIET LE

(Communicated by L. Liu)

Abstract. Given a family of operators that act like approximations of the identity, we obtain
weighted estimates for the Marcinkiewicz integrals with non-smooth kernels on spaces of ho-
mogeneous type. As applications of weighted estimates, we also establish the boundedness of
these operators on the homogeneous Herz spaces over Euclidean spaces, and on the homoge-
neous weak Herz spaces for the endpoint case. We also study the boundedness of commutators
of Marcinkiewicz integrals and BMO functions on various spaces.

1. Introduction

Let (27, d, 1) be a space of homogeneous type, endowed with a metric distance
don ' x Z satisfying

d(x,z) < x(d(x,y)+d(y,z)) for some fixed constant k¥ > 1 and for all x,y,z € 2,
(1.1)

and a regular Borel measure (t on 2~ such that the doubling property
W(B(x;2r)) < Cu(B(x; 1)) < oo (1.2)

holds for some fixed constant C > 1, for all x € 2" and for all r > 0, where B(x; r) =
{y € 2" :d(x,y) < r}. The above property implies that there exist some fixed constants
C > 1, n> 0 such that

W(B(x: Ar)) < CA"W(B(x; r)), (1.3)

uniformly forall A > 1, x€ 27, and r > 0. The parameter n measures the “dimension”
of the space 2" . There also exist constants C, N (C > 1, 0 < N < n) such that

N
(o) < (1+ 8520 uatesn) (14
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uniformly for all x, y € 2 and all r > 0. The reader can find more information on this
subject in [1, 2].

Let T be a bounded linear operator on L?(:2") with an associated kernel K (x, y)
in the sense that

T = [ KGw) 10)du0), (15)

where f is a continuous function with compact support, x ¢ suppf; and K(x,y) is a
measurable function defined on (2" x 2" )\A with A= {(x,x) :x € 2"}

The authors in [3, 4] assumed that there exists a class of operators A, (r > 0)
which can be represented by the kernels «(x, y) in the sense that

Au(x) = /y a;(x, y)u(y)du(y), forevery function u € L' (2 YNL*(Z").

Moreover, the kernels ¢, (x, y) satisfy the following conditions

la; (x, ¥)| < Iy (x,y), forall x,y € 27, (1.6)

where y (x, y) = ((B(x; 1)) s((d(x, y))"t~") for some positive constant m.
Here s is a positive, bounded, decreasing function satisfying 7
lim 7" T%s(r") =0, (1.8)

r—o0

for some ¢ > N, where n and N appear in (1.3) and (1.4) respectively.

REMARK 1.1. The functions &; above satisfy the following properties (see [4, 5]):
i) There exist positive constants C; and C, such that

C < / hy(x,y)du(x) < Cy uniformly in ¢ and y.
ii) There exists a positive constant C such that

[ ) )l < C.arf0) and [ e 3) 50| dus) < CA ).
v v

Here .# f(x), the Hardy-Littlewood maximal function, is defined by

M F(x) = sup { el |f<y>du<y>} ,

B>x
where the supremum is taken over all balls B containing x.

The class of operators A, plays the role of approximation to the identity. The
existence of such a class of operators A, was verified in [3]. Now let A; and B, (r > 0)
be two classes of operators which satisfy (1.6)—(1.8). Denote by K(x, y) — K;(x, y) the
kernels of the operators (T — TB;), and K(x, y) — K'(x, y) as the kernels of (T —A,T)
respectively. We state below a list of assumptions which lead to interesting results:
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(i) T is abounded linear operator from L?(.2") to L*(2);
(i) There exist positive constants ¢; and C4 such that

/ K(x,y) — Ki(x,y) | du(x) < Ca, forall ye 27
d(x,y)zcpt'/m
(iii)) There exist positive constants ¢, and C4 such that

/ K (x, y) — K (x,9)|du(y) < Ca, forall x € 27
d(x,y)=cot/m

(iv) There exist positive constants ¢;, ¢4 and 3 such that

cy4 tﬁ/m
u(B(x:d(x,y))) [d(x,y)]P’

|K(x,y) — K (x,y)| < whenever d(x,y) > cat'/™.

Using assumptions (i), (ii) and (iii), Duong and Mclntosh [3] obtained the L”-
boundedness of the singular integral operator 7. Afterward, Martell [16] extended
their results to weighted spaces with weights w € A, under hypotheses (i), (ii) and (iv).
Based on a set of hypotheses that are almost similar to the assumptions (i), (ii) and (iv)
above, the author in [12] recently obtained the L?-boundedness of the Marcinkiewicz

integral
. 2, 1/2
V() = {/0 T—ﬁ} 7 (19)

and the commutator

[ K@ e)auw)
d(x,y)<t

5 1/2
art
3

)

i@ =< [

k
/d(x y)<T <H(bi(x) a b,‘()’))) K(x,y)f(y)du(y)

=1

(1.10)
where b; € BMO(.Z"), 1 <i < k. The reader may further view [4, 11, 12, 13, 14, 15, 19]
for several interesting results about this topic.

The purpose of this paper is to extend the results of [12] to homogeneous Herz
spaces Ky ”(R"). In order to do so, we first obtain the weighted L estimates for v(f)
and v;(f). We then use these estimates to further extend to homogeneous Herz spaces
Ky ”(R") and to homogeneous weak Herz spaces WK, '”(R") for the endpoint case.
The plan of this paper is as follows. Section 2 describes some background information
such as definitions, notations and preliminary theorems. Our main theorems are given
in sections 3-5. In the last section, we give an example about a classical kernel K (x, y)
that satisfies the hypotheses of our theorems. For the rest of this paper, the letter C de-
notes a positive constant which may vary at each occurrence; however, it is independent
of any essential variable.
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2. Preliminaries

2.1. Approximation of the identity

Denote by L;'(Z£") the set of all functions in L”(2") with bounded support. Note
that L;’(Z") is dense in LP(Z2") for p € (0,0) (see [6, 7] for example). For f €
Ly (Z), define the linear operator F by

Fw 1) = [ Ky S6)dub), 1

d(x,y)<t

where K(x,y) is a measurable function defined on (2 x 2 )\A with A = {(x,x) :
x € Z'}. Define the Marcinkiewicz integral v(f) by

- 12
v ={ [P oPS ] 2

drt
Denote %, = C and %, = [ (R*; = , where RT = (0, ).

Then v(f)(x) = ||F (f)(x,")[|, - sothat ||v()|er(2) = [[IF (f)
Note also that L (27; %) =LP(Z").

In the sequel, we assume the existence of two classes of operators A, and B,
(z > 0), both of which can be represented by kernels «; (x, y) and b, (x, y) respectively
in the sense that

E2 |Lp(g[) = HF(f)HU’(%;%’Z

Anu(x) = /J( ) u(y)du(y),

for every function u € L' (2" )NL" (%) and for some r > 1 and similar definition for
B;. Moreover, both kernels « (x,y) and b,(x,y) are assumed to satisfy inequalities
(1.6)—(1.8). Let K;(x,y) and K'(x,y) represent the kernels of the operators FB, and
AF (t > 0) respectively. We may assume that both FB, and A,F have integral forms

FB)Nw D)= [ Kl 70)du0)

and

WRNED= [ K53 F0)db). 3

d(x,y)<t
To see this, consider the kernel b; of the operator B; defined in [3] by
bi (v, 2) = (et ) Bz 1))

Now, let B; ; be the operator whose kernel by ¢(y, z) is defined by br < (y, 2) = Xp(z;1) (V) br (¥: 2)-
Then |b;, ¢ (y, 2)| < |b(y, 2)| <l (y,2) forall ¢, >0 and y, z € Z . Moreover,

1(FB..o)(f)(x,) | 2, = ‘

| K2 f@du)
d(x,z)<2KT By
=2x

b

%

/ Ki(x,2) f(2)du(2)
d(x,2)<t
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where x appears in (1.1). Similarly, if we let A, ; be the operator whose kernel
ar,¢(x,y) is given by

1, 2(%, V) = L) (V) @ (% ¥) = X 1) 00) Xty O [ (BOxs £1))] 71,

then the above equation also holds for [|(A;,:F)(f)(x,-)|lz, (with K'(x, z) instead of
K;(x, z)). Therefore, for simplicity, we will assume that (2.3) holds true; and we will
work with the operators A; and B, for the rest of this paper.

For a ball B C 2", denote the radius of the ball B by rg. Let tp = rjj, where
m appears in (1.7)—~(1.8). For g € L;’(Z"; %), we define the sharp maximal function

M:(|lg]|2,) by

Ml )0 =sup{ s [ e~ )0 )} 24)

We now state the following assumptions for our theorems:

(a) v is abounded operator from L"(2") to L' (Z") with the bound C, for some
r>1;

(b) there exist positive constants ¢; and C4 such that

K(x,y) — Ki(x,y)]
d < Cy, forall ye 27,
/d(x y)=cptl/m d(x,y) Hx) A Y

(b) there exist positive constants ¢; and c3 such that

|K(xvy)_Kt(x7 y)| c3 B/m y
< whenever d(x, y) = cit/"
d(x,y) W(B(x;d(x,y))) (d(x, y))ﬁ (x, ) 1

(c) there exist positive constants ¢ and c4 such that

[K(xy) —K'(x )| cs P/

never d(x, cotl/m.
Ay S RBEdE) @y e = e

REMARK 2.1. Note that hypothesis (b) implies hypothesis (b). Assumption (b)
will be used to prove weak type (1, 1) inequality for the Marcinkiewicz integral.

2.2. Muckenhoupt weights

For p € (1, ), let p’ be the dual exponent of p. That is, I%—f—# = 1. A weight
w is said to belong to the Muckenhoupt class 27,(2"), 1 < p < oo, if there exists a
positive constant C such that

(st Joweon) (s o) dm),,/,,/ <C<e
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for all balls B C :Z". The smallest constant C for which the above inequality holds is
the .27, bound of w. For aball B C 2" and any weight w, let w(B) = / w(x)dp(x).
B

The class <7 (Z£") consists of non-negative functions w such that

w(B) .
— <K
0B S Cessinfyepw(x)

for all balls B C 2. A weight w belongs to #%.(Z") if there exist positive constants
Cy and 6, (0 < 8, < 1) such that, for any ball B C £  and any measurable subset

E CB, 5
w(E) B(E)\™
w(B) S (u(B)) ' 23

If we o,(2") (1<p <o), wedenote LP(Z", w) to be the space of all measurable
functions f on 2~ whose norms are finite:

1/p
i i={ [, 170w} <
For more information on topics of weights, the reader may view [17, 18].

2.3. Preliminary lemmas and theorems

The following lemmas and theorems are necessary for the proof of our theorems.

LEMMA 2.2. [2] Let fEeL'(Z") with bounded support and Oc>||fHL1(‘%~)(,LL(<%”))’1.
Then there exist positive constants C, My depending only on 2" and a sequence of
metric balls {B;}; = {B(xi, r;)}; such that

Qu:i={xe 2 :.4(f)(x)>Cypa}l= UBh

and
a) f(x) =g(x)+b(x), where

) = 100,00+ 3 (s [ FOIOIN0) ) ),

1

m) = ZE p) = Y b,

1
H(B:)

) = 160~ (i [ SOOI ) 0

forall xe X ;
b) |g(x)| < Ca for almostall x€ X ;

c) llgllerzy < ClIfllLr oy
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d) for all i € N, supp(b;) C B; and Z[J )<Ca” 1HJCHLI

e)forall i e N, /b,-xd[,t(x):
Z

. 1
f)forall ieN, m/B |bi(x)|du(x) < Ca, and ZHbiHLl(.%‘) <Clfllpays

g) every point of 2" belongs to no more than M, balls of {B;},.

LEMMA 2.3. [12] Assume that hypotheses (a) and (c) (as stated in section 2.1)
hold true. Then there exists a positive constant cg such that, for every f € Ly (Z") and
any r>1,

MA(IF(f)]]2,) (x) < co My f (),

where the definitions of ||F(f)(x,-)||s, and Mi were given by equations (2.1) and
(2.4) respectively; and

1/r
w0 =supl s [Voraut ) = (e

B>x

THEOREM 2.4. [12] Assume that hypotheses (a), (b) and (c) (as stated in section
2.1) hold true. Then the operator v has well-defined extensions on LP(Z") for 1 <
p < oo. Moreover, there exist positive constants Cy and C (where C depends on p,
Cy, Cp and C, ) such that

IV i=(2) S C2 (Ca+Co |11 ()

and
IVOzr 2y S Cl o2y for 1 < p <ee.

THEOREM 2.5. [13, 16] Let p € (0,), w € o, and g € L} (X ';%,). Assume
that (180 |3,) € LP(2,w). Then
(i) 12 (11g() ) |2r (2w < CUMEIZ() |2 102y i 2 is unbounded.

(ii) 1. (118 ) 1102 < CIME (18 2) o2 ) y+Cllgll2m,) if 2
is bounded.

3. Weighted estimates for Marcinkiewicz integrals

We need this lemma below in order to obtain weighted estimates of Marcinkiewicz
integrals.

LEMMA 3.1. Let we ), (1 <p <eo) and f € Ly ("), where L7 (Z") denotes
the set of all functions f € L*( %) that have bounded support. Assume that hypotheses
(a), (b) and (c) hold true. Then v(f) € LP(Z",w).
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Proof. We will employ some ideas in [16] to prove this lemma. Recall that v(f)(x)
= ||F(f)(x,-)||,. We may assume that supp(f) C B(x,; R) for some x, € 2~ and
some R > 0. By Reverse’s Holder’s inequality, there exists € > 0, depending on p and
the .27, bound for w, such that

1

1 / 1+e Tre C

[ Eduw ) < —— / w(x)dp(x) for every ball B C 2.
(M(B) B u(B) Jp

An application of Holder’s inequality (with g = 1 4 €) yields

fo i IFCG I ()

1
T+e
< E) ]| Doy ( /B . ‘2R)w(x)1+£du(x)>

et S LUl
U(B(x,; 2R)) e Lr(i+e)

w(B(x,; 2R))
U(B(xo; ZR))

where the last inequality follows from Theorem 2.4. Let #; = (2"!R)™. We write

/. o IFO I, )0

l/d(xﬂfu)gﬂ‘R | \F(f)(x, )HZ&Z W(X) du(x)

“ i/ e 1 D) = A (D) e, I, wix) dp )

<C

<C Hfl\” (11ey (3.1)

+Cp 2/” I\A,kF(f))(x, [, wlx) dp (x)

=J1+ o, 3.2)
where d(x, x,) = 2R means {x € 2" :2*R < d(x, x,) < 2¥"'R}. By Minkowski’s in-
equality, ) - 12
1P -A P 5 = { L1 (K=K w2) fdut) —3}

0 d(x,z)<t T
K (x, z) — K" (x, 2)|
< )d(z
/ @
{Bim
f(2)
<C / d
ot d0x, P BB der ) M
2-Bj
<cC / du(z
/Eou B(x; 27+ 15/™)) Jat, z)~2ft'/'"| J@ldu
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where the second and third inequalities follow from hypothesis (¢) and (1.3) respec-
tively. Therefore,

oo

hecs |
! kg’l d(x,x,)=22%R

<C /5, F @)W (x) dp () < C[ ][] 1y WB o = R)) < oo. (3.3)

[ A f(x)]Pw(x)du(x) < C /f [ A f(x)]Pw(x) du(x)

Note that w € &, = w € @7, ); for some s > 1 with p/s > 1. By Minkowski’s in-
equality, Holder’s inequality, inequality (1.7), Remark 1.1-i and by Theorem 2.4, we

obtain
1/2
2dt /
=

w0 1/2
</ |a,k<x,y>|( / IF(f)(y,t)|2%t> 410
< [ e IF0.lldn )

A F (), )|, = (/:

[ ey F (0 du)

, 1/s
POy ([, 03~ i x3) )
C l/.\"
W Mr——e ([ 1)
u(B(x;5,"7)) ¥ ’
< CI1 sy [ (Bl ™))V,
From Remark 5.6 [16], we see that
wi(x)
[w(B(x; 1/™)))P/s

It follows from (3.1)—(3.4) that F(f) € L? (2", w; %,), orequivalently, v(f) € LP (2", w).
Lemma 3.1 is proved. [

L <C ”HN/ d < CIIfI1L,, - 3.4
2SI Z [ e ) <ClG ) G4

THEOREM 3.2. Let w € &), 1 < p < co. Assume that hypotheses (a), (b) and (c)
hold true. Then there exists a positive constant Cp, ,, depending on p and w, such that

Ve (2 w) < CowllfllLr(27,w)-

Proof. It suffices to prove the theorem for f € Lj;(Z"), since this space is densely
contained in LF (2", w) for 1 < p < . Recall that w € &, = w € o, for some
s> 1 with p/s > 1. We first consider the case that 2" is unbounded. By Lemma 3.1,
V() =IF(N Oz, € LP(Z, w), and thus A ([|F(f)()||2,) € LP (2, w). We then
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have
| M@t due = [ IF) 1, w00 du)
< [ LAUFGIOl) 0w dua )
< [ MAIF(O )0l w9 dm ()
<€ / MO w(x) dn ()

<c [ 1r@rwda),

where the second and third inequalities follow from Theorem 2.5 and Lemma 2.3 re-
spectively.

We now consider the case that 2~ is bounded. Recall from Theorem 2.4 that v is
a bounded operator on L9(%Z") for ¢ > 1. Since 2" is bounded, Vv is also bounded on
L'(2°). By Theorem 2.5 and by Lemma 2.3, we have

VA (30 = IEDN 2]y < ILUFON2) o 50

< C||MAUIF()]1) HCIIF 2,

)

}Ll(%)

LP(2 w
S ClIMsfller 2wy +CHVIO L (2
< Clfllwezr ) FCNVINDL 2y < Cl e w)-

The last inequality is a consequence of successive applications of Holder’s inequality:
IVl 2y < IV lisz) (2N < CN sy (2]

o , 1/(s7)
< Ul W ([ 0oty au)) =pss)
< Cllfllzr (2 ,w)-

The proof of this theorem is finished. [J

THEOREM 3.3. Let w € o). Assume that hypotheses (a), (I;) and (c) hold true.
Then there exists a positive constant C,,, depending on w, such that

VOt w) < CwllF 1L 2, w)-

Proof. Itis enough to prove the theorem for f € L;’(2"). Observe that hypothesis
(b) implies hypothesis (b). Thus we may conclude from Theorem 3.2 that if w € @/ C
<7, for some fixed r > 1, then there exists a positive constant C,.,, such that

IV ez w) < Crw ISl 2 ,w)-
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Now suppose that 4 > C;., (%)(,LL(%))_I. We apply Lemma 2.2 to f € Ly (")
at the height o = C, A to obtain a sequence of metric balls {B } = {B(x;, rl)} such
that Q; :={x€ 2 : A f(x) >CoCr A} = UB,, and f(x) +2b

Let B; = B(x;; %) := B(xi; (1 +c1)ri), Where c1 appears in hypothesis (b). We
have

w({xe 2 (N >A)) < w ({e 2 F @, > %D

ol fe o )

=7Z1+2.

The L"-boundedness of v together with properties (b) and (c) of Lemma 2.2 imply that

2 IF@ el wwan = (5) [ @@ v

%)4 /%,|(g)(x)|rw(x)du(x) <C /’{W /J 18(x)[w(x)du (x)

S {|f|Ll<%~,W> o [ 3 OIm0Iau0)) 0o(B)) etz 0 du(x)}

- {Ifluwpw) +3 [ f(y)IW(y)du(y)}

< C;_Lw {|f|L1(%,W)+M1/ |f(y)w(y)d”(y)}

G,
<C%\|f|\u(z‘,w)»

< <

where M appears in part (g) of Lemma 2.2. Observe that
I K Z3+7Z4+7s,

where Zy =w (UrBi) . Zs=w ({x & U;Bi: 5 ||(F — FB,)(Bi)(x. )]sy > 2/4}) . and
Zs=w({x€ 2 1 ||S;FBbi(x, )|l 5, > 1/4}).

We choose ; = r}", where m is the constant appearing in (1.7). It follows from the
doubling property of w, properties (d) and (g) of Lemma 2.2, and weak type (1, 1) of
the Hardy-Littlewood maximal operator that

Z3—W(U, ,) ZW <C2w )< CMyw(UiB)) =CMyw(Qy)

:Cle({XG%I.%f()>Cf 2f})<c erfHL'Jw
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We now estimate Z4. If y € B; and x ¢ |, B;, then d(x,y) > ciri = cltl-l/m. Note that

12
2dr /
P

| K@) Ky )b du)
d(x,y)<t

(F — FBL)(51) (v, )|z, = {/O
< [ 1K) = Ko ) @) 10 ).
Thus we have
n<; /(Uigi)@<F—FBt,-><bz->(x,->mzw(x)du(x)
<3 oy (z K =Kyl y>>1bz-<y>|du<y>) w(x) dp (x)

"2 Z/ {/ d(xy)zcrt! K (x, y) — K (x, y) | (d(x, y))lW(X)d,LL(x)} 1b:(v) | d ().

By assumption (b) and inequalities (1.3)—(1.4), we obtain

w(x)
;LZ/ {22 ﬁj/”wc tl/mmdu(ﬂ} [bi(y)du(y)

2-Bij
A 2/ {/ 0 1u(B(y; 2+l tl/m)) /( 2/+1¢1,1/m) ()C)d,u(x)} |bi(y)|du(y)
AE///ZW )bi(y)dp(y) AZ/ 16: ()| w(y) di(y)

z{;/& Fw)dn0)+ 3, [ (G [ wo)au0)) @laut: >}

C

<% {Ml JRUCIEOETERS WA f(Z)W(Z)du(Z)} <l

It remains to estimate Zs . It follows from inequality (1.6), Lemma 2.2-f and Proposition
2.5 [5] (or see Lemma 1 [3]) that

B < [ s 9B () < suphy(x.) [ i)l i)
YEB;
CC;WA‘“(BI) Suphli('x7 y) < CCr wlu( i) inf heti(x7 y)
’ yEB; ' YEB;
CCA [ oy, 3)m () ), (35)

where 6 > 1 is a positive constant (see Lemma 1 [3]). Recall that w € @ C &7, =
w!=" € o7, Now take a function u >0, ue L” (2", w) with HuHU/(‘%W) < 1. Then the
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function v =uw € L’ (2" ,w'~") and HVHU/(Q%WI,,/) = H”HU’(,%.W) < 1. By inequality
(3.5) and Remark 1.1-ii, we obtain

/, B3] o) () ()
<cciay /f ( /J o (63 w(2) () ) ) )

<CClAY, /f A (00) () 28,0 s )

(3.6)

<CM,C l ///(uW)() du(y)

S e {/ [ () ) W) /d“(y)}l/r/{W(UiBi)}l/r

<CC A lully (Qx)l/r
<CCZM{W({XE«%”://ZJ‘( > Cr G}

)L l/l’ 1/r
e I

rzw ”Lr’ 2w { }
A
<C{m} 1 2

Since w € & C 7, it follows from the L"- boundedness of v and from the estimate
above that

P
o

N

Therefore,

z ‘Bfibi‘

Jw(x)dp(x)

r

I ZBz, +) i, wlx) di(x)

r

x)dp(x)

<)/, [Z e

=) <2|Bz, ) () du ()

2l

<C

Summing all of the estimates of Zi,...,Zs, we obtain for A > Cj.,||f] |L1(‘%~)(u(¢%))_l

w({re 2 V(1)) > A1) < S Cat ConlIF



1054 H. VIET LE

If 2 is unbounded, then the above inequality holds for all A > 0; and thus we are
done. Now suppose that 2" is bounded. Then for 0 < A < CWHfHLl(%)(u(,%”))_l,
we have

an W(%) Cr,w

wilxe 2 V(N > ) <w(2) < FEES ) < 2 iy

=

The proof of this theorem is complete. [

4. Commutators of BMO functions and Marcinkiewicz integrals

Given a fixed positive integer k, let b= (by, by, ..., b;), where each b; € BMO(.2)
(1 <i<k). Foreach b; (1 <i<k),denote by ||b;||. the BMO norm of b;; and let

1B} =TTy 4]+

Let A = (At,..., &) = (1), .., (by)s), where (b)p = ﬁ/}gbi(x)du(x),
1<i<k. Let C’; (1< j<k) stand for the family of all finite subsets c={c(1),...,0(j)}
of j different elements of {1,...,k}. Forany o € Cf, we denote the complement
sequence of ¢ by ¢’ ={1,...,k}\ 0. Let b = (bs(1)s--->bg(j)) and let the product
bo =bg(1) b)) Similarly, denote (b— 1) = (bo(1)— Ao(1)s---»bo(j) — Ao(j)) and

(b—=2A)o = (bo(1) = Ao(1)) - (bo(j) = Aa(j))-
For f € L; ("), define the linear operator F;(f) by

BT = [

d i—1

k
(x,y)<7 {H(bi(x) —bi(y)) } K(x,y)f(v)du(y),

where K(x,y) is a measurable function defined on (2" x 27 )\A with A = {(x, x) :
xe X},
Define the commutator of Marcinkiewicz integral and BMO functions, VB( f), by

e ={ e o)

We have the following theorem.

THEOREM 4.1. Let 2" have infinite measure. Let v;(f) be the commutator of
Marcinkiewicz integral and BMO functions with non-smooth kernel satisfying hypothe-
ses (a), (b) and (c). Let w € of,, 1 < p < oo. Then there exists a positive constant C
(depending on p and w) such that, for all f € LP(Z),

Vs ()| wy S CUBI ANz (2 )-

Proof. In order to prove this theorem, we need the following lemma.
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LEMMA 4.2. [12] Let tg = 1}y, where rp is the radius of the ball B, and m ap-
pears in (1.7)—(1.8). Given any r > 1, there exists a positive constant C (depending on
r) such that

M) 0) = spf e [0 = A )0 s a0 |

<C|\b|\ (M, f(x) +M(|[F ()| 2,) () }
+CZ Y %(HIb |*> r(I1E5_, (N)ll2,) (x)-
=l geck
Givenwe;z{p, 1 < p < oo, there exists € >0 such that w € ./, , where p—& >
1. We choose r > 1 such that 1 < r < Lg < p. Note that w € &), = w € &),
p—
since p—£<g.

r
By Theorem 2.5, Lemma 4.2, Theorem 3.2 and by induction argument, we may
conclude that

2 (Vi) |2 ) = 12 (1 (D)) 0 (27, w)

<
< CIIM(IF;()]2) (2w
<cwmmmmmxwﬂwmnnp

[V (D Lr 2 m)

)l |LP(‘%~,W)}

+C Z 2 ki (Hlb |*> IM:A1F;_ (D) Lr(2w)

=l geck
< C||B], 1o (2 +C2 Y ki <H|b ) ( Ier(2 w)
=1l geck

< ClIBl 1 llerzwy- O

5. Marcinkiewicz integrals on homogeneous Herz spaces

5.1. Homogeneous Herz spaces

For k€ Z,let Ay = {x € R": 28" < |x| < 2*} . Denote the characteristic function
Xa, on the set A by x;. For a € R, 0 < p, g < o, the homogeneous Herz spaces
Ky "(R") are defined by

1/p
KgaP(Rn): fELloc(Rn\{O}): |‘f‘|Kg‘p(R’1) = <22kap|ka|Lq R~ ) < o0 )

keZ

with usual modifications when p = oo or g = co. Observe that Ko/4"(R") = LI(R", [x|*),
and KJ/(R") = L(R").
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Denote my (A, f):=|{x e R":|f(x)| > A}|, where A > 0. For « € R, 0 < p <
e and 0 < g < o, the homogeneous weak Herz spaces WK;"”(R") consist of all
measurable functions f on R” whose norms are finite:

I/p
1l lyger e = sup { 2 (z 24 (1 (2. f))””) <o (0< p <)
A>0 keZ

and

[F 1w ko= my = sup {/1 sup {2ka (mi (4, f))l/q} } <o
A>0 keZ

Note that WKZ/74(R") = L9(R", |x|*) and WK (R") = LI=(R"), where LI(R", w)

is the space of all measurable functions f such that

sup {JL (wx e R": |f(x)| > A))”"} < oo,
A>0

For topics related to Herz spaces, the reader may view [8, 9, 10] among many other
good references.

In order to obtain the boundedness of Marcinkiewicz integrals and their commu-
tators on homogeneous Herz spaces, we need the following theorems.

THEOREM 5.1. [9] If a sublinear operator T is bounded on L1(R", |x|B) for
some q € (1,) and for all B € (B, B2), where Bi, B € R, then T is also bounded
on K" (R") forall o € (B1/q, B2/q) and all p € (0, o]

THEOREM 5.2. Suppose that a sublinear operator T is bounded from L' (R", |x|P)
to LY=(R", |x|B) for all B € (B, B,), where By, B, € R. Then T is bounded from
K{"P(R") to WK["P(R") forall o € (By, Bo) and all p € (0,0]. That is, there exists
a positive constant C, depending on p and o, such that

ITF[ly g gny < ClIflgor gy forall o€ (B, Bz) and all p & (0, =],

Proof. We apply some ideas in [9] to prove this theorem. Note that

1/p
ITF ||y gorgny = sup g A | X, 2P (A, Tf)P , 0< p<oo, (5.1)
! A>0 kel

and

T |y g ) = sup {sup {2my (2. Tf)}} , (52)
A>0 LkeZ

where my (A, Tf) = [{x € Ay : |Tf(x)] > A}| and Ay = {x € R : 2k=1 < |x] < 2F},
keZ.
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For j € Z, denote f; = fx; = fxa;. Pick oan, o € (B1, B2) suchthat B < o <
o < o < fB,. We first consider the case 0 < p < e. By hypothesis, we have

1/p
Jy = A (Z 2k (A, Tf)p>

keZ
k
{XEAkZ T( z f,) (x) >
j:—oo

{xEAk ( Z fj)
s
. py /P
c {E2k(°‘°‘2)p< > |fj|L1(Rn7|x|a2)> }
keZ =

. )4 1/p
c { Y k(a—a)p ( D |fj|Ll(R",x"1)> }
keZ j=k+1

J3+Js.

| >

p) 1/p
p) 1/p

}
3]

< Cph (2 2kop

keZ

+Cp A (2 2kop

keZ

N

(5.3)

If 0<p <1, then

k 1/p
S o (k=j)(a— w@)pojep||f; HLI . }

- I/p
=C{ (22“”(”2 ) 2707  f5||P, R,,}
JEZ \k=j

1/p
2k(0¢70¢2) )2/0517|fj|L1 R") }

Similarly,

1/p
c{z S at-iaaman e, }

kE€Z j=k+1

_ 1/p
j o
_ c{ s ( S gtk-iea) )W|f,|U . }
€7 \k=—o
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—1 1/17
=Cy X | X 2 I
JEZ \k=—oo

1/p
<C EzjaprJHLl R" :CHfHKD!,p R1)-
(R

JEZ
Hence,
Ia <3+ Ja < ISl goer gy -

If 1 < p < <o, then we apply Holder’s inequality to obtain

X p/p
n<ciy ( Y, akile-epigion) p) 0 Rn> ( ) 2“”“"“”’"“)

k€Z \j=—o Jj=—o°

 1/p

I/p

o 204
+C 2( D o (k=j)(a= al)p/szaprjHLl ) ( D 2(k—j)(a—a1)p’/2>

kEZ \ j=k+1 j=k+1

- r/r
2 ( 2 2 (a—omp [7/22/0([7HfHLI Rn) (2 Jjla—m)p ’/2)

k€EZ \j=—o J
1 p/p
( Z 2}'(06—061)17'/2>

Jj=—oo

1/p

N L/p

. z( S a-naamay e,

keZ \ j=k+1

{2 2 2’ a = p/zzjaprHLI Rn}

kEZ j=—00

1/p
—|—C{ 2 2 plk=j)(e—en p/2210¢17‘|fj|‘L1 - }

keZ j=k+1

JEL

1/p
<C 22"”’\|f1\lL1 R = Cl|f|lger gn)»
LR

where the last inequality follows from similar calculations as in the case 0 < p < 1.
Therefore, for 0 < p < oo,

ITF [l gy = Sup {2} < ISl ey
1 A 1
>0
When p = e, we have

Iy < T3+

) -
<C 3 20O | flly gy +€ 3, 20672 f |1
j=—oo J=k+1
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k
< CSUP{ZmejHLI(R")} ( Z z(k—J)(a—az)>
JEZ

e

FCsup {2 il g | 3 2470
JEZ Jj=k+1
:Csup{sz‘HfjHLl(Rn } 22/0: o)
JEZ j=0
WWVWMW}ZWH)
JEL =0

< Csup {2 fjllps e | = Al goem oy
JEZ

Hence,

ITF ||y gevo= ey < SUP sup{J3+Ja} o < C|[f]|go= (gny-
! kEZ !

The proof of this theorem is finished. [

THEOREM 5.3. Assume that hypotheses (a), (b) and (c) hold true. Then there
exist positive constants Cy; and Cy (depending on p, q and o) such that

V() lgeer oy < Co Il g gy (5.4)

and
V5 () lgeer gny < CollBl |11 geer (5.5)

1 1
for 1 <g<e, 0<p< ooand——<a< , where —+ — =1.
q q q9 4

If hypotheses (a), (I;) and (c¢) hold true, then there exists a positive constant C3
(depending on p and o) such that

Hv(f)Hwa*P(Rn) <G Hf”[’(f‘~l’(Rn) (5.6)

Sforall o € (—n,0) and all p € (0, ).

Proof. Recall that w(x) = [x|? € @, if and only if —n <a <n(p—1) for 1 <
p <oy and w(x) = |x|* € & if and only if —n < a < 0 (see [0]). Inequality (5.4)
follows from Theorem 3.2 and Theorem 5.1. By Theorem 4.1 and Theorem 5.1, we
obtain inequality (5.5). Finally, inequality (5.6) is a consequence of Theorem 3.3 and
Theorem 5.2. [
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5.2. Example

We will need the following propositions for the example below.

PROPOSITION 5.4. Suppose that there exist constants 8 > 1, Cs >0 and 3 >0

such that
‘K(X7y)—K()C,Z)| < Cs {d()@z)
d(x,y) W(B(x;d(x, y))) d(x,y)

B
} whenever d(x, y) = 61d(y,z).
(5.7)
Then there exist positive constants Cg and & such that
\K(x,y)—[(,(x,yﬂ < C6 tﬁ/m
d(x,y) W(B(x; d(x, y))) (d(x, y))P

PROPOSITION 5.5. Suppose that there exist constants & > 1, C; >0 and >0
such that

‘K(an)—K(Z,YH Gy d(x’z) B
6y) ABE ) { x y)} whenever d(x, y) > & d(x,zg)

whenever d(x,y) = &1/™.

Then there exist positive constants Cg and 4 such that

|K(x7 y)_Kt(x7 y)| Gy tﬁ/m
d(x,y) T u(B(xid(x,y))) (d(x,y))P
We omit the proofs of these propositions since they are essentially similar to the
proof of Proposition 2 in [3].
Now let 2" =R" n > 2. Let Q be homogeneous of degree zero, Q(x) = Q(+)
for every nonzero x € R”, and satisfy the cancellation condition

whenever d(x,y) > 8;1'/™.

|

=

» Q(x)do(x)
S)'l

0.

Assume further that Q satisfies the f3-Holder’s continuity:
There exist constants C > 0 and 3 € (0, 1] such that for all nonzero x, y € R”,

Q) —Qp) <C i—l’ﬁ (5.9)
SO I '
. Q(x)
Let K be the convolution kernel defined by K(x) = PR n>2.Let
x

R = [ K=y,

i

fr—y|<t
and .
Fo 3 (f)(x,1) = /|x—y\<r (H(bi(x) - bi(y))> K(x—y) f(y)dy,
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where each b; € BMO(RR"), 1 < i< k. Recall that the Marcinkiewicz integral and its
commutator are given by

- 1/2 - 1/2
(N = [TIRatnwnPR ) and vz = [T IRasNwnPR)

Since K is a convolution kernel satisfying the cancellation condition, it can be
shown via Fourier transform that vo(f) is bounded on L?(IR"). Thus hypothesis (a) is
satisfied. Moreover, it is straightforward to obtain inequalities (5.7)—(5.8) from inequal-
ity (5.9). By propositions 5.4-5.5, hypotheses (b) and (c) are fulfilled. Consequently,
we may infer from Theorem 5.3 that there exist positive constants C;, C, and C3 such
that

Vel Nllger @) < i1 llge e,
Va3 g gy < Ca LBl 1]l gy

1 1
for1<q<°°,0<p<oo,and—ﬁ<oc<£,,where—+—/:1,and
q q qg q

Vel hyger ey < Gl g
forall oo € (—n,0) and all p € (0, o].
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