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ON THE COMPLETE CONVERGENCE OF WEIGHTED SUMS

FOR WIDELY ORTHANT DEPENDENT RANDOM VARIABLES

AONAN ZHANG, YAWEN YU, RUI YANG AND YAN SHEN ∗

(Communicated by X. Wang)

Abstract. In this paper, some results of complete convergence of weighted sums for widely
orthant dependent (WOD, in short) random variables are established. The results obtained in
the paper generalize and improve some corresponding ones for extended negatively dependent
(END, in short) random variables and WOD random variables.

1. Introduction

Let {Xn,n � 1} be a sequence of random variables defined on a fixed prob-
ability space (Ω,F ,P) . Let {ani,1 � i � n,n � 1} be an array of constants and
Sn = ∑n

i=1 aniXi, S0 = 0. The concept of negatively associated (NA) random variables
was introduced by Alam and Saxena [1] and was carefully studied by Joag-Dev and
Proschan [2]. A finite family of random variables {Xi,1 � i � n} is said to be NA
if for every pair of disjoint A, B ⊂ {1,2, . . . ,n} , cov( f (Xi, i ∈ A), f (Xj, j ∈ B)) � 0,
whenever f and g are coordinatewise nondecreasing such that this covariance exists.
An infinite family of random variables is NA if every finite subfamily is NA. The prop-
erties for weighted sums Sn = ∑n

i=1 aniXi have been studied by many authors, we can
refer to Wang et al. [3], Wu and Jiang [4], Gan [5], and so forth.

The concept of widely orthant dependent (WOD, in short) random variables was
introduced by Wang et al. [6]. In various cases of dominating coefficients, the WOD
structure contains many other dependence structures. Wang et al. [6] give some exam-
ples showing that WOD random variables contain negatively dependent random vari-
ables, positively dependent random variables, and some other classes of dependent ran-
dom variables. In this paper, complete convergence for WOD random variables was
obtained.

Firstly, let us recall the definitions of WOD random variables, complete conver-
gence and stochastic dominance.

Mathematics subject classification (2010): 60E15, 60F15.
Keywords and phrases: Widely orthant dependent random variables, complete convergence, weighted

sums.
This work was supported by the National Natural Science Foundation of China (11501005, 11671012,

11701004, 11801003), Natural Science Foundation for Colleges and Universities of Anhui Province (KJ2015A065,
KJ2017A027, KJ2016A027), Natural Science Foundation of Anhui Province (1508085J06, 1808085QA03,
1808085QF212,1808085QA17), Students Science Research Training Program of Anhui University (KYXL2016007,
KYXL2017005, KYXL2017001).

∗ Corresponding author.

c© � � , Zagreb
Paper JMI-12-81

1063

http://dx.doi.org/10.7153/jmi-2018-12-81


1064 A. ZHANG, Y. YU, R. YANG AND Y. SHEN

DEFINITION 1.1. [6] For the random variables {Xn,n � 1} , if there exists a finite
positive sequence {gU(n),n � 1} satisfying for each n � 1 and for all xi ∈ (−∞,+∞) ,
1 � i � n ,

P(X1 > x1,X2 > x2, · · · ,Xn > xn) � gU(n)
n

∏
i=1

P(Xi > xi), (1.1)

then we say that the random variables {Xn,n � 1} are widely upper orthant dependent
(WUOD, in short); if there exists a finite positive sequence {gL(n),n � 1} satisfying
for each n � 1 and for all xi ∈ (−∞,+∞) , 1 � i � n ,

P(X1 � x1,X2 � x2, · · · ,Xn � xn) � gL(n)
n

∏
i=1

P(Xi � xi), (1.2)

then we say that the {Xn,n � 1} are widely lower orthant dependent (WLOD, in short);
if they are both WUOD and WLOD, then we say that the {Xn,n � 1} are WOD random
variables, and gU(n) , gL(n) , n � 1, are called dominating coefficients.

It is easily seen that gU(n) � 1, gL(n) � 1. If both (1.1) and (1.2) hold for gL(n) =
gU(n) = M � 1 for any n � 1, then {Xn,n � 1} are extended negatively dependent
(END, in short) random variables. If both (1.1) and (1.2) hold for gL(n) = gU(n) = 1
for any n � 1, then {Xn,n � 1} are called negatively orthant dependent (NOD, in
short) random variables. It is well known that NA random variables are NOD random
variables. For more details about NOD sequence, we can refer to Shen et al. [13], Wu
and Jiang [14], Sung [15], and so on. Hu [7] pointed out that negatively superadditive
dependent (NSD, in short) random variables are NOD. For the details about the concept
and the probability limit theory of NSD sequence, one can refer to Shen et al. [9],
Wang and Chen [17], Wang et al. [18], and so forth. Hence, the class of WOD random
variables include independent sequence, NA sequence, NSD sequence, NOD sequence
and END sequence as special cases. So, it is interesting and necessary to study the
convergence properties of WOD random variables.

Many literatures have discussed the probability limiting behavior of WOD random
variables and a lots of applications have been obtained. For example, Wang et al. [8]
investigated the complete convergence for WOD random variables, Shen et al. [19] and
Chen et al. [20] established some probability inequalities for WOD random variables,
Wang and Hu [21] investigated the consistency of the nearest neighbor estimator of the
density function based on WOD samples, and so on.

Throughout this paper, let {Xn,n � 1} be a sequence of WOD random variables.
I(A) is the indicator of the set A . C denotes a positive constant which may be different
in various places. an = O(bn ) stands for an � C bn . Let ψ(x) = lm(x) or ψ(x) = 1,
lm(x) = lnmax{x,1} , and g(n) = max{gL(n),gU(n)} .

DEFINITION 1.2. A sequence of random variables {Xn,n � 1} converges com-
pletely to a constant θ if for all ε > 0,

∞

∑
n=1

P(|Xn−θ | > ε) < ∞. (1.3)
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From the Borel-Cantelli lemma, this implies that Xn → θ almost surely as n→ ∞ .
Therefore the complete convergence is a very important tool in establishing almost sure
convergence of summation of random variables as well as weighted sums of random
variables.

DEFINITION 1.3. A sequence of randomvariables {Xn,n � 1} is said to be stochas-
tically dominated by random variable X if there exists a positive constant C such that

P(|Xn| � x) � CP(|X | � x) (1.4)

for all x � 0 and all n � 1.

2. Lemmas

This section will give some lemmas, which are useful and necessary to prove main
results.

LEMMA 2.1. [6] Let {Xn,n � 1} be WLOD (WUOD) with dominating coeffi-
cients gL(n) , n � 1 (gU(n) , n � 1) . If { fn(·),n � 1} are nondecreasing, then { fn(Xn),
n � 1} are still WLOD (WUOD) with dominating coefficients gL(n) , n � 1 (gU(n) ,
n � 1); if { fn(·),n � 1} are nonincreasing, then { fn(Xn),n � 1} are WUOD (WLOD)
with dominating coefficients gL(n) , n � 1 (gU(n) , n � 1) .

LEMMA 2.2. [8] Let {Xn,n � 1} be a sequence of WOD random variables with
dominating coefficients gn = max{gL(n),gU(n)} . If { fn,n � 1} is a sequence of real
nondecreasing (or nonincreasing) functions, then { fn(Xn),n � 1} is still a sequence of
WOD random variables with the same dominating coefficients g(n) .

LEMMA 2.3. [8] Let p � 1 and {Xn,n � 1} be a sequence of WOD random
variables with EXn = 0 , E|Xn|p < ∞ for each n � 1 and dominating coefficients gn =
max{gL(n),gU(n)} . Let {ani,1 � i � n,n � 1} be an array of constants. Then there
exist positive constants C1(p) and C2(p) depending only on p such that

E

(∣∣∣∣∣
n

∑
i=1

aniXi

∣∣∣∣∣
)p

� [C1(p)+C2(p)g(n)]
n

∑
i=1

E|aniXi|p, 1 < p � 2, (2.1)

E

(∣∣∣∣∣
n

∑
i=1

aniXi

∣∣∣∣∣
)p

� C1(p)
n

∑
i=1

E|aniXi|p +C2(p)g(n)

(
n

∑
i=1

E|aniXi|2
) p

2

, p > 2. (2.2)

LEMMA 2.4. [10] Suppose that {Xn,n � 1} is a sequence of random variables
stochastically dominated by a random variable X . Then, for all q > 0 and x > 0 ,

E|Xn|qI(|Xn| � x) � C(E|X |qI(|X | � x)+ xqP(|X | > x)), (2.3)

E|Xn|qI(|Xn| > x) � C(E|X |qI(|X | > x)). (2.4)
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LEMMA 2.5. [11] Let the function ψ(x) = 1 or ψ(x) = lm(x) . Then the function
ψ(x) have the following properties:

(1) for all 1 � k � m,
m

∑
n=k

nr−1ψ(n) � Cmrψ(m), if r > 0, (2.5)

∞

∑
n=m

nr−1ψ(n) � Cmrψ(m), if r < 0. (2.6)

(2) for all s > 0 ,

ψ(|x|s) � C(s)ψ(|x|) � C(s)ψ(1+ |x|). (2.7)

3. Main results and proofs

THEOREM 3.1. Let α > 1
2 , p > 1

α , and {Xn,n � 1} be a sequence of WOD
random variables which is mean zero and stochastically dominated by a random vari-
able X . Assume that dominating coefficients g(n) = O(nαt) for some t > 0 . Let
{ani,1 � i � n,n � 1} be an array of constants satisfying ∑n

i=1 |ani|r = O(n) for some

r > max
{

p,2(1+ α p
α p−1),

α p+αt−1
α− 1

2

}
. If

E|X |pψ(|X |) < ∞, (3.1)

then for every ε > 0 ,

∞

∑
n=1

nα p−2ψ(n)P

(∣∣∣∣∣
n

∑
i=1

aniXi

∣∣∣∣∣> εnα

)
< ∞. (3.2)

Proof. Without loss of generality, we assume that ani � 0 (otherwise, we can note
that ani = a+

ni−a−ni ). For fixed n � 1, 1 � i � n , define

X
′
i = −nαI(Xi < −nα)+XiI(|Xi| � nα)+nαI(Xi > nα).

It is easy to check that(∣∣∣∣∣
n

∑
i=1

aniXi

∣∣∣∣∣> εnα

)
⊂
(

n⋃
i=1

(|Xi| > nα)

)⋃(∣∣∣∣∣
n

∑
i=1

aniX
′
i

∣∣∣∣∣> εnα

)
,

which implies that

P

(∣∣∣∣∣
n

∑
i=1

aniXi

∣∣∣∣∣> εnα

)

� P

(
n⋃

i=1

(|Xi| > nα)

)
+P

(∣∣∣∣∣
n

∑
i=1

aniX
′
i

∣∣∣∣∣> εnα

)

�
n

∑
i=1

P(|Xi| > nα)+P

(∣∣∣∣∣
n

∑
i=1

ani(X
′
i −EX

′
i )

∣∣∣∣∣> εnα −
∣∣∣∣∣

n

∑
i=1

aniEX
′
i

∣∣∣∣∣
)

. (3.3)
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First, we shall show that

1
nα

∣∣∣∣∣
n

∑
i=1

aniEX
′
i

∣∣∣∣∣→ 0, as n → ∞. (3.4)

From Lemma 2.2, it is easily seen that {X ′
i ,1 � i � n} is still a sequence of WOD

random variables. Hence, it follows from the EXi = 0, ∑n
i=1 |ani|r = O(n) , Markov’s

inequality and Lemma 2.4 that

1
nα

∣∣∣∣∣
n

∑
i=1

aniEX
′
i

∣∣∣∣∣ � 2
1
nα

n

∑
i=1

aniE|Xi|I(|Xi| > nα)

� C
1
nα

(
n

∑
i=1

ar
ni

) 1
r

n1− 1
r E|X |I(|X |> nα)

� Cn1−αE|X |I(|X |> nα). (3.5)

When p � 1, from α p > 1, we have

1
nα

∣∣∣∣∣
n

∑
i=1

aniEX
′
i

∣∣∣∣∣ � Cn1−α pE|X |p → 0, as n → ∞.

When 0 < p < 1, from α p > 1, we have α > 1, so

1
nα

∣∣∣∣∣
n

∑
i=1

aniEX
′
i

∣∣∣∣∣ � Cn1−αE|X |I(|X |> nα) → 0, as n → ∞.

Hence, by (3.3) and (3.4),

∞

∑
n=1

nα p−2ψ(n)P

(∣∣∣∣∣
n

∑
i=1

aniXi

∣∣∣∣∣> εnα

)

� C
∞

∑
n=1

nα p−2ψ(n)
n

∑
i=1

P(|Xi| > nα)

+C
∞

∑
n=1

nα p−2ψ(n)P

(∣∣∣∣∣
n

∑
i=1

ani(X
′
i −EX

′
i )

∣∣∣∣∣> εnα

2

)
. (3.6)

To prove (3.2), it suffices to show that

I1 = C
∞

∑
n=1

nα p−2ψ(n)
n

∑
i=1

P(|Xi| > nα) < ∞, (3.7)

I2 = C
∞

∑
n=1

nα p−2ψ(n)P

(∣∣∣∣∣
n

∑
i=1

ani(X
′
i −EX

′
i )

∣∣∣∣∣> εnα

2

)
< ∞. (3.8)
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By (1.4) and (3.1), we can obtain that

I1 � C
∞

∑
n=1

nα p−1ψ(n)P(|X | > nα)

� C
∞

∑
n=1

nα p−1ψ(n)
∞

∑
j=n

P( jα < |X | � ( j +1)α)

� C
∞

∑
j=1

P( jα < |X | � ( j +1)α)
j

∑
n=1

nα p−1ψ(n)

� C
∞

∑
j=1

jα pψ( j)P( jα < |X | � ( j +1)α)

� CE|X |pψ(|X |) < ∞. (3.9)

Following from Lemma 2.3, Markov’s inequality and Jensen’s inequality, there

exists some r > max
{

p,2(1+ α p
α p−1),

α p+αt−1
α− 1

2

}
such that

I2 � C
∞

∑
n=1

nα p−αr−2ψ(n)E

(∣∣∣∣∣
n

∑
i=1

ani(X
′
i −EX

′
i )

∣∣∣∣∣
)r

� C
∞

∑
n=1

nα p−αr−2+αtψ(n)

(
n

∑
i=1

a2
niE|X

′
i −EX

′
i |2
) r

2

+C
∞

∑
n=1

nα p−αr−2ψ(n)
n

∑
i=1

ar
niE|X

′
i −EX

′
i |r

= C(I21 + I22). (3.10)

By Cr -inequality and ∑n
i=1 |ani|r = O(n) , we can know that for all r > 2,

(
1
n

n

∑
i=1

a2
ni

) 1
2

�
(

1
n

n

∑
i=1

ar
ni

) 1
r

,

so we can know that (
n

∑
i=1

a2
ni

) r
2

� n
r
2−1

n

∑
i=1

ar
ni � Cn

r
2 .

When p � 2, by r > α p+αt−1
α− 1

2
, Cr -inequality, Jensen’s inequality and Lemma 2.4,

we have that
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I21 � C
∞

∑
n=1

nα p−αr−2+αtψ(n)

(
n

∑
i=1

a2
niE|X

′
i |2
) r

2

� C
∞

∑
n=1

nα p−αr−2+αtψ(n)

(
n

∑
i=1

a2
ni(E|Xi|2I(|Xi| � nα)+n2αP(|Xi| > nα))

) r
2

� C
∞

∑
n=1

nα p−αr−2+αt+ r
2 ψ(n)(EX2I(|X | � nα)+EX2I(|X | > nα))

r
2

� C
∞

∑
n=1

nα p−αr−2+αt+ r
2 ψ(n)

< ∞. (3.11)

When p < 2, by r > max{p,2(1+ α p
α p−1), α p+αt−1

α− 1
2

} , we can know that r > 2, it

follows from Cr -inequality and Jensen’s inequality and Lemma 2.4 that

I21 � C
∞

∑
n=1

nα p−αr−2+αt+ r
2 ψ(n)(nα(2−p)(EX pI(|X | � nα)+EX pI(|X | > nα)))

r
2

� C
∞

∑
n=1

nα p−2+αt− (α p−1)r
2 ψ(n)(EX pI(|X | � nα)+EX pI(|X | > nα))

r
2

� C
∞

∑
n=1

nα p−2+αt− (α p−1)r
2 ψ(n)(E|X |p) r

2

< ∞. (3.12)

For I22 , by Lemma 2.4, (2.6) and (3.9), we get that

I22 � C
∞

∑
n=1

nα p−αr−2ψ(n)
n

∑
i=1

ar
niE|X |rI(|X | � nα)

+C
∞

∑
n=1

nα p−2ψ(n)
n

∑
i=1

ar
niP(|X | > nα)

� C
∞

∑
n=1

nα p−αr−1ψ(n)E|X |rI(|X | � nα)+C

� C
∞

∑
n=1

nα p−αr−1ψ(n)
n

∑
j=1

E|X |rI(( j−1)α < |X | � jα)+C

� C
∞

∑
j=1

E|X |rI(( j−1)α < |X | � jα )
∞

∑
n= j

nα p−αr−1ψ(n)+C

� C
∞

∑
j=1

E|X |pψ( j)I(( j−1)α < |X | � jα )+C

� CE|X |pψ(|X |)+C

< ∞. (3.13)
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Hence from (3.6)–(3.13), the proof of Theorem 3.1 is completed. �

THEOREM 3.2. Let α > 1
2 , p = 1

α , 1 � p < 2 , and {Xn,n � 1} be a sequence of
WOD random variables which is mean zero and stochastically dominated by a random
variable X . Let {ani,1 � i � n,n � 1} be an array of constants satisfying ∑n

i=1 |ani|r =
O(nδ ) for some 0 < δ < 1 and r > 2 . Assume that dominating coefficients g(n) =
O(nαt) for some 0 < t < 1−δ

α . If

E|X |pψ(|X |) < ∞, (3.14)

then for every ε > 0 ,

∞

∑
n=1

1
n

ψ(n)P

(∣∣∣∣∣
n

∑
i=1

aniXi

∣∣∣∣∣> εnα

)
< ∞. (3.15)

Proof. Similar to the proof of Theorem 3.1, without loss of generality, we assume
that ani � 0 (otherwise, we can note that ani = a+

ni −a−ni ). For fixed n � 1, 1 � i � n ,
define

Xi
′
= −nαI(Xi < −nα)+XiI(|Xi| � nα)+nαI(Xi > nα).

It is easy to check that

P

(∣∣∣∣∣
n

∑
i=1

aniXi

∣∣∣∣∣> εnα

)
�

n

∑
i=1

P(|Xi| > nα)

+P

(∣∣∣∣∣
n

∑
i=1

ani(Xi
′ −EXi

′
)

∣∣∣∣∣> εnα −
∣∣∣∣∣

n

∑
i=1

aniEXi
′
∣∣∣∣∣
)

. (3.16)

First, we will show that

1
nα

∣∣∣∣∣
n

∑
i=1

aniEXi
′
∣∣∣∣∣→ 0, as n → ∞. (3.17)

From Lemma 2.2, it obviously follows that {Xi
′
,1 � i � n} is still a sequence

of WOD random variables. Hence, it follows from the EXi = 0, ∑n
i=1 |ani|r = O(nδ ) ,

Markov’s inequality and Lemma 2.4, for any 1 � p < 2 that

1
nα

∣∣∣∣∣
n

∑
i=1

aniEXi
′
∣∣∣∣∣ � C

1
nα

(
n

∑
i=1

ar
ni

) 1
r

n1− 1
r E|X |I(|X | > nα)

� Cn
δ−1

α E|X |p
→ 0, as n → ∞. (3.18)
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Hence, by (3.16) and (3.17),

∞

∑
n=1

1
n

ψ(n)P

(∣∣∣∣∣
n

∑
i=1

aniXi

∣∣∣∣∣> εnα

)

� C
∞

∑
n=1

1
n

ψ(n)
n

∑
i=1

P(|Xi| > nα)

+C
∞

∑
n=1

1
n

ψ(n)P

(∣∣∣∣∣
n

∑
i=1

ani(Xi
′ −EXi

′
)

∣∣∣∣∣> εnα

2

)
. (3.19)

To prove (3.15), it suffices to show that

I∗1 =C
∞

∑
n=1

1
n

ψ(n)
n

∑
i=1

P(|Xi| > nα) < ∞. (3.20)

I∗2 =C
∞

∑
n=1

1
n

ψ(n)P

(∣∣∣∣∣
n

∑
i=1

ani(Xi
′ −EXi

′
)

∣∣∣∣∣> εnα

2

)
< ∞. (3.21)

By Lemma 2.4 and (3.1), we can obtain that

I∗1 � C
∞

∑
n=1

ψ(n)P(|X | > nα)

� C
∞

∑
j=1

P( jα < |X | � ( j +1)α)
j

∑
n=1

ψ(n)

� C
∞

∑
j=1

jψ( j)P( jα < |X | � ( j +1)α)

� CE|X |pψ(|X |) < ∞. (3.22)

Following from Lemma 2.3, Markov’s inequality and Jensen’s inequality, there
exists some r > 2 such that

I∗2 � C
∞

∑
n=1

n−1−αrψ(n)E

(∣∣∣∣∣
n

∑
i=1

ani(Xi
′ −EXi

′
)

∣∣∣∣∣
)r

� C
∞

∑
n=1

n−1−αr+αtψ(n)

(
n

∑
i=1

a2
niE|Xi

′ −EXi
′ |2
) r

2

+C
∞

∑
n=1

n−1−αrψ(n)
n

∑
i=1

ar
niE|Xi

′ −EXi
′ |r

= C(I∗21 + I∗22). (3.23)

By Cr -inequality and ∑n
i=1 |ani|r = O(nδ ) , we can know that for all r > 2,

(
1
n

n

∑
i=1

a2
ni

) 1
2

�
(

1
n

n

∑
i=1

ar
ni

) 1
r

,
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so we can know that (
n

∑
i=1

a2
ni

) r
2

� n
r
2−1

n

∑
i=1

ar
ni � Cn

r
2−1+δ .

By 1 � p < 2, r > 2, 0 < t < 1−δ
α , it follows from Cr -inequality, Jensen’s in-

equality, and Lemma 2.4 that

I∗21 � C
∞

∑
n=1

n−1−αr+αtψ(n)

(
n

∑
i=1

a2
niE|X

′
i |2
) r

2

� C
∞

∑
n=1

n−1−αr+αtψ(n)

(
n

∑
i=1

a2
ni(E|Xi|2I(|Xi| � nα)+n2αP(|Xi| > nα))

) r
2

� C
∞

∑
n=1

nαt+δ−2ψ(n)(E|X |pI(|X | � nα)+E|X |pI(|X | > nα))
r
2

� C
∞

∑
n=1

nαt+δ−2ψ(n)(E|X |p) r
2

< ∞. (3.24)

For I∗22 , by 0 < δ < 1, (2.3), (2.6) and (3.22), we can get that

I∗22 � C
∞

∑
n=1

n−1−αr+δ ψ(n)E|X |rI(|X | � nα)+C

� C
∞

∑
j=1

E|X |rI(( j−1)α < |X | � jα )
∞

∑
n= j

n−1−αr+δ ψ(n)+C

� C
∞

∑
j=1

jδ−1E|X |pψ( j)I(( j−1)α < |X | � jα )+C

� CE|X |p+ δ−1
α ψ(|X |)+C

< ∞. (3.25)

Hence from (3.19)–(3.25), the proof of Theorem 3.2 is completed. �

If ani ≡ 1 and ψ(x) = 1 in Theorem 3.2, we can get the following corollary im-
mediately.

COROLLARY 3.3. Let α > 1
2 , p = 1

α , 1 � p < 2 , and {Xn,n � 1} be a se-
quence of WOD random variables which is mean zero and stochastically dominated by
a random variable X . Assume that dominating coefficients g(n) = O(nαt) for some
0 < t < 1

α . If E|X |p < ∞ , then for every ε > 0 , we have that

∞

∑
n=1

1
n
P

(∣∣∣∣∣
n

∑
i=1

Xi

∣∣∣∣∣> εnα

)
< ∞. (3.26)
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REMARK 3.4. This paper obtains the complete convergence for WOD random
variables, which extends the corresponding results of Wang et al. [3] for the case of
END random variables. If we take ψ(x) = 1 in Theorem 3.1, then we can obtain
the result of Ding et al. [12] for WOD sequence without adding any extra condition.
Furthermore, this paper obtains the complete convergence for WOD random variables
when α p = 1 in Theorem 3.2.

REMARK 3.5. The results of Theorems 3.1 and 3.2 hold true for ψ(x) = 1 and
ψ(x) = lm(x) . In fact, Theorems 3.1 and 3.2 can be also obtained when ψ(x) is a
slowly varying function at infinite according to Bai and Su [22].
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